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1 Introduction

How individual behaviour is determined or at least influenced by social norms
is one of the classic questions of social theory. Here we consider a norm as
a rule guiding individual decisions concerning rituals, beliefs, traditions, and
routines. Populations of individuals or sometimes even companies or nations
often exhibit a remarkable degree of coordinated behaviour helping to prevent
or govern conflicts. When this coordination is enforced without the help of
a central authority, the coordinated behaviour and the arising regulation of
conflict may be due to the existence of norms. What distinguishes a norm
from other cultural products like values or habbits is the fact that adherence
to a social norm is enforced by sanctions.

A norm exists in a given social setting to the extent that indi-
viduals usually act in a certain way and are often punished when
seen not to be acting in this way (Axelrod, 1986).

Therefore, the existence of a norm is not a matter of yes or no but a matter
of degree. In turn, how often a certain action is taken or how often an actor
is punished for not taking that action determines the growth or decay of a
norm.

A social norm can persist although the initial rational origin changes
or even vanishes over time. Actions that were originally performed because
they were necessary to survive under certain environmental conditions may
continue to persist as a social norm although the current circumstances do
not require them anymore. Thus, a norm may or may not have a rational
foundation. Norms are sometimes unwritten and unspoken rules that become
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apparent only when they are violated. Nevertheless, in some societies norms
are clearly defined rules.

Adherence to norms is enforced by sanctions which may be formal or
informal. For instance, in politics, civil rights and civil liberties are not only
supported by the power of the formal legal system but as well by informal
norms determining what is acceptable (Axelrod, 1986). Then again, violation
of a norm may be punished on a purely informal level in such a way like
stigmatising or ignoring the violator. Typical sanction mechanisms used in
real life are ostracism, physical retaliation, refusal of social approval, gossip,
etc. (Diekmann and Voss, 2003). In the course of development of a society it
may happen that norms become internalised such that violation of norms is
psychologically painful for the deviator even when the sanction mechanism is
not active anymore (Scott, 1971). If a norm is internalised by every member
of a society the norm remains stable even without performing any sanction.
Another possibility of enforcing a social norm is given by considering one
special type of behaviour to be the “normal” situation, e.g. in a certain society
a leading position can only be assigned to a man, people above a certain age
are assumed to be married and the like. Consequently, the existence of a social
network is a prerequisite for successful implementation of social norms.

Although norms determine individual behaviour they must be negoti-
ated on the macro level (Haferkamp, 1976). Different subgroups of a society
possess different abilities to transfer their local guidelines to other groups.
Basically, the more resourceful groups may allocate resources to less resource-
ful groups who will support the institutionalisation of a certain norm. In the
sequel both groups internalise the norm. The resourceful also have the power
to sanction deviation which stabilizes the norm and further increases the
power of the resourceful. However, not all groups within a society will adopt
a certain norm. Individuals may consider themselves associated with an in-
clusive group (in–group) but also have the desire to dissociate from certain
other groups of individuals, the out–groups. This interplay of association and
dissociation on one hand strengthens solidarity within in–groups, but on the
other hand allows for coexistence of contradicting norms within a society.
Consequently, in one and the same situation, the expectations regarding a
certain desired behaviour differs among members of different groups (Saam
and Harrer, 1999).

Axelrod (1986) investigates the emergence and stability of behavioural
norms within an n–person game. The players can choose to defect and re-
ceive a payoff for defection. In the next step, those players who catch the
defector out have the opportunity to impose a punishment but have to bear
the enforcement costs. However, if this punishment is costly, a norm to coop-
erate will not necessarily be established. Each strategy has two dimensions
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determining the players propensity to defect and the probability to punish
deviant behaviour. The actors are endowed with limited rationality and apply
an evolutionary approach to choose their strategy. They observe each other
and the more successful strategies are more likely being imitated. Numerical
simulations reveal that this setup basically does not support the emergence
and stability of a norm suggesting cooperative behaviour. Since no one has
any incentive to punish a defection, the question arises how a norm can
ever get established. Therefore, Axelrod employs a metanorm ensuring that
agents must punish those whom they dected not punishing observed deviant
behaviour. With this extension a norm against defection is established and
stable once it is established.

Diekmann and Voss (2003) showed that rational actors in a one–shot
situation are able to enforce social norms with sanctions even when the pun-
ishment is costly. Many papers address the presence of such social norms.
For instance Palivos (2001) observes the effects of a presence of family–size
norms which indicate that an agent’s fertility behaviour depends on prices
and income as well as on the fertility rate of the cohorts. Lindbeck et al.
(1999) investigate the interplay between social norms and economic incen-
tives. They consider a continuum of individuals facing the decision to work
or to live off public transfers. Those individuals who refuse to work receive a
transfer but also suffer from embarrassment due to social stigma. This disu-
tility increases as the share of people refusing to work decreases. Thus, the
strength of the social norm that the source of an individuals means of subsis-
tence should be the individuals own work is determined endogenously within
the modelling framework. The model investigated by Lindbeck allows for two
possible outcomes: a low–tax society determined by a majority of taxpayers
or a high–tax society carried by a majority of transfer recepients. Cole et al.
(1992) analysed a multi–generation model in which parents can improve their
childrens’ matching prospects by increasing savings. If all families do that the
offsprings’ advantage vanishes since their parents activities offset each other.
Nevertheless, the system is not in an equlibrium if all families abandon this
effort since in such a situation it would be advantageous for any single fam-
ily to deviate. Cole et al. (1992) showed that there equist equilibria where
over–saving takes place as well as equilibria where it is supressed. In an ex-
tended version of this model Cole et al. (1998) include a wealth–is–status
social norm, which means that a woman receiving multiple proposals accepts
the one from the wealthies candidate, and an aristocratic social norm where
a man’s status is inherited. While the former social norm leads to over–saving
and deadweight losses the latter allows to supress over–saving within families
belonging to the upper class.
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Another promising field of application of social norms is the investigation
of life course events. Certainly, the timing and sequencing of major events
of an individuals life course, such as the first sexual relationship, union for-
mation, leaving parental home, marriage, and first birth is determined by
decisions which are in priciple taken by the individual. Nevertheless, the in-
dividuals’ environment has an influence on these decisons. This influence may
take place through normative guidelines providing some rules of thumb gen-
erated by the society as a whole but also through imitation of the behaviour
of the individuals who are closely connected — the relevant others. Neglect-
ing these influence mechanisms, that is, not to behave according to the rules
may incur some costs for the individual such as the exclusion from a group or
the loss of reputation. Therefore, the normative rules guiding the timing of
major life course events are enforced by formal and informal sanctions. This
qualifies the guidelines to serve as perceived social norms shaping individ-
uals’ lives. Billari and Mencarini (2004) did an empirical in–depth analysis
of perceived norms regarding lower and upper limits on sexual debut and
marriage.

Billari et al. (2003) introduce an agent–based one–sex non–overlapping–
generations model to understand the dynamics of the intergenerational trans-
mission of age–at–marriage norms. The social norms at first influence the
agents mate search decisions. In case of a successful search resulting in a
marriage the norms of the partners are transmitted to their offsprings by
means of a certain combiner creating a new norm for the child based on
the parents’ norms. Aparicio Diaz and Fent (2006) investigate whether these
results also hold in a more complex setup where heterogeneity with respect
to age and sex is explicitly taken into account. Moreover, they also include
the timing of union formation and fertility into the model. To create a more
realistic model of the evolution of age norms the characteristics of the agents
are extended and the social norms are split into two sex-specific norms.

The age–at–marriage norms serve as guidelines for individuals to make
decisions about the right point in time to get married. Normative guide-
lines generally are a decision guidance whenever an individual has to decide
about something important. Thus certain actions are influenced by social
norms or social rules that state how individuals ought to behave in certain
circumstances.

The individual being in the situation of taking a decision at the micro
level is guided by social norms imposed at the macro level. Moreover, the
set of all micro level decisions within a certain society generates the macro
level behaviour of the system which may either strengthen the existing social
norms or weaken them if there is a collective trend to deviate. Thus, the long
run development of social norms is the result of collective dynamics within

4



a social network. The society is a system containing a large number of in-
dividuals interacting through their social networks to serve their own needs.
Granovetter (1973, 1983, 1985) provides a theory of embeddedness suggesting
that all economic action accomplished either by individuals or by organisa-
tions is enabled, constrained, and shaped by social ties among individuals.
The number of connections may vary among individuals but we may assume
that there is no completely unconnected individual (except the man in the
moon) and no one is connected to all others. The impact of different types of
connectivity, i.e. the influence of the network structure under consideration
has been extensively studied (see for instance Barabasi and Albert (1999),
Collins and Chow (1998), Rahmandad and Sterman (2004), and Watts and
Strogatz (1998)).

Ehrlich and Levin (2005) emphasise that human beings are not only the
result of biological evolution but also of a process of cultural evolution. In
opposite to genes which can only pass unidirectionally from one generation
to the next, norms, ideas, conventions, and customs can pass between indi-
viduals distant from each other and even from the childrens to their parents.
Ehrlich and Levin postulate that a clear understanding of the interactions
between cultural changes and individual actions is crucial to the success of
efforts to influence cultural evolution. Cooperation in human societies relies
essentially on social norms even in modern societies, where cooperation sub-
stantially hinges on the legal enforcement of rules. A theory of social norms
should help to explain how norms emerge, how they are maintained, and
how one norm replaces another. Moreover, we do not only want to discuss
individual behaviour in the presence of norms but also how norms change
over time.

The remainder of this paper is organised as follows. Section 2 explains
in detail the simulation model we developed to investigate the evolution of
norms within a population of artificial agents. In section 3 we present and
discuss the results obtained in various runs of numerical simulations and in
section 4 we summarise and interpret these results.

2 The model

We consider an artificial population featuring N agents. Each agent i ∈
{1, . . . , N} of our artificial population is linked to all agents j ∈ I(i) and
j ∈ O(i) where I(i) denotes the agents in–group and O(i) represents the
agents out–group. The number of agents in I(i) is given by ki := ‖I(i)‖
and the size of O(i) is li := ‖O(i)‖. The behaviour of agent i at time t
is denoted by xt

i ∈ [0, 1] and the current behaviour of all agents within an
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in–group determines the groups social norm. We assume that the in–group
relationship is symmetric, thus, j ∈ I(i) ⇐⇒ i ∈ I(j). If agents i and
j belong to the same in–group but deviate from each other they receive
(and impose) a punishment proportional to (xt

i −xt
j)

2. Consequently, agent i
receives a disutility for deviating from the social norm of his in–group which is
proportional to

∑

j∈I(i)(x
t
i−xt

j)
2. Moreover, the agents are reluctant to change

their own behaviour, which is characterised by a disutility proportional to
(xt+1

i − xt
i)

2. Finally, each group of the population has the desire to express
its own idendity. Therefore, agents obtain a positive utility by differing from
the out–group proportional to

∑

j∈O(i)(x
t
i −xt

j)
2. We assume that agent i can

only observe the current behaviour within the population but does not have
the ability to anticipate future movements of other agents. Introducing the
parameters α, β ∈ [0, 1] to adjust the weight of the utilities and disutilities,
the utility function which agent i wants to maximize becomes

U(xt+1
i ) = −β



α(xt+1
i − xt

i)
2 + (1 − α)

∑

j∈I(i)

(xt+1
i − xt

j)
2





+(1 − β)
∑

j∈O(i)

(xt+1
i − xt

j)
2. (1)

Utility maximising solution

Assuming that an agent cannot foresee the impact of his own decision on the
other agents’ behaviour, the partial derivatives of (1) become

∂U(xt+1
i )

∂xt+1
i

= −2β



α(xt+1
i − xt

i) + (1 − α)
∑

j∈I(i)

(xt+1
i − xt

j)





+2(1 − β)
∑

j∈O(i)

(xt+1
i − xt

j) (2)

∂2U(xt+1
i )

∂(xt+1
i )2

= −2{β[α + (1 − α)ki] − (1 − β)li}.

If β ≤ li/[α + (1 − α)ki + li] the utility function is linear or convex. In that
case the optimal xt+1

i is either zero or one. Assigning xt+1
i := 0 and xt+1

i := 1
in equation (1) reveals that the agent chooses zero (one) if

−β



α(1 − 2xt
i) + (1 − α)

∑

j∈I(i)

(1 − 2xt
j)



 + (1 − β)
∑

j∈O(i)

(1 − 2xt
j) < (>)0.

From that it follows immediately that if at a certain time t all agents have
either the same norm xt

i = 0 or xt
i = 1 and β ≤ li/[α + (1 − α)ki + li] the
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whole population switches between zero and one. If the above expression is
equal to zero, the agent is indifferent among xt+1

i = 0 and xt+1
i = 1. If

β >
li

α + (1 − α)ki + li
(3)

the utility function is concave and the utility maximizing xt+1
i becomes

xt+1
i =

β[αxt
i + (1 − α)

∑

j∈I(i) xt
j ] − (1 − β)

∑

j∈O(i) x
t
j

β[α + (1 − α)ki] − (1 − β)li
. (4)

The agents decision is a weighted sum of the agents current behaviour xt
i, and

the behaviour of the agents in his in–group I(i) and in his out–group O(i),
where the weights are proportional to the respective marginal utilities. The
above solution (4) is only feasible if it holds 0 ≤ xt+1

i ≤ 1. The constraint
0 ≤ xt+1

i requires

β ≥

∑

j∈O(i) x
t
j

αxt+1
i + (1 − α)

∑

j∈I(i) xt
j +

∑

j∈O(i) x
t
j

(5)

and xt+1
i ≤ 1 is fulfilled if

β ≥

∑

j∈O(i)(1 − xt
j)

αxt+1
i + (1 − α)

∑

j∈I(i)(1 − xt
j) +

∑

j∈O(i)(1 − xt
j)

. (6)

Otherwise the agent again chooses either zero or one.
In the homogenous case ki = k and li = l ∀i the critical parameters are

the same for all agents. Figure 1 depicts the different regions in the α–β plane
resulting from the numerical parameters k = 20, l = 40.

If there is an in–group of agents at the extreme values zero (one), such
that xt

i = 0(1), xt
j = 0(1) ∀j ∈ I(i) and xt

j > 0(< 1) for at lest one j ∈ O(i)

then (4) results in xt+1
i < 0(> 1) which means the agent will stay at the

respective end of the interval. Therefore, clusters of agents at the interval
ends are stable provided there is a force of repulsion from an out–group of
agents with a different social norm.

An interior solution xt
i ∈ (0, 1) can only be stable if xt+1

i = xt
i, from (4)

we conclude that this holds if

xt
i =

β(1 − α)
∑

j∈I(i) xj(t) − (1 − β)
∑

j∈O(i) xj(t)

β(1 − α)ki − (1 − β)li
. (7)

Again the conditions (5) and (6) must be fulfilled to ensure that the above
stationary solution lies in the interval (0, 1).
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Figure 1: The α–β plane for ki = 20, li = 40

Costs of sanctions

Now we will have a look at the costs of being punished and at the costs of
imposing a punishment. Recall that in the simple version of the (Axelrod,
1986) simulation model the agents are reluctant to impose a punishment since
there is no economic incentive to punish and it even incurs costs. However, as
(Fehr and Fischbacher, 2004a) pointed out, sanctions are the decisive factor
for norm enforcement. Anyhow, in the real world individuals are willing to
impose a punishment even if this is disadvantageous in economic terms as long
as the costs of imposing a sanction are not very high. In an experimental setup
deployed by Fehr and Fischbacher (2004b) a third party observes test persons
in a prisoners’ dilemma and has the option to punish players for defecting.
Although disadvantageous from a purely profit–maximising point of view
third parties are willing to punish defection particularly when the opponent
cooperated. Thus, the enforcement of norms is largely driven by nonselfish
motives. These findings may empirically justify Axelrod’s approach to include
a metanorm. Here, we exercise a similar approach by just taking it for granted
that people are punished and impose a punishment, respectively, if agents
deviate from the behaviour of their in–group (recall equation 1). Nevertheless,
a social norm will only be enforced by sanctions if the costs of punishing are
much lower than the costs of being punished. Let us assume a fully connected
group of individuals with agent 1 deviating from the rest of the group. Thus
we have the two types of behaviour x1 and xj for j ∈ {2, . . . , n}. For simplicity
we assume that the members of this group have no links to agents outside
the group. Moreover, since we are only looking at the sanction but not at the
desire to deviate from the out–group we assume β = 1. If agent 1 refuses to
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converge toward the other agents (i.e. xt
1 = x1∀t) and the other agents refuse

to converge as well, he receives a disutility

U(x1) = −(1 − α)(n − 1)(x1 − xj)
2

from being punished while the other agents have to bear the costs

U(xj) = −(1 − α)(x1 − xj)
2

for imposing the punishment. Therefore, the disadvantage of being punished
is (n − 1) times higher than the enforcement costs. If the agents maximize
their utility, we can conclude from equation (4) that their behaviour in the
next time step becomes

xt+1
1 =

αxt
1 + (1 − α)(n − 1)xt

j

α + (1 − α)(n − 1)

xt+1
j =

(1 − α)xt
1 + [α + (1 − α)(n − 2)]xt

j

α + (1 − α)(n − 1)
.

From that it follows that the deviator (agent 1) makes a bigger movement
than the other group members if α < n−1

n
. For α = 1/2 the agents converge to

a common behaviour already after one iteration and for α < 1/2 overshooting
takes place.

Status within a group

In real populations the status of an individual determines his power and in-
fluence and also his propensity to adhere to social norms. Individuals with
a higher status gain more from community membership which also increases
the threat of ostracism. If an individual gains little or nothing from commu-
nity membership the threat of ostracism is of little importance (Cole et al.,
1998). In this simulation the number of links an agent posseses represents
his status within the population. The number of connections determines the
influence of the individual on the behaviour of the population but also the
number of people who can punish an agent for deviating from their own be-
haviour. Consequently, agents with a higher status are more interested in
corresponding to their relevant others than those with a low status.

Consider a group of n agents with agent 1 having k1 = n − 1 links to all
other members of the group who all exhibit the current behaviour xt

j , while
agents j ∈ {2, . . . , n} have only kj = 1 link to agent 1 and no other links (see
figure 2a). Assuming again β = 1 the optimal behaviour in period t + 1 (4)
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is given as

xt+1
1 =

αxt
1 + (1 − α)k1x

t
j

α + (1 − α)(n − 1)

xt+1
j = αxt

j + (1 − α)xt
1

The weight of agent 1 on the behaviour of agent j is (1 − α), while the
weight of agent j on the behaviour of agent 1 is (1−α)/(α+(1−α)(n−1)).
(Remark: In the last expression the denominator is greater than one for
n > 2). This means, agent 1 is (α+(1−α)(n−1)) times more powerful than
the other agents. As a consequence, the long run equilibrium x becomes

x =
α + (1 − α)(n − 1)

α + (2 − α)(n − 1)
x0

1 +
n

∑

i=2

1

α + (2 − α)(n − 1)
x0

i . (8)

Example 1 To illustrate the power of an agent with higher capital we con-
sider a population of n = 12 agents linked like in figure 2a. The initial social
norms are x0

1 = 0 and x0
i = 1∀i ∈ {2, . . . , 12}. Applying the numerical pa-

rameters α = 0.9 and β = 1, it follows from equation (8) that the population
converges toward the equilibrium x = 0.846. In figure 2b the dashed red line
illustrates the development of agent 1 and the solid blue line illustrates the
development of agents 2 to 12.
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0.6

0.8

1

time

x

Figure 2: Status of an agent within a group

As noted above, the number of links not only determines the influence
on others but also the temptation to deviate. Suppose agent 1 is linked to k1

agents who all have the same current behaviour x̃. Then (1) becomes

U(xt+1
1 ) = −β[α(xt+1

1 −xt
1)

2 +(1−α)k1(x
t+1
1 − x̃)2]+(1−β)

∑

j∈O(i)

(xt+1
1 −xt

j)
2.
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If the number of links fulfils

k1 <
(1 − β)

∑

j∈O(i)(x
t+1
1 − xt

j)
2 − βα(xt+1

1 − xt
1)

2

β(1 − α)(xt+1
1 − x̃)2

(9)

the utility gained from deviating from the out–group is higher than the disu-
tility of deviating from the in–group. Thus, if the weight (1−β) is sufficiently
high, agents with a low status within the cummunity fulfiling (9) are tempted
to violate the social norm. Since in our model the number of links represents
the status, this feature perfectly corresponds with (Cole et al., 1998) postu-
lating that low status families gain little from adhering to the social norm.

Dominance of groups

The support of a certain behavioural norm depends on the groups who sup-
port that norms. Those groups who are in the majority or have greater eco-
nomic and political power can more easily establish and enforce their rules
as a general norm which has to be obeyed by the whole population (Axel-
rod, 1986). To show how this effect comes into play in our formal model we
consider two groups exhibiting different behaviour xt

i and xt
j . The first group

consists of ni and the second group of nj members. The two agents i and j
belonging to these different groups are linked to each other and with each
member of their group resulting in ki = ni − 1 and kj = nj − 1 (see figure
3a).

Assuming β = 1 we can conclude from (4) that the weight of agent j

of the behaviour of agent i in period t + 1 is α+(1−α(ni−1)
α+(1−α(nj−1)

times the weight

of agent i on the behaviour of agent j in period t + 1. Hence, the long run
equilibrium becomes

x =
α + (1 − α)(ni − 1)

2α + (1 − α)(ni + nj − 2)
x0

i +
α + (1 − α)(nj − 1)

2α + (1 − α)(ni + nj − 2)
x0

j (10)

This illustrates that a bigger group with more links — representing economic
and political power in our model — will make smaller movements to achieve
a compromise but can force the other agents to adopt to their norms.

Example 2 Figure 3b illustrates the convergence toward a global social norm
obtained from a simulation with 21 agents. The dominant group i consists of
ni = 14 and the dominated group consists of nj = 7 agents. The dominant
group starts with the social norm x0

i = 0 and the dominated group is endowed
with the initial norm x0

j = 1. The only connection between the two groups is
the link between agent i = 14 and agent j = 15. Since agents i and j are
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linked to all members of their respective groups, the dominance of group i
does not only originate from the superior group size but also from the higher
number of links of agent i compared to agent j. Figure 3b shows the time
development of norms within the agent population unsing parameters α = 0.5
and β = 1. The dashed red trajectories illustrate the dynamics of agent i
and its respective group and the solid blue line represents the dynamics of
agent j and its group. The graphic shows that the dominated group makes

a)

i j

b)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

time

x

Figure 3: Dominance of groups

bigger moves in each time step and the whole population converges toward
the equilibrium x = 1/3 determined by equation 10.

In reality it is not only the size but also economic and political power,
which makes a group dominant (Axelrod, 1986). In this model power is rep-
resented by the number of links an individual possesses. In the next example
we consider two groups of equal size (n1 = n2) but with different numbers
of links between group members (k1 > k2). Since a higher number of links
means more power, the first group dominates the second group despite the
equal size of the two groups. Again there is only one pair of agents linking
these two groups together (see figure 4a).

Example 3 To illustrate the dominance resulting from a higher number of
links we run simulations with the numerical parameters n1 = n2 = 10, k1 = 6,
k2 = 2, α = 0.5, and β = 1. For the initial social norm we choose x0

i =
0 ∀i ∈ {1, . . . , n1} and x0

j = 1 ∀j ∈ {n1 + 1, . . . , n1 + n2} The red dashed
lines represent agents 1 to n1 and the solid blue lines represent agents n1 +1
to n1 + n2. The social norm within the agent population develops like shown
in figure 4b. The social norm converges toward 0.3039 which means that the
dominance of group one in this example is even stronger than in the previous
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Figure 4: Dominance of groups due to economic and political power

one. Moreover, it is also possible that a minority rules the majority due to a
higher number of links.

3 Simulation Results

In the following we will discuss results obtained from numerical simulations
with N = 200 agents on a one–dimensional regular lattice network and with
N = 900 agents on a two–dimensional regular lattice network. In both cases
we apply periodic boundary conditions.

In the one–dimensional case we choose ki = k = 20 (i.e. each agents in–
group contains the ten nearest neighbours on the left and the ten nearest
neighbours on the right), the out–group consists of li = l = 40 neighbouring
agents, and the intersection of In– and out–group is empty. The initial values
x0

i are uniformly distributed in the interval (0,1). Each set of numerical pa-
rameters α, β is simulated with ten different initial distributions. Figures 5 to
10 are obtained with α = 0.3. Consequently, the critical value for parameter
β (see equation 3) becomes approximately 0.7117.

We start with those dynamics related to the region below the solid blue
line in the α–β plane in figure 1. Figures 5 to 8 show simulation results ob-
tained with β = 0.3. The graph in figure 5a depicts the trajectories of the
agents behaviour versus time. It can be seen clearly that they never sta-
bilise but fluctuate between the interval ends and some intermediate levels
because the dominant repulsion motivates the agents to leave. The bar charts
in figures 5b) and 6 illustrate the distribution of behaviours among the agent
population at a certain time t. The horizontal axis represents the 200 agents
and the length of the bars indicate the respective social norms. In 5b) we see
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the initial random distribution which does not exhibit any specific patterns.
Figure 6 depicts the social norms from time step 69 to time step 74. The
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Figure 5: Simulation Results — one–dimensional regular lattice

situation at t = 69 exhibits practically polarisation, i.e. there are eight sepa-
rated groups of agents, four of them at xt

i = 0 and four at xt
i = 1. In the next

time step (t = 70) there are only four groups left, and one of them chooses a
social norm somewhere between the interval ends. It is remarkable that the
two small groups of agents at the right–hand side of the diagram choosing
x69

i = 1 keep their norm for the next time step, while all the other agents
switch to a different norm. Nevertheless, these coexisting social norms are
not sustained since the agents continue to switch in the following time steps.
Another feature of these dynamics is that they are periodic with a period
length of 11 time steps. Thus, plotting the distribution from t = 80 to t = 85
would result in exactly the same graphs like in figure 6. At the beginning of
the simulation the agents need a certain transient phase and reach the cylce
at t = 69. Figures 7 and 8 are related to the same set of numerical parameters
like figures 5 and 6 but to another initial distribution. The graphs in 7 a) and
b) show the trajectories over time and the initial distribution, respectively.
Figure 8 reveals that the patterns reached after the transient phase are the
same like before but with this initialisation the system arrives on the cycle
already at t = 24.

In the context of social norms the dynamics discussed above, character-
ized by individuals who completely change their behaviour from period to
period do not seem to be realistic. Therefore, we increase the parameter β
to modify the dynamics of our system such that the agents slightly adopt
their behaviour at each time step. Crossing the borderline in figure 1 means
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Figure 6: Simulation Results — one–dimensional regular lattice
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Figure 7: Simulation Results — one–dimensional regular lattice

that the utility function (1) becomes concave and in equation (4) the positive
weight an agent assigns to his own and his in–groups behaviour exceeds the
negative weigth assigned to the out–groups behaviour. Applying the param-
eters α = 0.3 and β = 0.95 we obtain the results depicted in figures 9, 10,
and 11. Figure 9a) depicts the trajectories during the transient phase and
figure 9b) shows the trajectories from t = 270 to t = 300. Starting from a ran-
dom initial distribution the agents’ norms temporarily converge toward the
center due to the dominance of the force of attraction. After a few time steps
there is a notable consensus within the population and a global social norm
gets established. As soon as the population is crowded close to the center the
sanction mechanism becomes very weak because of the small deviation. This
makes the repulsion dominant and groups of connected agents move toward
the edges of the interval. Consequently, at the beginning of the simulation
diversity among the population decreases but later on increases. Figure 9b)
shows that the agents persist to oscillate between the interval ends but only
make moderate steps at each period of time. However, an agent who arrives
at one interval end is not repeled from the border immediately but stays
there for a certain time before he starts to move back to the other interval
end.

The next figure 10 illustrates the distribution of norms among the pop-
ulation from t = 200 to t = 230. In each graph we see one big group of
agents exhibting xt

i = 0, another big group with xt
i = 1 and a few agents

bridging the gaps between these two groups. The clusters at zero and one are
not stable but move slowly through the agent population. The agents stay at
the interval ends between 50 and 60 time steps and the journey to the other
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Figure 8: Simulation Results — one–dimensional regular lattice
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Figure 9: Simulation Results — one–dimensional regular lattice

interval end takes 10 to 15 time steps. Because of these variations it takes
400 time steps until the agent population as a whole comes back to a pattern
already observed previously.

Figure 11 shows histograms of the distribution of norms within the popu-
lation at time t = 1, 2, 5, 10, 15, and 20. While in the initial state at t = 1 the
whole range of possible norms is applied with virtually the same frequency,
already at t = 2 distinct clusters become apparent. Compared to the initial
distribution the number of actually existent norms becomes small during the
simulation. From that we can conclude that there are two groups of agents
diverging into opposite directions that cause the extinction of the previously
established global norm. Since groups of connected agents diverge together
(see figure 10), local norms within the groups persist but the global norm
vanishes. Since the agents’ trajectories never stabilise, the clusters at the
interval ends are not stable either but continue to move through the agent
population.

In the two–dimensional case the 900 agents are located on a quadratic
grid with side length 30 and periodic boundary conditions. For the in–group
we choose an extended Moore neighbourhood with radius 3 which leads to
ki = k = 48 and for the out–group we choose a quadratic area with side
length 9 (i.e. li = l = 81) which does not intersect with the agents in–group.
Again, the initial values x0

i are uniformly distributed in the interval (0,1)
and each set of numerical parameters α, β is simulated with ten different
initial distributions. Figures 12 to 16 are obtained with α = 0.3, (i.e. the
critical value for parameter β (see equation 3) is approximately 0.70496) and
β = 0.95 which is above the critical value. Therefore, the agents consider
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Figure 10: Simulation Results — one–dimensional regular lattice
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Figure 11: Distribution of norms — one–dimensional regular lattice

compliance within the in–group to be more important than distinction from
the out–group.

Figures 12a) and b) depict the trajectories during the transient phase
and figures 12c) and d) display the trajectories from t = 2300 to t = 2500.
Figures 12a) and c) contain the trajectories of all 900 agents while figures 12b)
and d) exhibit the trajectories of 100 agents which are distributed over the
whole lattice. Like in the one–dimensional case the agents’ norms temporarily
converge toward the center due to the dominance of attraction and global
consensus arises. A few time steps later repulsion dominates and groups of
connected agents move toward the edges of the interval. Figures 12c) and d)
show that the agents persist to oscillate between the interval ends. Agents
arriving at one interval end stay there for 164 to 235 time steps before moving
back to the other interval end. The journey between the two interval ends
takes 60 to 131 time steps.

Figures 13 to 15 illustrate the distribution of social norms at a certain
time among the two–dimensional lattice. The colours indicate a certain value
xt

i. In order to allow for a distinction of different behaviour even during the
period determined by temporary consensus the scaling of colours is adapted
to the current diversity at each time step. Thus, the meaning of blue and
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Figure 12: Simulation Results — two–dimensional regular lattice
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red for instance in figures 13a) and c) is not the same. However, the colour
bars indicate the level of diversity at each time step under consideration.
Figure 13 a) illustrates the dynamics during the transient phase. Starting
with a maximum diversity at t = 1 the agents form up groups characterised
by similar behaviour while they converge toward the center. These groups
become even more pronounced in the following when the agents leave the
center and diverge toward the interval ends. Since the deviation within in–
groups is small the agents only experience a small disutility for deviation
while they move outwards.

In figure 14 we see that the shape of groups with similar behaviour changes
to horizontal bars. Thus, although the simulation is run on a two–dimensional
lattice the dynamics actually only varies along one dimension. However, de-
pending on the initial random distribution the groups sometimes evolve into
horizontal bars and sometimes into vertical ones.

Figure 15 displays the behavioural dynamics from t = 500 to t = 1090.
Although the previously observed horizontal bars remain the system is not in
an equilibrium and the bars slowly move upwards. After the initial transient
phase every state of the system is exactly replicated after 590 iterations. This
period length is insensitive to different initial distributions.

Figure 16 again sketches the actual distribution of norms from time t = 1
to t = 150. The series of graphs clearly indicates convergence toward a global
consensus during the transient phase followed by a gradual divergence toward
two big clusters at the interval ends and several smaller clusters in between
containing those agents moving between the interval ends.

4 Summary

We study the emergence, stability and replacement of social norms to allow
for a better understanding of the self–organised development of cooperation
in human societies. We deploy a numerical simulation model incorporating
persistence, i.e. the individuals’ reluctance to alter their behaviour, solidarity,
the desire to be associated with a certain group (the in–group), and the de-
sire to differ from some individuals belonging to the out–group. These three
components constitute the agents’ utility function to be maximised. Within
this framework the network topology is crucial for the agents propensity to
adhere or deviate from a social norm. While some literature on social norms
suggest that norm enforcement is driven by nonselfish motives (e.g. Fehr and
Fischbacher, 2004b) we consider profit maximising agents but explicitely de-
fine a disutility obtained from deviations within the in–group. Thus, instead
of inserting a metanorm like Axelrod (1986), the agents in our model are
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Figure 13: Simulation Results — two–dimensional regular lattice
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Figure 14: Simulation Results — two–dimensional regular lattice
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Figure 15: Simulation Results — two–dimensional regular lattice
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Figure 16: Distribution of norms — two–dimensional regular lattice
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just assumed to experience a disutility from deviation or bear the costs of
imposing a sanction, respectively.

We carry out numerical simulations with N = 200 agents arranged on
a one–dimensional regular lattice and with N = 900 agents arranged on a
two–dimensional regular lattice and make use of periodic boundary condi-
tions in both cases. In those parameter settings where the desire to deviate
from the out–group outweighs the desire to agree to the in–group, the time
development of the agents’ behaviour exhibits coexistence of several local
norms but is rather erratic which means that agents change their behaviour
significantly from one period to another. Since this seems not to be realistic
in the context of modelling social norms those sets of numerical parameters
where solidarity is stronger are more interesting. In that case the system is
capable to arrive in a state of global consensus due to the force of attrac-
tion. This consensus is not stable in the long–run but is replaced by a regime
where groups of agents persist at one end of the behaviour spave for a certain
time, then they move at moderate speed through the whole space, and finally,
persist at the other end of the space, before they again conduct a tour to
the other end. Moreover, after the transient phase not only the movements
of individual agents exhibit periodic dynamics but also each state of the sys-
tem as a whole, i.e. the set of actions of the whole population, is repeated
with a constant period length. This period length depends on the numerical
parameters and the network topology but not on the random intialisation.
These results possess some similarities with those obtained by (Weidlich and
Brenner, 1995; Brenner et al., 2002) in the context of fashion cycles but the
underlying mechanism is different.

The model under consideration is appropriate to explain the emergence of
temporary social norms prevalent in certain subgroups of the society. More-
over, it motivates what may be the reason for the adjustment of existing
norms in the course of time. The underlying mechanisms are persistence,
solidarity, differentiation, and an exogenously given connectivity. Since in re-
ality an individuals social network is not static, a promising advancement
of this model would be to investigate the validity of our results in case of a
network topoloty which changes endogenously.
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