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Abstract: 

We construct one triple-threshold GARCH model to analyze the asymmetric response of 

mean and conditional volatility. In parameter estimation, we apply Griddy-Gibbs sampling method, 

which require less work in selection of starting values and pre-run. As we apply this model in 

Chinese stock market, we find that 12-days-average return plays an important role in defining 

different regimes. While the down regime is characterized by negative 12-days-average return, the 

up regime has positive 12-days-average return. The conditional mean responds differently between 

down and up regime. In down regime, the return at date t is affected negatively by lag 2 negative 

return, while in up regime the return responds significantly to both positive and negative lag 1 past 

return. Moreover, our model shows that volatility reacts asymmetrically to positive and negative 

innovations, and this asymmetric reaction varies between down and up regimes. In down regime, 

volatility becomes more volatile when negative innovation impacts the market than when positive 

one does, while in up regime positive innovation leads to more volatile market than negative one. 
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1. Introduction 

GARCH models are widely accepted in modeling changing volatility in financial time series. 

One limitation of GARCH models is the implied symmetric effect of positive and negative 

innovation on conditional volatility. The GJR model of Glosten, Jagannathan, and Runkle (1993) 

introduced asymmetric GARCH, and Zakoian (1994) considered one similar model - TGARCH 

model, in which conditional variance was replaced by conditional standard deviation in volatility 

equation. Yet, these two asymmetric models are limited in that the threshold variables are assumed 

to be past innovations, and that the threshold values are set to be 0.   

Li and Lam (1995) applied the SETAR model of Tong (1978, 1983) to model the daily return 

series of the Hong Kong Hang Seng index. The GARCH parameters in their model were estimated 

using maximum likelihood method, and the delay parameters via AIC criterion. Li and Li (1996) 

proposed one double-threshold ARCH models, and Brooks (2001) extended to double-threshold 

GARCH model to capture asymmetry in both mean and volatility simultaneously.  

Chen et. al. (2003) employed one similar model to study the asymmetric reaction of both 

stock returns and volatility in six major stock markets, in response to good and bad news from the 

US market. Yang and Chang (2008) explored asymmetric response of stock return to foreign 

exchange market using a double-threshold GARCH. And Hwang et. al. (2010) found evidence of 

“explosive volatility” in Korean foreign exchange market with a threshold-asymmetric GARCH 

model.  

The above mentioned double-threshold GARCH model differs in the choice of threshold 

variable. While Chen et. al. (2003) takes the past return of US market as threshold variable, Yang 

and Chang (2008) proposes past return in foreign exchange market, and Chen and So (2006) 

suggests a weighted average of auxiliary variables to be the threshold variable.  

In Chinese stock market, moving average trading strategies are widely implemented in 

practice. Thus, we have reason to believe that moving average return will have a significant 

impact on regime switching. Based on this argument, we propose a new threshold variable : t
z

1

1 m

t t

i

z y
m

i


  . 

In the above equation, 
i

y is the stock market return at time t. Similar as Chen and So (2006), 

this threshold variable is only partially determined, for lag parameter m should be estimated in 

statistic inference. In special case, if m = 1, then =
t

z 1t
y  . So our definition of threshold variable 

incorporates the trivial case in which the lag one past return are used to be the threshold variable.  

With the goal of understanding more asymmetric reaction in Chinese stock market, we 

construct one triple-threshold GARCH model. Besides the threshold variable defined above, we 

also let the conditional mean react differently to past return, and the conditional volatility to past 

innovations. 

As to parameter estimation, we propose Griddy-Gibbs sampling, one of the Markov Chain 

Monte Carlo methods. In classical methods, the thresholds in TAR are determined via grid search, 

and the threshold variables through AIC criterions, which are widely assumed to be imprecise. 
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MCMC methods provide one way to estimate normal parameters, thresholds and delay parameters 

simultaneously (see, e.g., Geweke and Terui (1993), Chen and Lee (1995), Phann et. al. (1996), 

etc.).     

Chen and So (2006) used a Metropolis-Hasting algorithm for parameter estimation in 

threshold GARCH model. Goldman and Agbeyegbe (2007) introduced an efficient jump 

Metropolis-Hasting sampling method, which was claimed to be better at controlling the 

acceptance rate, thus resulting enhanced sampling efficiency. Griddy-Gibbs method may require 

more time in sampling process, but it save much time in predetermining proposed mean and 

standard deviations of parameters, which is indispensable with Metropolis-Hasting method. 

Considering that improper proposal distribution in M-H method may take long time to converge, 

sometimes even don’t converge at all, the Griddy-Gibbs sampling has its own advantage in that 

parameter convergence is less sensitive to initial parameters. Thus, Griddy-Gibbs sampling do not 

need much pre-run work before sampling process, and this save much calculation time, although 

the parameter simulation process may take longer time than M-H sampling. 

The structure of the paper is as follows. Section 2 defines the triple-threshold GARCH which 

aims to analyze the asymmetric reaction in conditional mean and volatility. Section 3 shows the 

Griddy-Gibbs sampling method for parameter estimation. Application of the model to Chinese 

stock market is presented in section 4. Section 5 concludes.  

2. A triple-threshold GARCH model 

Our triple-threshold GARCH model is defined as follows:  

( ) ( ) ( )
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where
1

1 m

t t i
1,...,j 

i

z y
m




  J, , m is a positive integer which determines the threshold varia 

-ble, and { } is a sequence of iid random variables, which are assumed to follow standardized 

Student-t distribution with degree of freedom parameter . 

t
e

( )j
v I is an indicator function. The 

threshold values satisfy ,
j

r 1 2 1...
J

r r r        0r   and
J

r   .  

The main threshold variable in our model is a moving average process of the past returns. 

This definition is actually one special case in Chen and So (2006). Yet we argument that this is 

suitable for analyzing the Chinese stock market, because moving average trading strategies are 

frequently used in investment practice in China, and the optimal trade timing of these strategies 

are easily demonstrated using plots which can be understood by most of the people in China. The 

popularity of moving average trading strategies leads to its success itself. According to the fact 

that the moving average trading strategies are intensively implemented in Chinese stock market, 

we have reason to believe that moving average return may have a great impact on the market, thus 

our definition of threshold variable is appropriate.  
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With threshold variable Zt and threshold {rj}, J regimes in the model is defined. Within each 

regime, we implement two additional threshold effects in mean equation and volatility equation, 

respectively. In mean equation, we impose one asymmetric reaction of mean in response to 

positive or negative past return in each regime. And in volatility equation, one similar asymmetry 

as GJR model is imposed.  

Thus our model incorporates totally three threshold processes: one is defined by threshold 

variable , which separate the return series into J different regimes; the other defined by 

residual

t
z

t
 , which incorporate the asymmetric reaction of volatility to positive or negative shocks 

in each regime; the third threshold process is demonstrated by past return, as the mean equation 

shows.   

Among these three threshold processes, the first one is dominant, for the regimes in equation 

1 are solely determined by threshold variable . The other two threshold processes present 

asymmetry in conditional mean and volatility in correspondent regime respectively.   

t
z

As to parameter constraints, we restrict AR parameters by  

( ) ( )

1 1

1
P P

j j

i l

i l
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   .                  

Constraints on parameters of volatility equation are as follows. 

( ) ( ) ( ) ( )0 , , ,j j j j    1. 

These constraints do not explicitly require the addition of ARCH and GARCH parameters to be 

less than 1, thus the stationarity of volatility is not guaranteed, and it’s possible that some regimes 

may show explosive volatility process. Yet the regimes switch themselves, and this mechanism has 

a counter effect on possible explosive volatility, leading to stationarity in the model as a whole. 

Markov Chain Monte Carlo simulation has one explicit advantage that we can get correct 

parameter estimate even if we do not impose the stationary restriction before sampling, only we 

need to check whether the resulted parameters satisfy the normal stationary restriction of GARCH 

model. On the contrary, imposing stationarity constraints in sampling process may miss some 

interesting feature in empirical application, as our analysis in Chinese stock market show.  

Bauwens et. al. (2010) provides stationarity condition for Markov Switching GARCH (1,1) 

mode, which states 

( ) 2 ( )

1

[log( )] 0
J

j j

j t

j

E   


                      (2) 

where
j

 is the probability of regime j. Of course, this stationary constraint can be implemented in 

triple-threshold GARCH model, if
j

 of regime j is calculated using its duration over time.   

3. Griddy-Gibbs sampling of the model  

Unlike the existing literature, we apply Griddy-Gibbs sampling in estimating threshold 
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GARCH model. Comparing the other methods, such as Metropolis-Hasting algorithm, our method 

is relatively easy to handle, in that it do not need specified values in sampling process. Although 

Griddy-Gibbs sampling need to specify the maximum and minimum values of grid interval, it’s 

relative easy to set, and it’s easy to check whether these values are specified correctly by plotting 

posterior distributions using grid points.  

The P value is determined according to Bayesian information criterion. The threshold value r, 

is so constrained that the observations in each regime exceed one minimum number, which is 

normally set to be 5% of the number of total observations.  

We describe the sampling process for the case of two regimes. For high number of regimes, 

the process is similar. The parameters we estimate include: (1) parameters in mean equation ,  

and ; (2) parameters in volatility equation , , and ; (3) threshold value ; (4) threshold 

parameter m; (5) degree of freedom v.  

r

Given threshold variable{ and threshold value r, the return series{}
t

z }
t

y is split into different 

regimes, which we denote{ . The posterior distribution in regime j is given by 
( )}j

y
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
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where p denotes the prior distribution, and is the maximum number of observations in regime j. 

For simplicity, we assume a uniform prior for all parameters, thus the prior distribution can be 

ignored in sampling process. The Griddy-Gibbs sampling process is as follows. 

j
T

(1) Chose the initial values for parameters, which are denoted by
j

 
(0, ) (0, ) (0, ) (0, ), , ,j j j   

(0, ) (0, ) (0, ) (0) (0), , , ,j j j
r m   , . For parameters in mean and volatility equations are 

estimated in the same way by applying Griddy-Gibbs sampling. Thus we denote  

1,2j 

(0, ) (0, ) (0, ) (0, ) (0, ) (0, ) (0, ) (0, ){ , , , , , ,j j j j j j j        }j
 

for simplicity in written. Given , the return series{(0) (0),r m }
t

y  is separated into 2 regimes. Then 

each parameter in , is Griddy-Gibbs sampled using ,
(1, )j (0, ){ }j

ty 1,2j   one after another. The 

sampling of parameter in different regime proceeds separately, because the posterior distribution 

in regime j is solely determined by . 
(1, )j

    Given , the i-th Griddy-Gibbs sampling of proceeds in the same way. Of course, 

the parameters within  can be updated, when another parameter in  is sampled.    

( ) ( ),i
r m

i ( , )i j

( , )i j ( , )i j

(2) Threshold value sampling: The posterior distribution for threshold value sampling is as 
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follows.  

( ) ( ) 22
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t

z r , j=1; and if , j=2                   (3) 
t

z r

Grid interval can be subject to[ ( , with additional constraint that . In 

case of multiple regime, the posterior distribution of depends on neighboring regimes j and j+1. 

Thus only the parameters in these two regimes enter into the posterior distribution of . The 

threshold values ,

), ( )
t

min z max z

J

]
t 5%

j
T T 

j
r

j
r

j
r 1,...,j  , are drawn one by one. 

(3) The sampling of threshold parameter m. Similar as equation (3), the posterior of m is 

given as:  
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with
( )j

t
y separated according to 1j t

r z j
r  . Unlike threshold value, m depends on the 

parameters in all regimes. On the other side, the estimate of m affects all other parameters, in that 

it changes threshold variable , which again result in change of .  
t

z ( )j

ty

Unlike the other parameters, m is a positive integer. But this feature makes no change to the 

Griddy-Gibbs sampling itself. Only, we need to set the grid interval of m to be positive integer in 

[0, M]. M is the maximum choice of m, and in this paper we choose M = 30. 

As with any standard MCMC procedure, we draw N times for each parameter, and delete the 

first n draws. The remaining N - n draws are used to calculate the mean and standard deviation of 

the parameters.  

4. Empirical application in Chinese stock market 

In this section, we apply the threshold GARCH model to Chinese stock market. We choose 

t
y to be daily Shanghai Exchange Index from January 1997 to June 2010, which consist totally 

3251 data. We collect the data from 1997, because before 1997 there was no 10% restriction to 

daily up and down of individual stock price, and after the introduction of this policy in January 

1997 the volatility of Chinese stock market reduced significantly. Our data is collected from Wind 

Finance1. 

                                                        
1 One financial data provider in China with homepage: www.wind.com.cn.  
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Figure 1. Return of Shanghai Exchange Index from January 1997-June 2009. 

4.1. Structural break test of volatility 

We use SupF tests proposed by Andrews (1993), and Andrews and Ploberger (1994) to detect 

the volatility breaks in absolute value of{ }ty . The testing equation is as follows. 

1 1, 2 2,
1 1

( ) (
P P

t i t i j t j

i j

y y y I t ) tc    
 

                     (5) 

Maximum lag P = 8, which is determined through Bayesian information criterion. As testing 

result, SupF = 29.24 with the break date on Dec. 20, 2006. Clearly, we reject the null hypothesis of 

no volatility break.  

This volatility break was obviously connected with some events that happened in Chinese 

stock market. As figure 2 shows, after Dec. 2006, the Chinese market stepped into one 

phenomenal bull market, which enhanced the market volatility significantly. Why this most 

spectacular bull market in Chinese history began in 2006? We though, that the stock market 

reform in 2006 which aimed to make the all of the stocks exchangeable2 was responsible for the 

subsequent euphoria in the market. This reform seemed to promise the market one bright future, 

and evoked the dormant passion of most of the Chinese citizen for stock speculation. And 

indirectly, this reform leaded to the bull market from 2006 to 2007 and the subsequent burst on 

Oct. 2007.  

 

Figure 2. Shanghai Exchange Index with the volatility break 

As the structural break test and analysis shows, the Chinese stock market after Dec. 2006 was 

greatly affected by the reform in 2006. Thus, we separate the return series into two periods: before 

and after Dec. 20, 2006. We apply the threshold GARCH to the first period, in order to study the 

                                                        
2 As historic reason, a large stock of shares in most of the state-owned companies in Chinese stock market is not 
exchangeable in the market. Thus the dominant shareholder, which usually control the companies too, have no 
incentive to enhance the share price, which again results in variety of frauds.  
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asymmetric response of conditional mean and volatility to different threshold regimes, positive or 

negative shocks, and positive or negative past returns.  

 

4.2. Threshold GARCH model before Dec. 2006 

This section presents the results of estimation of the threshold GARCH model. We assume 2 

regimes. And we calculate P = 3 according to BIC. Totally 10000 parameter simulations are drawn, 

with the first 2000 simulations taken as burn-in data. Table 1 presents the mean and standard 

deviation of the parameter. 

 

 Regime 1: 
t

z r  Regime 2:  
t

z r
 mean std mean Std 

  -9.18×10-4** 3.41×10-4 -3.19×10-4 2.63×10-4 

1  0.0478 0.0532 0.1765** 0.0531 

2  0.0211 0.0530 0.0470 0.0502 

3  -0.0266 0.0624 0.0563 0.0527 

1  -0.0871 0.0639 -0.1463** 0.0546 

2  -0.1676** 0.0599 -0.0365 0.0598 

3  0.0397 0.0605 0.0623 0.0529 

  3.29×10-6 ** 
1.14×10-6 1.47×10-6** 0.57×10-6 

  0.0295 0.017 0.0998** 0.025 

  0.176** 0.042 0.058** 0.028 

  0.72** 0.06 0.80** 0.05 

v 4.77** 0.74 4.44** 0.6061 

r  -1.88×10-4 1.38×10-4   

m 12.33** 3.09   

                                                                            

Given r and m, the returns can be separated into 2 regimes: the returns in regime 1 (down 

regime) satisfy , and regime 2 (up regime) . Obviously, the average return in up 

regime is larger than that in down regime. The parameter estimate in table 1 shows that r is 

indifferent to 0, which means whether 12 days average return is positive or not, is an important 

criterion to differentiate the regimes. With another interpretation, in case positive 12-days-average 

return people may have different speculation strategies, perhaps more aggressively.  

t
z r

t
z r

Next, we explain the asymmetric response of mean and volatility to positive and negative 

past returns, positive and negative innovations, in down regime and up regimes respectively. In 

down regime, we may reject the null hypothesis that 2 =  with 5% significant level, which means 

one negative 2t

 0

y  ma nificantly reduce the return at date t. Yet, in up regime, 1y sig  and 1 show 

t both positive and negative 1t
tha y  have ificant effect on

t
sign y , which corresponds to one well 

known speculation strategy “buy when index rises, and sell when it downs”.  

We think its one evidence of irrationality in Chinese stock market. In mature market, the 
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similar pattern may not be seen. This irrationality may partly be explained when we look into the 

psychology of a speculator. In down regime, because of average negative returns, the speculator 

has no confidence on the market, thus do not responds to the positive returns. However, in this bad 

time he is afraid of losing more, so he may reduces his portfolio heavily as 2t
y   is significantly 

negative. The reason that 1 is not significantly differentiated from 0, is that there are always 

someone who hope to get some profit in case of rebound, and these buys let the sells insignificant 

in 1 . 

In up regime, the speculators are less risk-averse because the market promises positive return 

on average. They trade intensively, running after the profit and trying to avoid the loss. So they 

respond both to positive and negative 1t
y  quickly.  

Parameters in volatility equation tell another interesting story about asymmetric reaction to 

innovations. We plot the conditional posterior pdf of , , and  , so we can show the 

parameter difference vividly.  

 

 

Figure 3. Conditional posterior pdfs of , ,  and   in down and up regimes 

The GARCH persistence parameters  , calculated as 0.5 ( )        in case of 

symmetric distribution of innovations, are 0.823 in down regime and 0.879 in up regime. 

Combining with , we can get that the conditional volatility in down regime is c.a. twice as that 

in up regime.  

Moreover, the other parameters differentiate themselves significantly between these two 

regimes. Considering and , the volatility in down regime responds more intensively to 

negative innovations, while in up regime the positive innovation affects the volatility more 

significantly. It can be explained, if we study the psychology of the speculator in Chinese stock 

market. It’s the fear for loss in “bad time”, and the desire for profit in “good time” that drives the 

market to respond asymmetrically to different innovation.   

Many paper pointed out that negative innovations tend to increase volatility more than 
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positive ones in American stock market. However, in Chinese stock market, we need to analyze 

the case in different regimes, because the asymmetric response of volatility varies widely between 

down and up regimes. 

5. Conclusions 

We construct one triple-threshold GARCH model to analyze the asymmetric response of 

mean and conditional volatility. In parameter estimation, we apply Griddy-Gibbs sampling method, 

which require less work in selection of starting values and pre-run.  

We apply our model in Chinese stock market, and find that 12-days-average return plays an 

important role in defining different regimes. While the down regime is characterized by negative 

12-days-average return, the up regime has positive 12- days-average return. The conditional mean 

responds differently between down and up regime. In down regime, the return at date t is affected 

negatively by lag 2 negative return, while in up regime the return responds significantly to both 

positive and negative lag 1 past return. 

Moreover, our model shows that volatility reacts asymmetrically to positive and negative 

innovations, and this asymmetric reaction varies between down and up regimes. In down regime, 

volatility becomes more volatile when negative innovation impacts the market than when positive 

one does, while in up regime positive innovation leads to more volatile market than negative one 

does. 
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