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Viscosity solutions approach to economic models
governed by DDEs

Giorgio Fabbri*

Abstract

A family of economic and demographic models governed by lin-
ear delay differential equations is considered. They can be expressed
as optimal control problems subject to delay differential equations
(DDEs) characterized by some non-trivial mathematical difficulties:
state/control constraints and delay in the control. The study is car-
ried out rewriting the problem as an (equivalent) optimal control prob-
lem in infinite dimensions and then using the dynamic programming
approach (DPA).

Similar problems have been studied in the literature using classical
and strong (approximating) solutions of the Hamilton-Jacobi-Bellman
(HJIB) equation. Here a more general formulation is treated thanks
to the use of viscosity solutions approach. Indeed a general current
objective function is considered and the concavity of the Hamiltonian is
not required. It is shown that the value function is a viscosity solution
of the HJB equation and a verification theorem in the framework of
viscosity solutions is proved.

Key words: viscosity solutions, delay differential equation, vintage
models.

1 Introduction

The present work can be considered as a continuation of the studies presented
by Fabbri et al. (2006). We treat a class of economic and demographic prob-
lems, written as optimal control problems with delay state equation. We use
an equivalent formulation of the delay problem introducing a suitable Hilbert
space and re-writing the state equation as a suitable Ordinary Differential
Equation! (ODE) in the Hilbert space.

*Facolta di Economia of LUISS, Roma, Italy (gfabbri@luiss.it)

'The method we use is due to Vinter and Kwong (1981) and Delfour (1986; 1980;
1984). In the paper we will refer to the book of Bensoussan et al. (1992) that give a
precise systematization of the argument.



The family of models we study arises in particular in the demographic
and economic literature. The references for models for epidemiology and
dynamic population governed by linear delay differential equations, to which
an abstract formulation in Hilbert spaces is possible, are presented in Section
2. We will then recall a demographic model with an explicit age structure by
Boucekkine et al. (2002) (Subsection 2.2), an AK model with vintage capi-
tal by Boucekkine et al. (2005) (briefly described in Subsubsection 2.1.1)2,
a AK model for obsolescence and depreciation by Boucekkine et al. (2004)
(Subsubsection 2.1.3) and an advertising model with delay effects by Gozzi
and Marinelli (2004); Gozzi et al. (2006); Faggian and Gozzi (2004) (Sub-
subsection 2.1.2). Some of them are described in Fabbri et al. (2006) in more
details.

We use the dynamic programming approach (DPA). We briefly recall®
that the DPA consists of four main steps: (i) Write the dynamic program-
ming principle for the value function and its infinitesimal version, the HJB
equation, (ii) Solve the HIB equation and prove that the solution is the value
function, (iii) Prove a verification theorem (which can involve the value func-
tion) that gives the optimal control as function of the state finding the closed
loop relation, (iv) Solve, if possible, the closed loop equation, obtained in-
serting the closed loop relation in the state equation.

The main difference between Fabbri et al. (2006) and the present work
is the different method used to study the HJB equation. In Fabbri et al.
(2006) we studied the HJB equation using an approximation method with
techniques similar to the ones used by Faggian (2005b;a); Faggian and Gozzi
(2004) for other classes of problems. Here we treat a more general case,
studying the existence of viscosity solutions for the HJB equation. Indeed,
as we also remarked in the introduction of Fabbri et al. (2006), the use of
viscosity solutions in the study of HJB equation allows to avoid the con-
cavity assumption for the Hamiltonian and for the target functional of the
problem. In this way problems with multiple optimal solutions*, where the
value function is not everywhere differentiable, are also tractable. Moreover,
using viscosity solution approach, we do not require that the control and
the state are de-coupled in the objective function (see Subsection 3.2 and
in particular Remark 3.5). We prove that the value function is a viscosity
solution of the HJB equation (Theorem 5.9) and then we give a verification
theorem (Theorem 6.4). A verification result represents a key step in the
dynamic programming approach to optimal control problems, indeed it ver-
ifies whether a given admissible control is optimal and, more importantly,

2The model by Boucekkine et al. (2005) was also studied by Fabbri and Gozzi (2006)
using the dynamic programming approach.

3A more detailed description of the method can be found for example in Fabbri et al.
(2006).

“We refer to Deissenberg et al. (2004) for a bibliographical account of such problems
arising in economics



suggests a way of constructing optimal feedback control. We are not able at
the moment to give a uniqueness result for the viscosity solution of the HJB
equation. It will be an issue for future work.

On viscosity solution approach We have already recalled that a cru-
cial step in the the DPA to optimal control problems is solving the associated
HJB equation. Such a solution can be used to find optimal controls in a
closed-loop form. There are many possible definitions of solutions of a PDE
and in particular of the HJB equation related to optimal control problems.
Which shall we choose? In the classical works (Fleming and Rishel, 1975) the
authors use a regular solution approach: the solution of the HJB equation
is a regular (C!) function that satisfies pointwise, with its derivatives, the
equation. However in many cases, interesting from an applied point of view,
the solution of the HJB equation is neither C'' nor differentiable. Crandall
and Lions (1983) introduced the definition of viscosity solution for the HJB
equation related to optimal control problem in finite dimensions. In general
the idea is that the solution can be less regular, for example continuous,
and the solution is defined using either sub and super differential or using
test functions. The notion of viscosity solution is a generalization of the
notion of regular solution in the sense that every regular solution of the HJB
equation is also a viscosity solution. Moreover there are many examples of
HJB equations that admit viscosity solutions but do not have classical so-
lutions. Under quite general hypotheses, in the finite dimensional case, it
can be proved that the HJB equation related to an optimal control problem
admits a unique viscosity solution and that such a solution is exactly the
value function of the problem. Viscosity solutions can be used to find verifi-
cation results and to solve optimal control problems that cannot be treated
with classical solutions. In the infinite dimensional case the things are quite
more complex and the literature is smaller. It remains true that viscosity
solutions are an extension of classical solutions and can be used to treat a
greater number of problems.

A brief summary on the literature The viscosity method, introduced
in the study of the finite dimensional HJ equation by Crandall and Lions
(1983) was extended to the infinite dimensional case by the same authors in
a series of works (Crandall and Lions, 1985; 19864a;b; 1990; 1991; 1994a;b).
New variants of the notion of viscosity solutions of HJB equations in Hilbert
spaces are given by Ishii (1993) and by Tataru (1992a;b; 1994).

The study of viscosity solution for HJB equations in Hilbert spaces aris-
ing from optimal control problems of systems modeled by PDE with boundary
control term is more recent. In this research field there is not a complete the-
ory but some works on specific PDE that adapt the ideas and the techniques
of viscosity solutions to special cases. For the first order HJB equations see
the works by Cannarsa et al. (1991; 1993); Cannarsa and Tessitore (1994;



1996a;b); Gozzi et al. (2002); Fabbri (20065). It must be noted that most
of these works treats the case in which the generator of the semigroup that
appears in the ODE is selfadjoint.

Infinite dimensional HJB equations arising from DDEs with delay in the
conlrol present an unbounded term similar to the one arising in boundary
control problems. To our knowledge such HJB equations have been studied
only by Fabbri and Gozzi (2006); Fabbri et al. (2006) using classical and
strong® solution. The existing papers do not cover the case studied in the
present work.

The abstract method and the applications As we have already
stressed, in this paper we use an abstract formulation for linear delay differ-
ential equation. In particular we write the DDEs as an equivalent ODE in
an Hilbert space and then we study the infinite dimensional HJB equation
related to such a formulation.

This kind of abstract approach is not only a mathematical study but
it is useful to obtaining applied results. In Fabbri and Gozzi (2006) such
kind of method was used to study an AK growth model with vintage capital
(the same recalled in Subsubsection 2.1.1 with the Constant Relative Risk
Aversion (CRRA) functional) finding more precise results with respect to
the existing literature that studied the problem using maximum principle,
a tool that seems more “applied”. One of the improvements was in finding,
for example, the long run behavior of the system and various constants of
the model in explicit form. Analogous results can probably obtained using
the same tools in the model for obsolescence and depreciation presented
by Boucekkine et al. (2006) and in the time-to-build model by Asea and
Zak (1999) (see also Bambi, 2006). Indeed such models present a CRRA
functional and are governed by a delay differential equation of the form
required by Fabbri (2006a).

In the present paper we study a general case, with a generic functional,
and then an explicit solution of the HJB equation is not available but the
DPA is a useful tool. It allows to obtain a verification result in the general
case that can be exploited in the cases in which the value function is given
(possibly only numerically).

The plan of the work In Section 2 we recall some demographic and
economic models that use linear delay differential equation and in particular
three key models (in which an optimal control problem appears) that we
will use to formulate our general problem. In Section 3 we describe the
optimal control problem in delay formulation with some remarks on the
difficulties we encountered (in Subsection 3.4 we explain why it cannot be
treated with standard techniques). Then (Section 4) we briefly recall the
equivalence of the optimal control problem subject to DDE and a suitable
optimal control problem subject to ODE in an specific Hilbert space. In

5 A strong solution is a suitable limit of classical solutions of approximating problems.



Section 5 we present the definition of viscosity solution of the HJB equation
(Definition 5.2, Definition 5.3, Definition 5.4) and we prove (Theorem 5.9)
that the value function of the problem is a viscosity solution of the HJB
equation. In Section 6 we give a verification result (Theorem 6.4) using
some techniques that will be better develop in Swiech et al. (2006).

Acknowledgements I would like to thank a lot Silvia Faggian and
Fausto Gozzi for the many useful suggestions. Thanks to Vladimir Veliov
for the kindness.

2 Demographic and economic models

The Hilbert setting we describe® can be used to express in abstract form
linear delay differential equations (LDDEs). LDDEs are used to model a
large variety of phenomena. Systems of such equations, possibly combined
with other types of functional equation arise for example in modelling the
dynamics of epidemics (Hethcote and van den Driessche, 1995; 2000; Smith,
1983; Waltman, 1974) and in biomedical models (Bachar and Dorfmayr,
2004; Culshaw and Ruan, 2000) (see also Luzyanina et al., 2004, for a
numerical approach). A review on the use of DDEs (linear and nonlinear)
in biosciences, in particular in population dynamics, ecology, epidemiology,
immunology and physiology can be found in Bocharova and Rihanb (2000)
and Baker et al. (1999).

The Hilbert setting we describe can be also used to treat multidimen-
sional linear delay differential systems and in particular the linearizations of
models governed by DDEs near equilibrium points (Li and Ma, 2004, page
1234).

2.1 Three main examples

In this subsection we briefly recall three economic models. They are our main
examples because we will use them to understand which can be the “right”
assumption in the formulation of the general case. As seen in Subsection 2.2
they are formally very similar to some dynamic population models. The first
is an AK-model with vintage capital introduced by Boucekkine et al. (2005),
the second is an advertising model with delay effects by Gozzi and Marinelli
(2004); Gozzi et al. (2006); Faggian and Gozzi (2004) and the third is an
AK model for obsolescence and depreciation by Boucekkine et al. (2006).

®As we already recalled it is due in particular to to Vinter and Kwong (1981) and
Delfour (1986; 1980; 1984).



2.1.1 An AK model with vintage capital

The AK-growth model with vintage capital presented by Boucekkine et al.
(2005) is based on the following accumulation law for capital goods

where i(7) is the investment at time 7. That is, capital goods are accumu-
lated for the length of time R (scrapping time) and then dismissed. It is to
note that such an approach introduces a differentiation in investments that
depends on their age. It is assumed a linear production function, that is

y(s) = ak(s)

for some constant a > 0 where y(s) is the output at time s. We assume
that at every time s the planner chooses how to split the production into
consumption c¢(s) and investment in new capital i(s):

y(s) = c(s) +i(s),
then the state equation may be written into infinitesimal terms as follows
k(s) =i(s) —i(s— R), se€[0,400)

that is, as a LDDE. The social planner has to maximize the following func-

tional
T ele)' P lak(s) — ()T

—0 l1—0

We assume that the investment at time s and the consumption at time s
cannot be negative:

i(s) >0, c(s) >0, VseltT] (2)
So the admissible set has the form:

A () e L2 ([0, 400),R) = 0 < i(s) < ak(s) a.e. in [0, +00)}.

loc

2.1.2 An advertising model with delay effects

Consider the following dynamic advertising model presented in the stochas-
tic case by Gozzi et al. (2006) and by Gozzi and Marinelli (2004), and, in
deterministic one, by Faggian and Gozzi (2004) (see also Feichtinger et al.
(1994) and the references therein for related models)

Let ¢ > 0 be an initial time, and 7" > t a terminal time (7" < 400 here).
Moreover let (s), with 0 < ¢t < s < T, represent the stock of advertising
goodwill of the product to be launched. Then the model for the dynamics



is given by the following controlled Delay Differential Equation (DDE) with
delay R > 0 where z models the intensity of advertising spending:

A(s) = agy(s) + [° (s + ) dar (€) + boz(s) + [°p 2(s + E)dbi(€) s € [t,T]
() =2 y(§) = 0(8), 2(§) =0(§) VE €[t — Rt -
3

with the following assumptions:

® qag is a constant factor of image deterioration in absence of advertising,
ap < 0;

e a(+) is the distribution of the forgetting time, a1(-) € L?([~R, 0]; R);
e by is a constant advertising effectiveness factor, bg > 0;

e by(-) is the density function of the time lag between the advertising
expenditure z and the corresponding effect on the goodwill level, by (+) €
L*([-R,0[; Ry);

e z is the level of goodwill at the beginning of the advertising campaign,
z > 0;

e O(-) and 6(-) are respectively the goodwill and the spending rate before
the beginning, 6(-) > 0, with #(0) = =z, and 4(-) > 0.

Finally, we define the objective functional as
T
It.i()) = po(r(@) + [ hola(s)) ds, (4)
t

2.1.3 A model for obsolescence and depreciation

Boucekkine et al. (2006) presented an AK model for obsolescence and de-
preciation that allows to disentangle obsolescence and physical depreciation.
The state variable is the production net of the maintenance and repair costs.
It satisfies the DDE:

vy = [ (@) —pics)as )

where €, n and § are real positive constants and n = e %7Q. The control
variable is given by the investment i(s) that has to satisfy the constraint
0 <i(s) <y(s). The planner has to maximize the functional

/+OO e Ps (y(S) — i(s))liads
0

1—0

(6)
for some positive constant ¢ and some discount factor p.

Remark 2.1. Boucekkine et al. (1997; 2001) use a numerical method to
approach similar problems.



2.2 Demographic applications

In the sequel we will focus our attentions mainly on the three economic
examples we have described but, as seen for example in Boucekkine et al.
(2004), the formalism of such models are very similar to the one used in some
models that describe demographic evolutions. They consider a demographic
models with an explicit age structure. At any time ¢, denote by h(v) the
human capital of the cohort (or generation) born at v, v < ¢t. T(t) is the
time spent at school by all individuals so ¢t — T'(¢) is the last generation that
entered the job market at ¢. A(t) is the maximal age attainable, so t — A(t)
is the last generation still at work so the aggregate stock of human capital
available at time ¢ is:

t—T(t)
H(t) = / h(v)e™'m(t — v)dv
t—A(t)

where: n is the growth rate of population, €™ is size of the cohort born at
v, and m(t —v) is the probability for an individual born at v to be still alive
at t. In Boucekkine et al. (2002) the authors study a case in which A(¢) and
T'(t) are found to be constant and the model is exactly of the family we are
studying.

3 The Problem

3.1 The delay state equation

From now on we consider a fixed delay R > 0. With notation similar to that
of the book by Bensoussan et al. (1992) and the same used in Fabbri et al.
(2006), given T >t > 0 and z € L?([t — R, T],R) for every s € [t,T] we call
zs € L?([~R,0];R) the function

(7)

{ zs: [-R,0] = R
zs(r) def z(s+7r)

Given an admissible control u(-) € L%(t,T), we consider the the following
delay differential equation:

{ y(s) = N(ys) + Blus) + f(s)  forselt,T] (8)
W(t), g, ue) = (¢°,¢",w) € R x L*([—R,0];R) x L*([-R, 0];R)

where 3 and u; are interpreted by means of the definition above and
N,B: C([-R,0,R) — R, (9)

in particular:



Hypothesis 3.1. N, B: C(|—R,0],R) — R are continuous linear function-
als.

In the delay setting the initial data are a triple (¢°, ¢',w) whose first
component is the state at the initial time ¢, the second and third are respec-
tively the history of the state and the history of the control up to time ¢t
(more precisely, on the interval [t — R, t]). In the following we will consider
the case f = 0.

Remark 3.2. The optimal control problem that we need to study (the one
to which our delay examples apply) has initial time t = 0. Nevertheless the
DPA require to embed the problem in a family of problems obtained varying
the initial time t (besides the initial state) in the interval [0,T]. The viscosity
solution of the HJB equation (38) will be defined (see Definition 5.4) on the
whole interval [0,T] and will give information on all the problems of the
family, in particular on the original one with t = 0.

The equation (8) is a general form that includes our three main examples.
Namely:

e In Boucekkine et al. (2005); Fabbri and Gozzi (2006) (see Subsub-
section 2.1.1) we have N = 0 and B = 0y — dg so the state equation
is

k(s) = /SR i(r)dr (10)

o In Gozzi et al. (2006); Gozzi and Marinelli (2004) (see Subsubsection
2.1.2) the definitions of N and B are respectively

N:C([-R,0)) = R
N: v apy(0) + fER y(r)day(r)

B: C([-R,0])) = R

(11)

12
B: v byy(0) + fER'y(r)dbl (r) (12)
e In Boucekkine et al. (2006) (see Subsubsection 2.1.3) N = 0 and
B: C([-R,0 R

B:y+— (2—=n)v(0) — 60 fER ey (r)dr

Proposition 3.3. Given an initial condition (¢°,¢',w) € R x L?(—R,0) x
L*(—R,0), a control u € L% [0,400) and a f € L*([0,T|R) there exists a

unique solution y(-) of (8) in HL [0,00). Moreover for all T > 0 there ewists
a constant ¢(T') depending only on R,T,||N|| and |B| such that

Yl 0,m) < C(T)<\¢O| + |¢1’L2(—R,0) + wlz2—ro0) + ulz20,7) + |f|L2(0,T))
(14)



Proof. See Bensoussan et al. (1992) Theorem 3.3 page 217 for the first part
and Theorem 3.3 page 217, Theorem 4.1 page. 222 and page 255 for the
second statement. O

3.2 The target functional

We consider a target functional to be maximized of the form

T
/t Lo(s, y(s), u(s))ds + ho(y(T)) (15)

where
Lo: [0, T xRxR—=R
hoZRHR

are continuous functions.

Remark 3.4. In our main examples the functional are the following

o In Boucekkine et al. (2005); Fabbri and Gozzi (2006) (see Subsub-
section 2.1.1) the horizon is infinite and the objective functional was

CRRA: . L
[ k) i), )
0

l1—0

o In Boucekkine et al. (2006) (see Subsubsection 2.1.3) the functional is

CRRA: . N
[ i, 1)
0 l1-0

e [n Faggian and Gozzi (2004) the functional is concave and of the form:
T
| ol c(s)) o s))ds + moly(T)) (19)
t

Remark 3.5. The generality of the objective functional is one of the im-
provements due to the viscosity solutions approach, indeed in Fabbri et al.
(2006) the authors considered only objective functionals of the form

T
/t ePlo(c(s))ds + mo(y(T)) (20)

where ly and mqg are concave functions, and the utility function lyg depends
only on the consumption (that is the control) c.

Remark 3.6. We consider here finite horizon problem but similar results
can be obtained in the infinite horizon case.

10



3.3 The constraints

The last thing to choose to define the optimization problem is the set of the
admissible trajectories. In our main examples a lower bound on the control
variable is assumed. In Boucekkine et al. (2005); Fabbri and Gozzi (2006)
(Subsubsection 2.1.1) the constraint v > 0 is assumed and the same is done
in Boucekkine et al. (2006) (Subsubsection 2.1.3). Here we assume a more
general constraint:

u>T_(y) (21)

where I'_: R — (—00,0] is a continuous function (see Hypothesis 4.3 for
other assumptions on I'_).

Moreover we assume another state-control constraint that is a general-
ization of the constraints imposed in Boucekkine et al. (2005); Fabbri and
Gozzi (2006); Boucekkine et al. (2006): the control cannot be greater than
some number depending on the state. For example in Boucekkine et al.
(2005); Fabbri and Gozzi (2006) the investment ¢ cannot be greater then
the production ak(t), in Boucekkine et al. (2006) we have ¢ < y. Here we
impose

u<T(y) (22)

where 'y : R — [0,400) is a continuous function. (In Boucekkine et al.
(2005); Fabbri and Gozzi (2006) (Subsubsection 2.1.1) T'y(y) = Ay, in
Boucekkine et al. (2006) (see Subsubsection 2.1.3) I'; (y) = y)

3.4 The main technical difficulties of the problem

The three main components of an optimal control problem are the state
equation, the target functional and the constraints. Here all the components
present some non-trivial difficulties with respect to the well established the-
ory:

e The state equation: we consider a general homogeneous linear DDE, in
which the derivative of the state y depends both on the history of the
state ys (the notation ; was introduced in (7)) and on the history of the
control us. The presence of the delay in the control yields a unbounded
term. There are similar terms in the papers Cannarsa et al. (1993);
Cannarsa and Tessitore (1994; 1996a;b); Gozzi et al. (2002); Fabbri
(2006b) that study viscosity solution for HJB equation related to opti-
mal control problems governed by specific PDEs and whose results do
not apply to our case. Moreover in our state equation as reformulated
in M? (see below) a non-analytic semigroup appears. The only work,
as far we know, that treats viscosity solution of HJB equation with
boundary term and with non-analytic semigroup is Fabbri (20065),
but only a very specific transport PDE is treated there.

11



e The constraints: we consider both state-control constraints (see Hy-
pothesis 4.3 for a precise definition).

e The target functional: we consider a functional of the form

T
/t Lo(s,y(s), u(s))ds + ho(y(T)) (23)

where we assume Lg and hg merely continuous. In Boucekkine et al.
(2005); Fabbri and Gozzi (2006); Fabbri (2006a) a CRRA utility
function is considered and in Fabbri et al. (2006) a concave utility
function is used.

4 The problem in Hilbert spaces

In this section we remind how to rewrite the state equations of a control
problem subject to a DDE as a control problem subject to an ODE in a
suitable Hilbert space. The reader is referred to Fabbri et al. (2006) or to
the 4th Chapter of the book Bensoussan et al. (1992) for details.

Notation 4.1. In the text we will always follow these notations:
- y(+) is the solution of the DDE (8),
- (oY, ¢, w) is the initial datum in the DDE (8)

- x(+) is the state in the Hilbert space M? = R x L?*[—R,0] and solves
the differential equation (28). Note that 2°(-) = y(-)

- (a,b)g = ab is the product in R of two real number a,b € R

- {-,) 2 will indicate the scalar product in L*(—R,0): if ¢! € L? and
Yl € L? the scalar product is defined as

11\ ° 1
(001 = [ 6 0 (e)as (24)

- The brackets (-,-) without index will indicate the scalar product in M?:
if ¢ = (¢°,¢') € M? and ¢ = (Y°, 1) € M? the scalar product is

defined as
(0, 9) = "% + (o', 01) s (25)
- The brackets (-,-) x, xs is the duality pairing between a space X and
the dual X'.

- The symbol |y|x means the norm of the element y in the Banach space
X

12



- The symbol ||T|| is the operator norm of the operator T.

- CY([0, T) x M?) is the set of the functions p: [0,T] x M? — R that are
continuously differentiable.

- If o € CY([0,T) x M?) we call Oyp(t,x) the partial derivative along the
variable t and V(t, z) the differential with respect to the state variable
T € M?

Consider L the linear operator defined in Subsection 8. Thanks to Hy-
pothesis 3.1 we can state that

Proposition 4.2. The operator A* defined as:

{ D(A*) = {(¢°,¢") € M* : ¢' € W?(=R,0) and ¢° = $'(0)} (26)
A*(¢",¢1) = (Le', Do)
def

is the generator of a Cy semigroup on the Hilbert space M? = R x
L*([-R,0};R)
Proof. See Bensoussan et al. (1992) Chapter 4. O

In view of the form of D(A*) the operator B can be seen, abusing some-
how of the notation, as the linear continuous functional

{ B: D(A*) - R 27)

B: (¢°,¢') = B(e!)

where D(A*) is endowed with the graph norm 7. In the following we will

consider B in this second definition. We consider then the adjoints of A*
and B called respectively A and B*.

The DDE (8) is included, in the sense specified below, into the following
ODE in the Hilbert space M?

4,
ds
x(t) = x.

(s) = Ax(s) + B*z(s) (28)

indeed (28) admits a unique solution z(-) over a suitable subset of
C([0,T); M?). Such a solution is a couple z(s) = (2°(s),2'(s)) € R x
L?(—R,0)® where 2°(s) is the unique absolutely continuous solution y(s) of

"For x € D(A*) the graph norm |z|p(4+) is defined as
|z[paxy = |22 + [AT2]pp2.
8We will write

0 1
x(s)u(<),t,z = (mu(-),t,z(s)vxu(-),t,z(s))
when we want to emphasize the dependence on the control and on the initial data.

13



(8) and ' a suitable transformation of the histories of the state y and of
the control u. See Fabbri et al. (2006) and Appendix A for a more precise
description of such a transformation in the pilot-example and Bensoussan
et al. (1992) for a more general situation.

We need now to translate the constraints and the target functional in ab-
stract terms. In the next hypothesis we formalize the state-control constraint
described above as u € [I'_(y),'+(y)]:

Hypothesis 4.3. If we consider a control u(-) and the related state trajectory
z(-) = (2°(-), 21 (-)) we impose the state-control constraint

I (2%(s)) < uls) < Ty (a(s)) Vs € [t ] (29)
where I'_ and T'y are locally Lipschitz continuous functions

I'i: R—[0,400)

IR — (—o0,0] (30)

and such that |T'_(t)] < a+0b|t| and T4 (t)| < a+blt| for two positive constant
a and b.
The set of admissible controls is

Une D {ul) € (LT + T (2%, () < uls) <Ty(ad), ()} (31)

2l

The target functional (15) written in the new variables is

T
/t Lo (s, 2°(s), u(s))ds + ho(z°(T)).

So we rewrite it as follows

T
J(t,z,u(r)) = /t L(s,z(s),u(s))ds + h(z(T)) (32)

where
L:[0,T] x M?> xR — R (33)
L: (s,2,u) — Lo(s,2°,u)
h: M? — R
{ h: x> ho(x°) (34)

and so L and A are continuous functions. Moreover we ask that

Hypothesis 4.4. L and h are uniformly continuous and
|L(s,z,u) — L(s,y,u)| < o(lx—y|) forall (s,u)€[0,T] xR (35)

where o is a modulus of continuity’.

9That is, a continuous positive function such that o(r) — 0 for r — 0T,
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The original optimization problem is equivalent to the optimal control
problem in M? with state equation (28) and target functional given by (32).

Lemma 4.5. Assuming Hypothesis 4.8 and given an initial datum
(¢°,¢',w) € R x L?(—R,0) x L?(—R,0) then equation (8) has a unique
solution y(-) in H'(t,T). It is bounded in the interval [t, T uniformly in the
control u(-) € Uy, and in the initial time t € [0,T). We call K a constant

such that |y(s)| < K for any t € [0,T), any control u(-) € U, and any
s € [t,T].

Proof. See Appendix A. O

Remark 4.6. Using the Hypothesis 4.3 such a result implies u(s) < a+ bK
for all the controls in Uy ;.

Lemma 4.7. If Hypothesis 4.3 holds, calling x(s) the solution of (28),

z(s) —x ziO 36
|z(s) — 2|5,

uniformly in (t,x) and in the control u(-) € Uy »
Proof. See Appendix A. O
The value function of the problem is defined as

Vit,z) = (5)1615 ) J(t, z,u(-)) (37)

Proposition 4.8. The value function V: [0,T] x M? — R is continuous

Proof. See Appendix A. O

5 Viscosity solutions for HJB equation

The HJB equation of the system is defined as

Jrw(t,x) + (Vw(t,x), Az) + H(t,z, Vw(t,z)) =0 (38)
w(T,x) = h(x)
where H is defined as follows
H:[0,T] x D(A*) = R
def (39)
H(tv xap) - Supue[F,(xO),FJr(mO)] {UB(p) + L(t7 xZ, U)}

We refer to H as to the Hamiltonian of the system

15



5.1 Definition and preliminary lemma

Definition 5.1. We say that a function ¢ € C([0,T]x M?) is a test function
and we will write p € TEST if Vip(s,z) € D(A*) for all (s,z) € [0,T] x M?
and A*V: [0, T)x M? — R is continuous. This means that Vo € C([0,T]x
M?; D(A*)) where D(A*) is endowed with the graph norm.

Definition 5.2. w € C([0,T] x M?) is a viscosity subsolution of the HJB
equation (or simply a “subsolution”) if w(T,x) < h(z) for all x € M? and
for every ¢ € TEST and every local minimum point (t,x) of w — ¢ we have

Opp(t,x) + (A*Vo(t,x),z) + H(t,z,Ve(t,x)) <0 (40)

Definition 5.3. w € C([0,T] x M?) is a viscosity supersolution of the HJB
equation (or simply a “supersolution”) if w(T,x) > h(x) for all x € M? and
for every ¢ € TEST and every local mazimum point (t,x) of w — ¢ we have

Op(t,x) + (A*Vo(t,x),z) + H(t,z,V(t,x)) >0 (41)

Definition 5.4. w € C([0,7] x M?) is a viscosity solution of the HJB
equation if it 1s, at the same time, a supersolution and a subsolution.

Proposition 5.5. Given (t,z) € [0,T] x M? and ¢ € TEST there ezists a

Lt
real continuous function O(s) such that O(s) =25 0 and such that for every
admissible control u(-) € Uy, we have that

w(s,x(s)) — p(t, ) — Op(t,x) — (A*Vp(t,x),x) —

s—1
L (B(Ve(t, ), u(r))p dr
s—1t

<O0(s) (42)

(where we called x(s) the trajectory that starts at time t from x and subject
to the control u(-)).
Moreover if u(-) € Uy, is continuous in t we have that

p(s,2(s)) —p(t,x) sot+
s—t
s—tT

— Owp(t, x) + (A"Vo(t, 2), ) + (B(Ve(t, 2)), ut))r  (43)

Proof. See Appendix A. O
Remark 5.6. We want to emphasize that O(s) is independent of the control

and that this fact will be crucial when we prove that the value function is a
viscosity supersolution of the HJB equation.
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Corollary 5.7. Given (t,z) € [0,T] x M? and ¢ € TEST and an admissible
control u(-) € Uy, we have that

(5, 7(5)) — p(t, ) =
_ / Orp(r, 2(r)) + (Ao, 2(r)), 2(r)) + (B(Vep(r, 2(r)), u(r)) dr
(44)

(where we called z(s) the trajectory that starts at time t from x and subject
to the control u(-)).

5.2 The value function as viscosity solution of HJB equation

Proposition 5.8. (Bellman’s optimality principle) The value function
V', defined in (87) satisfies for all s > t:

Vitz) = sup <V(s,x(s))—|— /:L(r,:v(r),u(r))dr> (45)

u(~)€ut,g;

where x(s) is the tragectory at time s starting from x subject to control u(-) €

U 5.

)

Proof. Tt can be done using standard arguments. See for example Li and
Yong (1995) Chapter 6. O

We can now prove that the value function is a viscosity solution of the
HJB equation.

Theorem 5.9. The value function V is a wviscosity solution of the HJB
equation.

Proof. See appendix A. O

Remark 5.10. We are not able at the moment to give a uniqueness result
for the viscosity solution of the HIB equation. It will be an issue for future
work.

6 A verification result

We use the following lemma

Lemma 6.1. Let f € C([0,T]). Eztend f to a g on (—oo,+00) with g(t) =
g(T) fort > T and g(t) = g(0) for t < 0. Suppose there is a p € L'(0,T;R)

such that )
lim inf —g(t +h) —g(t)

m it <p(t) ae tel0,T] (46)
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Then

8 _
liming I A —9()
h—0 h

9(8) - g(a) > /

[0}

t YO<a<B<T  (47)

Proof. The proof can be found in Yong and Zhou (1999) page 270. O

We first introduce a set related with a subset of the subdifferential of a
function in C([0,T] x M?). Its definition is suggested by the definition of
sub/super solution. We define

Definition 6.2. Given v € C([0,T] x M?) and (t,x) € [0,T] x M? we define
Ev(t,x) as

Ev(t,z) ={(¢,p) € R x D(A*) : Jp € TEST, s.t.
v — ¢ attains a loc. min. in (t,x),
Opp(t,z) = q, Ve(t,z) = p,
and v(t,z) = o(t,z)}
(48)
Remark 6.3. Fv(t,z) is a subset of the subdifferential of v.

We can now pass to formulating and proving a verification theorem:

Theorem 6.4. Let (t,x) € [0,T] x M? be an initial datum (x(t) = x).
Let u(-) € Uy, and z(-) be the relate trajectory. Let ¢ € LY(t,T;R), p €
LY(t,T; D(A*)) be such that

(q(s),p(s)) € EV(t,z1y(s)) for almost all s € (,T) (49)

Moreover if u(-) satisfies

T
| )6+ (Bols).u)s + als) ds >
T
Z/t —L(s,x(s),u(s)) ds, (50)

then u(-) is an optimal control at (t,x).

Proof. See Appendix A. O

A Appendix: Proofs

In this appendix we often refer to the book Bensoussan et al. (1992): for
a deeper description of the delay differential equations and their equivalent
formulation in an Hilbert space, the reader is referred to the 4th Chapter of
such a book.
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In this section we will use the following notation (the same of Bensoussan
et al. (1992) and also of Fabbri et al. (2006)):
Given N, B two continuous linear functionals

N,B: C([-R,0]) = R

with norm respectively ||N|| and ||B]| (as in Hypothesis 3.1), we define N/
and B be the following applications

N,B: C.((-R,T);R) — L*(0,T)
N(¢):t = N(é) (51)
B(¢): t — B(¢t)

where ¢; has the meaning of equation (7).

Theorem A.1. N, B: C.((—R,T);R) — L?(0,T) have continuous linear
extensions L2(—R,T) — L*(0,T) with norm < |N| and < ||B|].

Proof. See Bensoussan et al. (1992) Theorem 3.3 page. 217. O

Definition A.2. Let a and b, a < b, two real number. Let F(a,b) be a set
of functions from [a,b] to R. For each u in F(a,b) and all s € [a,b], define
the functions e® u and e u as follows

efu: [a,+00) = R, eu(t)= { g(t) i E EC:,j]—oo)
us (oo~ R etut) = { 0y 0

Using the N and B notation we can rewrite the (8) as

{ y(t) =Ny + Bu+ f

(t (52)
(4(0), 50, u0) = (6°, 6',w) € R x L*(~R,0) x L*(~R,0)

Using € and e;s we can decompose y(-) and u(-) as y = ely + e9r¢>1 and
u=eYu+eYw. So we can separate the solution y(t), t > 0 and the control
u(t), t > 0 from the initial functions ¢! and w:

{ y(t) =NeSy+ Belu+ Ne’ ¢! + Belw + f

y(0) = ¢ € R (53)

Now we are ready to describe the key-step in order to obtain R x L?(—R,0)
as state space. The system (53) does not directly use the initial function ¢!
and w but only the sum of their images Ne® ¢! +Be® w. We need a last step
before we can write the delay equation in Hilbert space. We introduce two
operators

def

{ N: L*(—R,0) — L*(—R,0)
(N¢')(a) = (Nelo!)(—a) a€(-R,0)
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and

{ B: L*(—R,0) — L*(—R,0)
(Bw)(a) d (Bew)(~a) a e (=R,0)

The operators N and B are continuous (see Bensoussan et al., 1992, page
235). We note that

NS ol (t) + Belw(t) = (e F(N¢' + Bw))(—t)  fort>0

So, if we call

¢' = (N¢' + Bw) (54)
and ¢ = ¢° we can rewrite the (53) (and then the (8) as
{30 = QD0 + BN+ D010y
y(0) =€’ R
def

where R x L?(—R,0) > £ = (£°,¢1). The (55) makes sense for all £ €
R x L?(—R,0) also when ¢! is not of the form (54). So we have embedded
the original system (8) in a family of systems of the form (55).

We consider from now on the case f = 0.

Using such notations we can also write in a more precise way the rela-
tion between the solution of equation (28) and the initial delay differential
equation: we call the solution x(t) of (28) structural state. The expression
of the structural state z(-) at time ¢ > 0 is

Definition A.3. The structural state x(t) at time t > 0 is defined by

2(t)  (y(®), N(ely)i + Blelu) + () (56)
where Z(t) is the right translation operator defined as
(E@EN(r) = (e (r—1) 7€ [-R,0] (57)

Proof of Lemma 4.5:

Proof. The existence of the solution follows from Proposition 3.3. It can be
proved (see (55)) that the solution of (8) is also the solution of the equation

{ y(S) = N(eiy)s + B(GZ_U)S + (e-T—Rgl)(it) fO’f’ $ 2 t (58)
y(t) = ¢’ € R

where ¢! = (N¢! + Bw). So, using Hypothesis 4.3 we can state that, for
every control u(-) € U, and related trajectory y(-), the solution yas of the
following ODE satisfies |y(s)| < |ya(s —t)| for all s € [t,T]:

{ gar(s) = [N [lyar(s) + || Bll(a + by (5)) + (e €M) (1) for s >0
yu(0) = [¢°] € R

(59)
and yp is bounded on [0, 7] and this complete the proof. O
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Proof of Lemma 4.7:

—tt . .

Proof. We have to prove that |x(s) — x|y =21, 0 uniformly in u(-) € Up g,
— + . .

so it is enough to show that |z%(s) — 2%|r 20, 0 uniformly in u(-) € Uy

and that |2!(s) — 2|2 = uniformly in u(-) € Uy ,. The first fact is a
corollary of the proof of Lemma 4.5 (because |2°(s) —2°| < yas(s —t) defined
n (59), for the second, using the expression (56):

‘xl(s)—xll ‘E T —:Bl‘LQ—I-‘Negy ‘Lg—l-‘ge?ru }LQS

< ]E 'z ]L2+||N||(s—t)2K—|—||B||(s—t) (a+ Kb) (60)

where a e b are the constants of Hypothesis 4.3, K the constant of Lemma
4.5 and Remark 4.6 and Z(¢) is the right translation operator defined in (57
as

Now we observe ‘E(s)xl — xl‘LQ =90 for the continuity of the trans-
lation with respect to the L? norm and such a limit does not depend on the
control, the other two term are given by a constant multiplied by (s — t)l/ 2

and so they go to zero uniformly in the control. O

Proof of Proposition 4.8:

Proof. We consider [0, T] x M? > (t,, x,) LO(;> (t,z). We have to estimate
Rx M

the terms
V(t,z) = V(t,zn)| and |V (tn,2n) = V(ty, ) (61)

the difficulties are similar, we analyze the term |V (¢,x2) — V(¢,y)|, the other
can be treated using similar steps. Using arguments similar to the ones of
Lemma 4.5'0 we can state that there exists a M > 0 such that, for every
admissible control,

|zp(s)| < M for every s € [t,,T], n € N

in particular |22(s)| < M. In view of Hypothesis 4.3 the restrictions of ',
and I'_ in [—M, M] are Lipschitz continuous for some Lipschitz constant Z.
Suppose that V(¢t,z) > V(t,x,), then we take an e-optimal control u®(-)
for V(t,z). The problem is that u°(-) could not be in the set Uy 4,. So we
consider the approximating control given in feedback form:

wer | w0 if u=(s) € [[—(2ne(8)); [t (ne(s))]
up(s) = § T-(2ne(s)) if u(s) € [[—(2n(s)), T~ (2ne(s))] (62)
[y (2ne(s)) if u(s) € [y (2ne(s)), Ty (2n(s))]

%Using that (e} "N¢' + Bw)(-) is continuous with respect to the initial data.
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where x,.(-) the solution of

d * €
ToTne(s) = Azne(s) + Bui(s) (63)

Tne (t) = Tn.

The definition of u®(s) implies that it is bounded, measurable, and then
L2[0,T]. We call z.(-) the solution of

d * £
gm’g(s) = Az.(s) + B*u®(s) (64)
ze(t) = z.
and we call y(+) et Ze(+) — xp(+), By definition of u () we know that
[u () — ug(s)] < Z]y(s)] (65)

where y%(s) is the first component of y(s). Moreover y°(-) solves the following
DDE (using the notation of (55):

{ §°(s) = Wely)(s) + (Bel (u(s) — up))(s) + e (a" — zp)(—s)

yot) = 2 —

Arguing as in the proof of Lemma 4.5 and using (65) we can state that
|v°(s)| < yar(s)| where 3y is the solution of the ODE

{ gn(s) = [N lyar(s) + IBllyar(s) + exlat — 2} |(—s)
yu (t) = |2 — a3 '

We have

yr(s) = | O—mgle(”NlHB||)(S_t)+/t INIFIBDG=) e R !l | (—7)d7 <
5 <Ol —aallare (66)
for all s € [t,T7] so,
|22(5) — 20 2(s)] < Cllx — xp|lp2 for all s € [t,T]

and
[u®(s) —u;,(s)| < ZCllx — xp ||z for all s € [t, T
So, by the uniform continuity of the L we can conclude that
1L(s5,22(5), 4(5)) — L5, 202(5),15,(5)) < 0([[2 = wallyr2) for all s € [£,7]
So, for the continuity of h we have (using o(-) for a generic modulus),
J(t, 2,0 () = J (6 2ny up (1) < o((|l2 = 2nlla2)
and then
|[V(t,x) =V (t,zn)| = V(t,x) = V(t,zn) < e+ o(||z — znlar2)

We conclude for the arbitrariness of . ]
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Proof of Proposition 5.5:

Proof. We write

Pl8,2(8) =l ®) _ 1o p L g0(et(s), £5(s))+

s—t
x(s)

D=2 4 (Telel(9). €70 - Vittn), LT (o

(et

where [t,T] x M? > &(s) = (€!(s),£%(s)) is a point of the line segment

Tt
connecting (¢, z) and (s,z(s)). In view of Lemma 4.7, |z(s) — x|y AN

Sttt
uniformly in u(-) € U, so [£(s) — (¢, 2)|rxar2 st 0 uniformly in u(-) €
U, and in particular

1€°(s) — | pp2 =ty uniformly in u(-) € U » (68)
and then
€(s) = (6 D)t rysnez < s = 8] +1€7(s) — 2[p2 —— 0
uniformly in u(-) € Uz ,. (69)

By definition of test function we have that

V: [0,T] x M* — D(A*) and it is continuous. (70)
Then .
[Vip(€(s),£°(5)) = Veplt, 2)] pary = 0 (71)

uniformly in u(-) € Us 5.

As observed in Faggian (2001/2002) page 59 the state equation (28) may
be extended to an equation in D(A*)" of the form

{ i(s) = AP)z(s) + B*u(s)

z(t) == (72)

where AF) is an extension of A and, in view of Lemma 4.5 and Remark 4.6,
|B*u(s)|pea=y < |Blparyla + bK|, where a and b. The solution of (72) in
D(A*) can be expressed in mild form Pazy (1983) as:

S
x(s) = els—DA®) -|—/ e(s_T)A(E)B*u(r)dr (73)
t
So, since & € X C D(AP)) we can choose a constant C' that depends on z
such that, for all admissible controls and all s € [¢, T,

[2(s) :'tD(A*)' <C (74)
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So by (71) and (74), we can say that |I;| =2t g uniform in u(-) € Upg.

Thanks to the uniformly (in u(-) € U; ) convergence £(s) — (t,z) we can
s—tt

also state that Iy = dpp(&'(s),£%(s)) —— Oyp(t, z) uniformly in u(-) € Uy 4.
So to prove the thesis it remains to show that

‘ Velt ms);mt(s) - _ (A*Vo(t,x),z) —
_ fts <B(v90(t> :E)), u("”)h{ dr
s—1

— * B*u(r)d
— <V<p(t, z), (37(8)37 _AB), _ W>> < 0(s)
s—t s—t D(A*)XD(A*)’
(75)
uniformly in u(-) € Uy z.
We can use (73) and write down explicitly the expression z(;:m in
D(A*)"
x(s) —x (e(s_t)A(E) ~Dz  f] e(S_T)Aw)B*u(r)dr
= + (76)
s—1 s—1t s—t
So we need to estimate:
z(s) —x AP () — [ B*u(r)dr _
S — t S — t D(A*)/
s (s—r)AE) 1) B* ( )d
(esA(E) — 1)z . ft (e ) u(r)dr
= — AB)
P (x) + p— (77)
D(A*)/

where the term (eskfs‘%})x —AB) (1) % 0 because z € M? € D(A®)) (the

convergence is uniform in wu(-) € U, because it does not depend on u(-))
and the second term can be estimated, using Lemma 4.5 and Remark 4.6,
with

J7 o)l (e~ 1) B < (aK+b)
< (a sup

s—1 re(t,s]

D(A*)/

(e(sfr)A(E) _ 1) B’

D(A*)/
(78)

that goes to zero (the estimate is uniform in the control). Then since
Vp(t,z) € D(A*), the proof is complete.

The (43), with u(-) continuous, is a simple corollary of the proof of the
first part. Indeed if u(+) is continuous we have that

fts (B(Vep(t,z)),u(r))g dr _
s—1t

<B(V(p(t, x))?“(t»R (79)
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Proof of Theorem 5.9:

Proof. Subsolution:

Let (¢,x) be a local minimum of V' — ¢ for ¢ € TEST. We can assume that
(V—¢)(t,z) = 0. We choose u € [['_(2°),T'y(2")]. We consider a continuous
control u(+) € Uy, such that u(t) = u'l. We call z(s) the trajectory starting
from (¢, z) and subject to u(-) € Us . Then for s > t with s —¢ small enough
we have

Vs, x(s)) — (s, 2(s)) 2 V(¢ x) — p(t, x) (80)
and thanks to the Bellman principle of optimality we know that

Vit,z) > V(s a(s)) —i—/tSL(r,x(r),u(r))dr. (81)
Then
o(s,x(s)) — p(t,x) < V(s,z(s)) = V(t,z) < — /tS L(r,z(r),u(r))dr, (82)

which implies, dividing by (s — t),

ps,2(s) —pltx) _ _J}SL(T,x(T),U(r))dT‘
s—1 - s—1

(83)

Using Proposition 5.5 we pass to the limit as s — t* and obtain

Opp(t, x) + (AVo(t, x),2) + (B(Ve(t, x)), ut))g < —L(t,z,u)  (84)

S0
Opp(t, x) + (A"Ve(t, x), x) + (B(Ve(t 1)), u)g + L(t,z,u)) <0 (85)

Taking the sup,e[r_(40)r, (20)] we obtain the subsolution inequality:
Opp(t,x) + (A*Vo(t,x),z) + H(t,z,Vo(t,z)) <0 (86)

Supersolution:

Let (¢,x) be a maximum for V' — ¢ and such that (V —¢)(t,2) = 0. Fore > 0
we take u(-) € Ui, an e?-optimal strategy'?. We call z(s) the trajectory
starting from (¢, ) and subject to u(-) € Us .. Now for (s —¢) small enough

V(t,z) = V(s x(s)) = ¢(t, ) — ¢(s, 2(s)) (87)

U7t exists: for example if u > 0 the control u(s) = %I} (2°(s)) until T4 (2°(s) >0

and then equal to 0: since I'; is locally Lipschitz and sublinear all works.
12¢2_optimal means that J(¢,z,u(-)) > V(t,z) — €%
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and from €2 optimality we know that

V(t,z) = V(s,z(s)) < e+ /ts L(r,z(r),u(r))dr (88)
gp(s,az(i))_; o(t, x) . —e2 _ fts Lir,_:nt(r),u(r))dr (89)

We take (s —t) = ¢ so that
o(t+e,z(t —1;5)) — o(t,x) > e ftt+€ —L(r, i(r), u(r))dr (90)

and in view of Proposition 5.5 we can choose, independently on the control
u(-) € Uy z, a O(e) with O(e) =290 such that:

Op(t,x) + (A*Vo(t,x), z) +

n JIT (B(Ve(t,z)), u(r))g + Lr,a(r), u(r))dr

> e+ 0(e). (91)

We now take the supremum over u inside the integral and let ¢ — 0 and
obtain that

Op(t,x) + (A"Vo(t, z),x) + H({t, z,Vo(t,z)) > 0 (92)
Then V is a supersolution of the HJB equation. So V is both a viscosity
supersolution and a viscosity subsolution of the HJB equation and then, by

definition, it is a viscosity solution of the HJB equation. O

Proof of Theorem 6.4:

Proof. The function
{\llz[t,T]—ﬂRxRxRxR (93)
U s = ((A"p(s), 2(5)) a2 » (Bp(s), uls))g » 4(s), L(s, x(s), u(s)))

in view of Lemma 4.5 is in L'(¢,T;R*). So the set of the right-Lebesgue
point is of full measure. We choose 5 a point in such a set. We can continue
to choose 5 in a full measure set if we assume that (49) is satisfied at 5. We
set T := x(5) and we consider a functions ¢ = p>* € TEST such that V > ¢
in a neighborhood of (5,z), V(5,z) — ¢(5,Z) = 0 and (9;)(¢)(5,2)) = q(5),
V(5,Z) = p(5). Then for 7 € (5,7] and (7 — §) small enough we have

Vira(r) —V(5,2) _ ¢(1,2(1) = ¢(5,7)

T—S T—S

> (94)
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for Proposition 5.5

f; (BV@(5,Z),u(r))p dr

> Op(5,T) + p—— + (A*V(5,7),z) + O(T — 5)
(95)
In view of the choice of 5 we know that
Je BV D) e 2ot pypsmy @y (00
So that for almost every s in [t,T] we have
i V200 VIS
> (BVyp(5,2(5)), u(5))p +
+ Opp(5, 2(5)) + (A"V (s, 2(5)), 2(5)) =
= (Bp(5), u(8))r + 4(5) + (A"Vp(5),2(5)) (97)

then we can use Lemma 6.1 and find that
V(T,.’IJ(T)) - V(t,{L‘) >
T
> [ (B0 ue)hs + a(5) + (A V()5 ds > (98)
using (50) .,
> /t L, (r), u(r))dr (99)
Hence
T
V(t,7) < V(T,(T)) + /t L(r,2(r), u(r))dr =
T
= h(z(T)) —l—/t L(r,z(r),u(r))dr (100)
and then (z(-),u(-)) is an optimal pair. O
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