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Abstract

In a menu auction, players submit bids for all choices the auctioneer A can make,

and A then makes the choice that maximizes the sum of bids. In a binomial menu

auction (BMA), players submit acceptance sets (indicating which choices they

would support), and A chooses the option that maximizes his utility subject to

acceptance of the respective players. Monetary transfers may be implicit, but

players may also bid by offering “favors” and the like. BMAs provide a uni-

fied representation of both monetary and non-monetary bidding, which I apply

to model government formation. First, I analyze general BMAs, characterize

the solution under complete information and establish outcome uniqueness (for

both, sealed bid and Dutch formats). Second, in case monetary transfers are

possible, BMAs are shown to implement VCG mechanisms. Finally, in case

transfers are impossible, BMAs extend the model of proto-coalition bargaining

and are specifically applied to government formation.
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1 Introduction

A well-established branch of bargaining analyses rests on the demand commitment

paradigm. In these analyses, the players first state “utility demands,” and subse-

quently a decision maker chooses the option (allocation of posts or funds, perhaps a

political platform) that maximizes his utility subject to satisfying the utility demands.

This idea reaches back to the Nash demand game (Nash, 1950), and starting with

Winter (1994a,b), it has experienced a revival in coalitional bargaining. For example,

Morelli (1999) and Montero and Vidal-Puga (2007, 2010) analyze which bargain-

ing protocols induce equitable equilibrium results in majority bargaining, Caruana

et al. (2007) analyze a demand game where players may revise demands, Vidal-Puga

(2004) and Breitmoser (2009) study the equilibrium outcomes if the identity of the

coalition formateur is held constant throughout the game. The latter class of games is

particularly suitable to model government formation, as government formateurs are

often appointed by third parties such as presidents, and therefore have an exogenous

identity throughout the game.

The present paper theoretically analyses a model that merges the defining fea-

tures of demand commitment bargaining with those of proto-coalition bargaining

(Diermeier and Merlo, 2000; Baron and Diermeier, 2001). The latter appears to be

the most promising current approach toward empirical analyses of government forma-

tion. In proto-coalition bargaining, a coalition “formateur” appoints a proto-coalition

and subsequently, if all of its members agree, they enter multilateral negotiations to

allocate cabinet posts (the model of these negotiations typically follows Merlo and

Wilson, 1995, 1998). If at least one of them disagrees, a care-taker government as-

sumes office. This model can account for empirical phenomena such as minority and

surplus governments and its structure can be extended straightforwardly to allow for

stochastic deviations from strict best responses (by adding logistic errors). The re-

sulting structural models have been estimated based on real-world data and are used

in counterfactual policy experiments (Diermeier et al., 2002, 2003, 2007) to evaluate

institutional and constitutional design.

The combined model proposed here is shown to maintain the desirable fea-

tures of proto-coalition bargaining—outcome uniqueness and generally characterized
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solution—and it is straightforwardly extensible to a structural model by including

logistic errors. That is, the increased complexity that follows from considering pre-

commitments prior to the formateur’s choice does not obstruct the tractability of the

proto-coalition model, in both theoretical and empirical analyses, but it allows for

more precise descriptions of government formation.

This is particularly interesting, as it seems to be consensual that strategic pre-

commitments affect government formation.1 It has to be noted, however, that pre-

commitments are usually not made in the form of utility demands in this context.

More typically, and more generally, parties pre-commit by stating “acceptance sets”

indicating which options are acceptable and which are not. For example, parties may

pre-commit to negotiate only with a specific other party, or not to negotiate with say

left/right wing parties, or to negotiate only on the condition that person X is not on the

cabinet. In response to these pre-commitments, the formateur then chooses the option

maximizing his utility. Such “acceptance set bidding” is analyzed in this study.

Implicitly, the formateur auctions off inclusion in the government coalition. Due

to the relation to “menu auctions” (Bernheim and Whinston, 1986), I refer to the

model as a “binomial menu auction” (BMA). In a menu auction, the bidders bid inde-

pendent amounts for all the choices that the auctioneer can make (and the auctioneer

maximizes the sum of bids), and in BMAs, they signal acceptance with respect to all

of the choices (and the auctioneer maximizes utility). The BMA is a general model of

acceptance set bidding, but related approaches have been developed for public goods

provision (Bag and Winter, 1999), network formation (Mutuswami and Winter, 2002),

and legislative coalition formation (Montero and Vidal-Puga, 2007).

The present paper complements a companion paper (Breitmoser, 2010), where

I focus on an alternative extension to the standard proto-coalition model, namely on

the case that the formateur can revise his proposal to the proto-coalition after rejec-

tions (with infinite time horizon). Here, I maintain the standard assumption that the

formateur can make a single proposal. This one-round game is shown to be outcome

1Examples abound, not least in Germany with its frequent government formations at both the fed-

eral and the regional level. For example, the liberal democrats (FDP) often pre-commit to coalesce

only with the conservatives (CDU) and the CDU usually pre-commits not to coalesce with the left

wing “Die Linke.”
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equivalent to the T -round game if T < ∞, however, which implies that the present

study and Breitmoser (2010) are fairly exact complements (note that I also consider

pre-commitments in the infinite-horizon analysis reported in Breitmoser, 2010).

Section 3 establishes generic outcome uniqueness of BMAs in a general model

of complete information (assuming trembling-hand perfection). Interestingly, the fea-

ture that players state acceptance sets actually proves to be key in establishing unique-

ness. The outcome is generally not unique if players state utility demands (see Section

5), and thus the notion of acceptance set bidding is not only more intuitive in mod-

eling government formation, but also more conclusive in its predictions. Similarly, if

we would model government formation as a menu auction (not “binomial,” that is),

we would have to assume that transfer payments can be made (or committed to) prior

to the formateur’s choice, and still it does not induce generic uniqueness even if we

restrict bids to be compatible with utility demands (which is called “truthful bidding”

in Bernheim and Whinston, 1986).

Sections 4 and 5 apply the general results of Section 3 to the two arguably most

salient special cases, namely to the cases that monetary transfers between formateur

(auctioneer) and bidders are perfectly possible (Section 4) and entirely impossible

(Section 5). In the case with transfers, the BMA is a generalized auction and relates

closely to VCG mechanisms (following Vickrey, 1961, Clarke, 1971, Groves, 1973,

see e.g. Krishna, 2002). The BMA outcome is shown to be socially efficient, individ-

ually desirable (bidders are not worse off than they were if the auction had not taken

place), and the implied payment profile is bounded below by the VCG payments.

In the case without transfers, the BMA directly extends the proto-coalition model.

The general results apply straightforwardly, and I show by example that the BMA is

not individually desirable in the above sense, i.e. the “winning” bidders may commit

to accept options where they are worse off than under the care-taker government. In

turn, such pre-commitment is reasonable if it prevents alternative, subjectively worse

government coalitions and illustrates why pre-commitments are relevant in the first

place: they help to prevent or enable specific choices of the formateur. Yet, the for-

mateur does not generally benefit from the possibility that bidders can pre-commit,

and in the two examples discussed below, he is actually worse off than in the original
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proto-coalition model. In general, the predictions differ, and empirical research is re-

quired to investigate which kinds of pre-commitments actually matter in government

formation.

Alternative cases where players articulate specific demands (e.g. that they are

allocated a particular cabinet post or that person X is not appointed as prime minister),

can be analyzed similarly. This is discussed briefly in the concluding Section 6.

2 Definitions

Notation The auctioneer is denoted as A and the set of bidders is N = {1, . . . ,n},

with n < ∞ and typical elements i, j ∈ N. Also define NA := N ∪{A}. The choice

set of A is finite, non-empty, and denoted as R . For each r ∈ R , the set of bidders

whose agreement is required to implement r is denoted as N(r)⊂ N. For example, in

the context of government formation, N(r) would be the government coalition, and in

a single-object auction, N(r) would be the singleton set containing the winning (and

paying) bidder.

The valuations are denoted as vi : R → R, i ∈ NA. They are non-degenerate in

the sense that all players can rank any option, for which their agreement is required,

in relation to any other option. That is, for all i ∈ N,

∀r,r′ ∈ R : i ∈ N(r) ∧ r 6= r′ ⇒ vi(r) 6= vi(r
′), (1)

and correspondingly vA(r) 6= vA(r
′) for all r 6= r′. In turn, bidders may be indifferent

between options for which their agreement is not required. In government formation,

valuations that are generic in this sense follow immediately from the assumption that

the choice set is the set of government coalitions (the standard assumption in proto-

coalition models, see Section 5). In games such as single-object Vickrey auctions, on

the contrary, genericity does not seem so immediate, but in equilibrium, the winning

bidder pays either the valuation v of the first loser or v+ ε (with ε being the smallest

currency unit), and this depends on how the first loser and A act in cases of indiffer-

ence. By assuming generic values, I implicitly assume that these cases of indifference

are resolved, to be able to focus on the strategic analysis of BMAs.
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The auctioneer A has an outside option, i.e. there exists r ∈ R such that N(r) = /0

(e.g. that A resigns as government formateur or that he calls off the auction). The

outside option is rmin ∈ argminr vA(r), i.e. the option that A values the least. This

is assumed without loss of generality, as options that A actually values less than his

outside option can be eliminated from R without affecting the equilibrium outcome

(as A would not choose them in any case).

To abbreviate notation, write r ≻i r′ if vi(r)> vi(r
′) (i ∈ NA), and r ≻C r′ if r ≻i r′

for all i ∈C (C ⊆ NA). Finally, for all R ⊆ R define minR and maxR such that

minR ∈ argmin
r∈R

vA(r) maxR ∈ argmax
r∈R

vA(r). (2)

Sealed bid BMA First, the bidders i ∈ N simultaneously submit acceptance sets,

and second A chooses r ∈ R subject to acceptance by all i ∈ N(r). For all i ∈ N,

define Ri = {r ∈ R | i ∈ N(r)}. A pure strategy of i ∈ N is si : Ri → {0,1}, where

si(r) = 1 indicates that i accepts r and si(r) = 0 indicates that i does not. The choice

r∗(s) of A and the payoff πi(s) associated with s = (si)i∈N is

πi(s) = vi(r
∗(s)) where r∗(s) = max

{

r ∈ R | ∀i ∈ N(r) : si(r) = 1
}

. (3)

Randomized strategies are defined as behavior strategies σi : Ri → [0,1]. That is,

the decisions with respect to any pair r 6= r′ are stochastically independent (players

accept/reject options by sequentially filling in a form). Expected payoffs πi(σ) are

defined correspondingly.

Dutch BMA The game proceeds in rounds, and in each round, A proposes an option

r ∈ R , and in response the players i ∈ N(r) simultaneously vote on r. If all accept,

then r is implemented, and otherwise a new round begins. A proposes the options

in decreasing order (under ≻A) and may skip options.2 Let HA denote the set of

histories after which A has to propose an option and for all h ∈ HA let R (h) denote

the set of proposals that A can make after history h. Pure strategies of A are denoted as

2This assumption generalizes single-object Dutch auctions, where A proposes prices in decreasing

order. In more general contexts, sticking to decreasing order is not always optimal. Relaxing the order

would lead to a generalized Dutch auction, however, while the conventional one is to be analyzed here.
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σA : HA → R s.t. σA(h) ∈ R (h). Further, if Hi is the set of histories after which i ∈ N

has to vote and r(h) denotes the standing proposal to be voted on, the pure strategies

of i ∈ N are σi : Hi →{0,1}, with σi(h) = 1 indicating acceptance of r(h).

The remainder specifies the (fairly standard) payoff functions in Dutch auctions.

It can be skipped if it is not of explicit interest. Given a strategy profile σ = (σi)i∈NA

and a history h ∈ HA after which A is to make a proposal, the augmented history

containing A’s proposal and the votes made in response is denoted as

ha =
(

h,σA(h),
{

σi

(

h,σA(h)
)}

i∈N(σA(h))

)

. (4)

Using δ ∈ (0,1) as the discount factor, the payoff of i ∈ NA is (defined recursively)

πi(σ|h) =

{

vi

(

σA(h)
)

, if σi

(

(h,σA(h))
)

= 1 for all i ∈ N(σA(h)),

δπi(σ|h
a), otherwise.

(5)

The payoffs are well-defined, as A is eventually forced to propose the outside option

(i.e. to end the auction), following which the condition that all requisite players accept

is empty and thereby satisfied trivially. The extension to behavior strategies and the

definition of expected payoffs are standard.

3 Characterization of sealed-bid and Dutch BMAs

The equilibrium outcome of the Dutch auction is determined by backward induction.

The key to uniqueness is trembling-hand perfection, which enforces sincere bidding,

i.e. that bidders give approval to some r ∈ R if and only if they prefer r to the contin-

uation payoff. In conjunction with non-degenerateness sincere bidding allows us to

backward induce the outcome uniquely.3 In contrast, under subgame perfection (i.e.

without trembling hands), players do not generally bid sincerely. For example, they

may reject any proposal r ∈ R where |N(r)| > 1, and this holds even if all of them

prefer r to the respective continuation outcome. In such cases, rejecting r is weakly

dominated, but unilateral deviations to “accept” do not pay off without perfection.

3To be precise, sincere bidding additionally requires that current actions do not affect future tremble

probabilities (i.e. that the tremble probabilities in a given state do not depend on the history of play

leading to this state). This fairly intuitive assumption will be made as well.
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To characterize the equilibrium outcome, let R−max := R \ {maxR} for all R ⊆

R , with maxR as the payoff maximizing r ∈ R in the eyes of A, see (2). Define

f : P (R )→ R such that f (R) ∈ R for all singleton sets R ⊆ R and

f (R) =

{

maxR, if maxR ≻N(maxR) f
(

R−max

)

,

f
(

R−max

)

, otherwise,
(6)

for all non-singleton sets R ⊆ R . The interpretation of f is as follows: if at any stage

in the Dutch auction A’s proposal set is R ⊆ R , then the perfect equilibrium outcome

is f (R). Intuitively, if all players in N(maxR) prefer maxR over the outcome that

results after eliminating maxR from the possibility set, then they would accept maxR

when proposed (and hence A would propose it), and otherwise they would reject it,

maxR is strategically irrelevant, and f
(

R−max

)

must result.

Proposition 3.1 (Dutch BMA). There exists δ < 1 such that for all δ ∈
(

δ,1
)

, the

perfect equilibrium outcome of the Dutch auction is f (R ).

Proof. Define R1 = {minR } and for all i > 1, Rk = Rk−1 ∪min(R \Rk−1). Hence,

for k high enough, Rk = Rk−1 = R . I claim that the following applies in the unique

perfect equilibrium for all k ≥ 1: after all histories h ∈ HA such that R (h) = Rk, f (Rk)

results along the equilibrium path.4 This claim is satisfied for k = 1, since minR nec-

essarily results if R (h) = {minR }. The remainder shows that it holds for k if it holds

for all k′ < k. For contradiction, assume the opposite: some r 6= f (Rk) results in a per-

fect equilibrium. First, consider the case r = maxRk. Since r 6= f (Rk), this implies

f (Rk) 6= maxRk. Define r′ := f (Rk). Under the induction assumption, if A proposes

maxRk and the bidders reject it, then r′ results. In addition, r′ ≡ f (Rk) 6= maxRk

implies maxRk 6≻N(r) r′, i.e. there exists i ∈ N(r) such that maxRk ≺i r′ (generically).

Hence, under perfection (i.e. sincere voting, given δ ≈ 1) this i ∈ N(r) does not accept

r = maxRk, which yields the contradiction. Second, consider the case r ≺A maxRk

and f (Rk) = maxRk. An inversion of the previous argument yields the contradic-

tion. Third, consider r ≺A maxRk, f (Rk) ≺A maxRk, and f (Rk) ≻A r. Now, A can

deviate profitably toward proposing r′ := f (Rk) in the considered subgame, follow-

ing which r′ results by the induction assumption. Finally, consider r ≺A maxRk,

4Recall that R (h) denotes the set of proposals that A can propose after history h.
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f (Rk)≺A maxRk, and r ≻A f (Rk). Here, r′ := f (Rk) implies r 6≻N(r) r′, i.e. there ex-

ists i ∈ N(r) such that r ≺i r′. For δ ≈ 1, this i ∈ N(r) rejects r when it is proposed by

A (under perfection), and since r must be proposed along the path of play to become

the outcome, this yields the contradiction. By induction, the proof is completed for

all k.

The next proposition establishes outcome equivalence with sealed-bid BMAs.

Let me start with two examples, however, to illustrate the underlying intuition and

in particular to illustrate the obstacles in establishing outcome uniqueness of sealed-

bid BMAs. The first example is a single-object auction with two bidders (B and C)

under complete information. Let B’s valuation of the object be 60 and the one of

C be 40. The subgame-perfect equilibrium (SPE) outcomes of the Dutch auction

are 40 and 41 (if ε = 1 is the smallest currency unit), depending on how C acts in

cases of indifference, but in the sealed bid auction, the range of SPE outcomes is 40–

60. Trembling-hand perfection refines both sets of equilibrium outcomes toward the

singleton {40} in this case. This example suggests that perfection possibly induces

uniqueness in general, but as the next one shows, it is not generally sufficient. For,

we also have to relax the assumption that strategies be “monotone.”

Definition 3.2 (Monotone strategy). Let σi : Ri → {0,1} denote a sealed bid. It is

monotone if there exists di ∈ R such that σi(r) = 1 ⇔ vi(r)≥ di for all r ∈ Ri.

Bids in single-object auctions are monotone in this sense, as are truthful bids

in menu auctions and demands in demand bargaining games. Now, consider the al-

location of 100 dollars (or, cabinet posts) between A, B, and C in a Nash demand

game. That is, bidders B and C state demand commitments di ∈ {0,1, . . . ,100}, and

in response, auctioneer A chooses an allocation. All allocations x ∈ N3 such that

xA + xB + xC = 100 are feasible, and unanimity is required (i.e. both demands must

be met by the chosen allocation, if possible). In this game, all demand commitments

satisfying dB+dC = 100 are compatible with perfection, i.e. perfection does not yield

uniqueness. Nor does genericity. For example, if players have quasi-lexicographic

preferences over the set of allocations X, with the own payoff xi being the primary

criterion, then the multiplicity of equilibria is sustained without modification.
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We will see, however, that additionally relaxing monotonicity induces unique-

ness. This may be counter-intuitive at first glance, as relaxing monotonicity vastly

increases the strategy space. In the Nash demand game, for example, all outcomes

x∈X can then result under subgame perfection, including the Pareto inefficient ones.5

Furthermore, for any list of sealed bids σ−i of the opponents of any player i ∈ N, one

of i’s best responses is monotone, i.e. relaxing monotonicity does not allow players

to formulate better responses to their opponents.

However, it allows the players to formulate more robust responses, i.e. responses

that are better under full support, and unraveling the implications of this effect yields

outcome uniqueness. Perhaps surprisingly, the resulting equilibrium analysis turns

out to mimic that of the Dutch auction, which leads to the outcome equivalence.

Proposition 3.3 (Sealed-bid BMA). The perfect equilibrium outcome of the sealed-

bid BMA is f (R ).

Remark 3.4. Proposition 3.3 implies that the equilibrium outcome is in the core, i.e.

there is no option r ∈ R that A and all players in N(r) prefer to it. Hence, it is also

Pareto efficient.

Remark 3.5. The BMA outcome f (R ) results equivalently in any T -round BMA, with

T < ∞, where the BMA is repeated up to T rounds until A proposes an option r ∈ R

that all i ∈ N(r) accepted in the respective round (for a proof, see appendix).

Proof of Proposition 3.3. The proof makes use of f : P (R ) → R as defined in Eq.

(6). The following pure strategy profile is shown to be the unique perfect equilibrium.

1. For all r ∈ R and all i ∈ N(r), i submits acceptance with respect to r if and only

if r %i r′ for r′ = f
(

{r′′|r %A r′′}
)

.

2. A chooses the most favored option r ∈ R for which all requisite bidders sub-

mitted acceptance.

It is straightforward to verify that this strategy profile results in f (R ) along the path

of play. Point 2 is trivial. Point 1 is proven by induction. It is true for r = minR ,

5For any x ∈ X, an SPE inducing x is as follows: both B and C submit acceptance with respect to

x, they do not accept any x′ 6= x, and thus A will have to choose x.
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since N(minR ) = /0 by assumption (hence Point 1 is empty with respect to minR ).

The following shows that Point 1 is satisfied for r ∈ R if it is satisfied for all r′ ∈ R

such that r ≻A r′. Assume the opposite and let τ denote a perfect equilibrium (satis-

fying the induction assumption) where some i ∈ N(r) acts differently than prescribed

with respect to r. Fix this player i ∈ N(r). By definition, τ is the limit point of ε-

equilibria τε as the profile of perturbations ε approaches zero. Fix ε close to zero, fix

the corresponding ε-equilibrium τε, and define the following terms: ε′ is the probabil-

ity that no r′′ ≻A r can be implemented by A (under τε), ε′′ is the probability that all

j ∈ N(r) : j 6= i submit acceptance with respect to r, and v′i is i’s expected payoff of

submitting rejection with respect to r conditional on the assumption that no r′′ ≻A r

can be implemented by A. Under the induction assumption, ε ≈ 0 implies v′i ≈ vi(r
′)

for r′ = f
(

{r′′|r ≻A r′′}
)

, i.e. r′ is the “next-best” outcome conditional on no r′′ %A r

being implementable. Thus, i’s decision with respect to r is relevant with probability

ε′ ·ε′′ > 0, and for ε≈ 0 he is best off submitting acceptance if and only if r ≻i r′ using

r′ = f
(

{r′′|r ≻A r′′}
)

. Generically, this is equivalent to the claim and thus contradicts

the above assumption. By induction, Point 1 is established for all r ∈ R .

Briefly, let us look at the relation to English auctions. Assume for simplicity that

jump bids are not possible. That is, A proposes all options r ∈ R in increasing order,

the respective players i ∈ N(r) state whether they agree to r getting implemented, and

if all agree, then r becomes the “standing high bid.” The result of the auction, i.e. the

option that will be implemented, is the option that constitutes the standing high bid

when all options had been proposed.

In standard contexts, bidders bid in English auctions simply for one reason: their

bid might be the standing high bid even in the end (which has positive probability if

they are incompletely informed or if we assume trembling-hand perfection). Hence,

they bid if and only if they prefer the auction to end with their bid rather than with the

current standing high bid. This strategy is myopic in the sense that it neglects the long-

term implications of one’s bid, but in standard auctions, being myopic is sufficient.

In turn, if we assume that players are myopic, equivalence between English auctions

and Dutch/sealed bid auctions can be established also for BMAs.

Definition 3.6. A myopic bidder in an English auction accepts option r ∈ R if and
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only if he prefers r to the standing high bid.

Lemma 3.7. In the English auction, the equilibrium outcome if bidders are myopic

is f (R ).

Proof. The proof is very similar to the induction in Dutch auctions and skipped.

It is easy to see that a general equivalence between English and Dutch auctions

cannot be established for farsighted bidders. This is not a characteristic of BMAs, but

an implication of the completeness of information and the possible interdependence

of valuations in our model: As players can backward induce who would outbid their

bids, there is a strategic reason to deviate from myopic behavior.

4 Relation to VCG mechanisms in “transfer games”

This section consider auctions where monetary transfers from the bidders i ∈ N to the

auctioneer A are possible. As for this case, BMAs are shown to relate to VCG mech-

anisms in that their outcome is socially efficient, individually desirable, and induces

the VCG payments at the lower bound. This holds, although a BMA constitutes a

first-price auction, i.e. winners have to pay their bids. In contrast, in “menu auctions”

as analyzed by Bernheim and Whinston (1986)—with bids rather than acceptance

sets—comparable results have been established only for the significantly stronger as-

sumptions of either truthful bidding or coalition proofness, while merely perfection is

required in BMAs. Recall that truthful bidding in the sense of Bernheim and Whin-

ston (1986) essentially restricts each bidder’s strategy set to the choice of a utility

demand di (as in Def. 3.2) instead of a menu of bids. In relation to their results, the

present section shows that relaxing the requirement of monotonicity as in BMAs does

not obstruct the desirable properties of menu auctions in “transfer games.”

We establish these results for a general, abstract auction called “game of eco-

nomic influence.” Here, A auctions off a decision of himself to the bidders paying the

most. Further discussion of such generalized auctions can be found in Bernheim and

Whinston (1986) and more recently Nisan (2007). This framework extends multi-

object auctions (which are briefly discussed at the end of this section) by allowing
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(amongst others) that valuations depend on the overall allocation of objects, as an-

alyzed for example by Jehiel et al. (1996, 1999) and Jehiel and Moldovanu (2000,

2001), and thus it also applies to procurement auctions, bilateral trade, and contribu-

tions to public goods and public projects (see e.g. Nisan, 2007, p. 220ff, for a more

comprehensive discussion of the applications). The model is particularly interest-

ing for the present study, as it also provides a general representation of government

formation in case transfers are possible.

The auctioneer’s choice set is denoted as A , which might be the set of possible

government coalitions, and the profile of payments of the bidders to the auctioneer is

x ∈ X ⊂ RN , with

X := {x ∈ RN | ∀i ∈ N∃ni ∈ N : xi = niε}. (7)

The smallest currency unit is denoted as ε > 0, and bids as well as valuations are mul-

tiples of ε. In the following definition, I assume that budgets are essentially unlimited.

Definition 4.1 (Game of economic influence). Define a non-empty choice set A , non-

negative valuations ui : A →R for all i ∈ NA, and budgets xi > maxi′∈N maxa∈A ui′(a)

for all i ∈ N. The auctioneer’s choice set is

R = {(a,x) ∈ A ×X | ∀i ∈ N∃ni ∈ N : xi = niε ≤ xi} ,

and for all (a,x) ∈ R , define N(a,x) = {i ∈ N | xi > 0} and the valuations

∀i 6= A :
⌊

vi(a,x)
⌋

= (ui(a)− xi)/ε and
⌊

vA(a,x)
⌋

= uA(a)+ ∑
i∈N

xi/ε.

A few comments on the definition of the valuation functions may be helpful.

Primarily, the valuations are stated in terms of the smallest currency unit ε (without

loss, one can assume ε = 1, e.g. 1 cent), and rounded down to the nearest integer they

equate with utility less expenses. The definition allows for perturbations after the

decimal point in order to ensure that non-degenerateness can be satisfied. Formally,

the perturbations encapsulate how the players decide in case they are otherwise indif-

ferent. The following introduces a restriction on how indifference is resolved which

allows me to avoid the plethora of case distinctions necessary otherwise. Variations of

this assumption affect the equilibrium outcome merely on the order of ε, however, i.e.
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the assumption becomes irrelevant as ε tends to zero. The restriction states that play-

ers prefer aggressive bids (i.e. in favor of the auctioneer) in case they are otherwise

indifferent, i.e. for all i ∈ N,

⌊

vi(a,x)
⌋

=
⌊

vi(a
′,x′)

⌋

∧ vA(a,x)> vA(a
′,x′) ⇒ vi(a,x)> vi(a

′,x′). (8)

Additionally, I assume ui( /0) = 0 for all i ∈ N, i.e. the utilities are normalized with

respect to the outside option and the outside option is “bad” in the sense that no other

option a ∈ A is worse in the eyes of any i ∈ N (as ui is non-negative). The “badness”

assumption is a standard assumption in auction analyses, and it is made (and used)

precisely for this reason, but note that it is less typical in government formation. For

example, a party may prefer the care-taker government over government coalitions

not including this party.

Define the set of socially efficient choices as

Aeff := argmax
a∈A

∑
i∈NA

ui(a) (9)

and assume for simplicity that it is a singleton. In case uA = 0, i.e. if the auctioneer is

indifferent with respect to the decision he makes, the VCG mechanism based on the

“Clarke pivot rule” (see e.g. Nisan, 2007) results in the efficient allocation a ∈ Aeff

and the payments

x∗i = max
a∈A

∑
j∈N\{i}

u j(a)− ∑
j∈N\{i}

u j(a
∗) ∀i ∈ N. (10)

If we additionally allow for uA 6= 0, we obtain the generalized VCG payments

x∗i = max
a∈A

∑
j∈NA\{i}

u j(a)− ∑
j∈NA\{i}

u j(a
∗) (11)

for all i ∈ N. The generalized payment vector x∗ in case uA 6= 0 is attained in VCG

mechanisms if we include a dummy bidder equipped with A’s preferences.

Proposition 4.2 (Games of economic influence). The BMA outcome (a,x) satisfies

social efficiency (a∈Aeff), individual desirability (ui(a)≥ xi for all i∈N), and x≥ x∗

with x∗ as the VCG payments.

14



Proof. The BMA outcome is characterized as a sequence
{

(ak,xk)
}

k≥1
of iteratively

dominant options. I write that (a,x) “dominates” (a′,x′) if vi(a,x)> vi(a
′,x′) for all

i ∈ {A}∪N(a,x).

Individual desirability is established by showing ui(a
k) ≥ xk

i for all i and k. (i)

ui(a
k)≥ xk

i applies for all i and k where i /∈ N(ak,xk). For, ui(a)≥ 0 applies for all a

and xi = 0 follows from i /∈ N(ak,xk). (ii) ui(a
k)≥ xk

i for all i and k = 1. For, (a1,x1)

is A’s outside option by assumption, i.e. N(a1,x1) = /0, which implies x1
i = 0 for all

i, and by ui ≥ 0, the claim follows. (iii) If ui(a
k) ≥ xk

i for all i, then ui(a
k+1) ≥ xk+1

i

for all i. By (i), this applies for all i /∈ N(ak+1,xk+1), for all i ∈ N(ak+1,xk+1), it

follows from the iterated dominance ui(a
k+1)− xk+1

i ≥ ui(a
k)− xk

i and the induction

assumption ui(a
k)− xk

i ≥ 0 for all i. Completing the induction yields ui(a
k) ≥ xk

i for

all i and k.

Social efficiency Assume the opposite, i.e. a /∈ Aeff. Again, let x denote the pay-

ment vector in equilibrium. Using xi ≤ ui(a) for all i, the assumed social inefficiency

of a implies that there exists a′ ∈ Aeff such that ∑i xi < ∑i ui(a
′). Given (8), this im-

plies that there exists x′ such that (a′,x′) dominates (a,x), which in turn contradicts

the initial assumption that (a,x) is the equilibrium outcome f (R ).

VCG payments: Assume the opposite, i.e. some (a,x) results where a is socially

efficient and x 6≥ x∗. Fix i ∈ N such that xi < x∗i and a′ ∈ argmaxa′′∈A ∑ j∈NA\{i} ui(a).

By definition of x∗ and xi < x∗i ,

xi +uA(a)+∑
j 6=i

[

u j(a)− x j

]

< uA(a
′)+∑

j 6=i

[

u j(a
′)− x j

]

,

and using x′ ∈ RN such that x′i = 0 and x′j = max{0,u j(a
′)−u j(a)+ x j} for all j 6= i,

uA(a
′)+ ∑

i∈N

x′j > uA(a)+ ∑
i∈N

x j and u j(a
′)− x′j ≥ u j(a)− x j ∀ j 6= i : x′j > 0

follows. Given (8), (a′,x′) dominates (a,x), which contradicts the assumption that

(a,x) is the BMA outcome.

That is, the general lower bounds for the individual payments are the VCG pay-

ments. The individual upper bounds correspond with the individual valuations of the

efficient allocation (by individual desirability). The lower bound for the (aggregate)
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revenue is the sum of the VCG payments, but perhaps surprisingly, the general upper

bound for the revenue is maxa 6=a∗ ∑i∈N ui(a) (plus epsilon). In single-object auctions,

the upper bound of the revenue equates with the second-highest valuation over all

bidders (plus epsilon), but in multi-object auctions, it can be relatively close to the

social welfare. To see how the auctioneer can extract almost all of the consumer sur-

plus, recall that by Proposition 3.3, f (R ) is the final element (aK,xK) of a sequence
{

(ak,xk)
}K

k≥1
where, for all k > 1, (ak,xk) “dominates” (ak−1,xk−1). Then, if A pro-

poses the options
{

(ak,xk)
}K

k≥1
in increasing order (as in an English auction), myopic

bidders accept all of them and eventually also (aK,xK). (If bidders are farsighted, then

the auctioneer can use the Dutch format.) Given this, the proof that the revenue of

maxa6=a∗ ∑i∈N ui(a) is the general upper bound reduces to showing that A’s prefer-

ences may be such that the resulting sequence
{

(ak,xk)
}K

k≥1
induces a revenue at the

upper bound maxa6=a∗ ∑i∈N ui(a) without violating
⌊

vA(a,x)
⌋

= uA(a)+∑i∈N xi/ε.6

Briefly, let me also illustrate the relation to standard (multi-object) auctions. The

set of objects to be auctioned off is denoted as O, it is non-empty and finite, and the set

of possible allocations of the objects to the players is A = (N ∪{A})O. For example,

for any o ∈ O and a ∈ A, ao = i indicates that i ∈ N is allocated object o, while

ao = A indicates that A keeps object o. The utility that i derives from being allocated

O′ ⊆ O is denoted as ui(O
′), but to abbreviate notation I write ui(a) := ui({o|ao = i})

(preferences are not interdependent, however). To define the VCG payments in this

case, it is conventional to first define the welfare over the subset of players N′ ⊆ N if

allocations are restricted to the subset A′ ⊆ A as

W (N′,A′) = ∑
i∈N′

ui(a
∗) with a∗ ∈ argmax

a∈A′
∑
i∈N

ui(a). (12)

Now, using N−i = NA \{i} and A−i = (N−i)
O as the set of allocations over players in

N−i, the VCG payment of i ∈ N is the “externality” that he imposes on his opponents:

x∗i =W
(

N−i,A−i

)

−W
(

N−i,A
)

. (13)

6The construction of such preferences is in general straightforward. Note only that options where

all players pay more than the VCG prices are not dominated, (formally: if a ∈ Aeff and x ∈ X such that

ui(a)> 0 ⇒ xi > x∗i for all i ∈ N, then (a,x) is undominated), which implies that the resulting sequence
{

(ak,xk)
}K

k≥1
must circumvent such options.
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Since this is a special of the general model considered above, Proposition 4.2 implies

that the BMA outcome is socially efficient and induces at least the VCG payments

Eq. (13) also in this case. For example, it implements the Vickrey auction if there is a

single object.

5 Coalition formation without transfers

Aside from being a model of auctions with transfers, BMAs also allow us to model

auctions without (monetary) transfers. In government formation, for example, bidders

compete by offering participation in coalitions the formateur finds preferable. In other

non-monetary auctions, bidders may offer favors, support in a committee, and the like.

The following focuses on the case of government formation.

Assume that elections had been held, and A, the player recognized as coalition

“formateur,” is a third party without any seats in the parliament (the latter assumption

can be altered easily). The parliament has 100 seats and the number of seats of any

i ∈ N is denoted as wi ∈ N, with ∑i∈N wi = 100. A’s task is to propose a coalition

C ⊆ N that controls the majority of seats, i.e. such that ∑i∈C wi > 50. Hence, the

choice set is R =
{

C ⊆ N|∑i∈C wi > 50
}

∪{ /0}, with “ /0” as the outside option.

After having been chosen by A, the coalition C enters multilateral negotiations

to allocate cabinet posts and to fix a political platform. Without restricting the pro-

tocol of these negotiations, we can assume that its outcome is anticipated correctly

in equilibrium, and hence that all players have well-defined preferences over the set

of majority coalitions C ⊆ N that may enter negotiations. Let ui : R → R denote the

corresponding utility function for all i ∈ NA.

In this case, where transfers from i ∈ N to A, to influence A’s decision, are im-

possible, we essentially arrive at the proto-coalition model of government formation.

Here, the coalition C chosen by A is the “proto-coalition,” and following A’s choice,

all i ∈ C vote on entering negotiations within this proto-coalition (anticipating the

negotiation outcome). The proto-coalition forms if all i ∈ C accept, and otherwise

a care-taker government assumes office (the outside option “ /0”). In contrast, BMAs
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allow us to model that players can pre-commit with respect to their coalition choices.7

Definition 5.1 (NTU government formation). Given u : P (N)→RN∪{A}, define R =
{

C ⊆ N|∑i∈C wi > 50
}

∪{ /0}, and for all C ∈ R define both N(C) = C and vi(C) =

ui(C), i ∈ N ∪{A}.

By Proposition 3.3, the BMA outcome of “NTU government formation” is gener-

ically unique, while uniqueness does not generally result if players state utility de-

mands. This can be seen immediately if we assume that the outside option “ /0” is

prohibitively bad, i.e. if all parties prefer any coalition over the care-taker govern-

ment. In this case, the set of perfect equilibrium outcomes if players state utility

demands di rather than acceptance sets is the set of all choices that are undominated

in R , i.e. generically the set

U(R ) :=
{

C ∈ R | ∄C′ ∈ R ∀i ∈C′∪{A} : vi(C
′)> vi(C)

}

. (14)

The proof is straightforward and therefore skipped (further discussion of utility de-

mands in this particular context can be found in Bolle and Breitmoser, 2008). In-

terestingly, this same set of undominated options (called “quasi core”) results in the

infinite-horizon game with acceptance sets bidding (Breitmoser, 2010). That is, in a

game with either infinite time horizon or utility demands, any undominated option

may result, while a specific undominated option is isolated in the BMA, where play-

ers state acceptance sets with finite time horizon (see Remark 3.5, the extension from

T = 1 to T < ∞ is possible).

Two examples are provided in Table 1. In these (hypothetical) games, A faces a

five-party parliament, i.e. N = {1,2,3,4,5}, with seat shares w = (20,28,11,33,8).

The parties are ordered from far left to far right, and their ideal political platforms are

p = (0.2,0.4,0.5,0.6,0.8). Assume that if the proto-coalition C ⊆ N, with C 6= /0,

forms, the negotiations imply that the government platform p(C) is the weighted

mean of the individual platforms, and that the cabinet posts are allocated propor-

7An alternative generalization of proto-coalition bargaining is considered in Breitmoser (2010),

which analyzes various infinite-horizon models of proto-coalition bargaining (i.e. A can revise his

coalition choice after rejections), some of which also allow for pre-commitments.
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tionally to the voting weights (as in “Gamson’s law,” see Gamson, 1961).

p(C) = ∑
i∈C

wi pi/∑
i∈C

wi xi(C) =

{

wi/∑i∈C wi, if i ∈C

0, otherwise
(15)

The valuations are, for all all i ∈ N, linearly increasing in the own number of cabi-

net posts and linearly decreasing in the distance between government platform and

individual platform,

vi(C) = (1−α)xi(C)−α ·
∣

∣pi − p(C)
∣

∣,

and correspondingly, for formateur A (who is not allocated cabinet posts), it is

vA(C) = 1−α ·
∣

∣pA − p(C)
∣

∣.

The formateur’s ideal platforms are pA = 0.3 and pA = 0.4 in Tables 1a and 1b, re-

spectively.

In Tables 1a and 1b, each line refers to a possible choice of A (a majority coali-

tion), and his options are ordered according to his preferences (in decreasing order).

Note that both examples satisfy genericity of valuations. Hence, the equilibrium anal-

ysis indeed follows directly from Proposition 3.3. The individual acceptance deci-

sions are listed in the right-most column. “1” indicates acceptance, “0” indicates

rejection, and “−” indicates that the respective player is not in the corresponding

proto-coalition. The lines set in bold-face type refer to proto-coalitions that are ac-

cepted by all members, and the highest of them is chosen by A in equilibrium.

In case pA = 0.3, A appoints the proto-coalition C = (1,2,5), and in case pA =

0.4, A appoints (1,2,3). Either choice conflicts with A’s preferences, as A actually

prefers (1,2,3) if his ideal platform is pA = 0.3 and he prefers (1,2,5) if pA = 0.4.

These conflicts are a consequence of the strategic interaction between A and the play-

ers i ∈ N in BMAs. A cannot implement his respectively favored coalition because at

least one of the players pre-commits not to accept it in equilibrium. In the equilibrium

of the original model of proto-coalition bargaining, where parties cannot pre-commit

credibly, A simply chooses the proto-coalition maximizing his utility subject to the

participation constraint. In the above example, A’s choices would be (1,2,3) in case

pA = 0.3 and (1,2,4) in case pA = 0.4. In both cases, A would therefore be better off
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Figure 1: Two examples of NTU government formation (as defined in the text)

(a) A’s ideal platform is 0.3

Valuations

Coalition A 1 2 3 4 5 Accept

1,2,3 0.975 0.094 0.213 0.019 −0.125 −0.225 1,0,1,−,−

1,2,5 0.957 0.086 0.243 −0.057 −0.107 −0.136 1,1,−,−,1

1,2,3,5 0.948 0.047 0.207 0.034 −0.098 −0.138 0,1,1,−,1

1,2,4 0.934 0.007 0.157 −0.034 0.12 −0.184 0,1,−,0,−

1,2,3,4 0.93 −0.011 0.132 0.03 0.099 −0.18 0,1,1,0,−

1,4 0.925 0.064 −0.025 −0.025 0.236 −0.175 1,−,−,1,−

1,3,4 0.921 0.027 −0.029 0.065 0.187 −0.171 1,−,1,0,−

1,2,4,5 0.917 −0.02 0.125 −0.017 0.118 −0.122 1,0,−,0,1

1,2,3,4,5 0.916 −0.035 0.105 0.04 0.1 −0.125 1,0,1,0,1

1,4,5 0.902 0.016 −0.048 −0.002 0.218 −0.087 1,−,−,0,1

1,3,4,5 0.902 −0.009 −0.048 0.074 0.177 −0.097 1,−,1,0,1

2,3,4 0.897 −0.153 0.141 0.073 0.183 −0.147 −,0,1,0,−

2,4 0.896 −0.154 0.175 −0.004 0.225 −0.146 −,1,−,1,−

2,3,4,5 0.882 −0.168 0.107 0.051 0.174 −0.082 −,1,1,1,0

2,4,5 0.879 −0.171 0.132 −0.021 0.21 −0.071 −,1,−,1,0

3,4,5 0.845 −0.205 −0.105 0.051 0.312 −0.018 −,−,1,1,0

/0 0 0 0 0 0 0

(b) A’s ideal platform is 0.4

Valuations

Coalition A 1 2 3 4 5 Accept

1,2,3,5 0.998 0.047 0.207 0.034 −0.098 −0.138 0,0,1,−,1

1,2,5 0.993 0.086 0.243 −0.057 −0.107 −0.136 0,1,−,−,1

1,2,4 0.984 0.007 0.157 −0.034 0.12 −0.184 0,0,−,1,−

1,2,3,4 0.98 −0.011 0.132 0.03 0.099 −0.18 0,0,1,1,−

1,4 0.975 0.064 −0.025 −0.025 0.236 −0.175 0,−,−,1,−

1,2,3 0.975 0.094 0.213 0.019 −0.125 −0.225 1,1,1,−,−

1,3,4 0.971 0.027 −0.029 0.065 0.187 −0.171 1,−,1,0,−

1,2,4,5 0.967 −0.02 0.125 −0.017 0.118 −0.122 1,0,−,0,1

1,2,3,4,5 0.966 −0.035 0.105 0.04 0.1 −0.125 1,0,1,0,1

1,4,5 0.952 0.016 −0.048 −0.002 0.218 −0.087 1,−,−,0,1

1,3,4,5 0.952 −0.009 −0.048 0.074 0.177 −0.097 1,−,1,0,1

2,3,4 0.947 −0.153 0.141 0.073 0.183 −0.147 −,0,1,0,−

2,4 0.946 −0.154 0.175 −0.004 0.225 −0.146 −,1,−,1,−

2,3,4,5 0.932 −0.168 0.107 0.051 0.174 −0.082 −,1,1,1,0

2,4,5 0.929 −0.171 0.132 −0.021 0.21 −0.071 −,1,−,1,0

3,4,5 0.895 −0.205 −0.105 0.051 0.312 −0.018 −,−,1,1,0

/0 0 0 0 0 0 0
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if the parties would not be able to pre-commit credibly, while at least one of the parties

would be worse off. In general, the parties benefit from the possibility to pre-commit

individually, which explains why it can be observed in practice.

Also, note how the BMA rationalizes strategic delegation in government for-

mation, and in fact the appointment of formateurs in the first place. The formateur

is usually appointed by the president, and as can be seen in both examples above,

the president may gain by appointing a formateur with preferences different from his

own. This is generally not optimal in the standard proto-coalition model, i.e. when

parties are assumed to be unable pre-commit credibly.

Finally, the coalition C = (1,2,5) chosen in case pA = 0.3 is unconnected and

includes both of the extreme parties. The prediction of such outcomes (which are ob-

served empirically) obviously depends on the form of the utility function. For exam-

ple, if utility is quadratic (rather than linear) in the distance between government plat-

form and individual platform, such outcomes would be predicted comparably rarely.

Then again, the functional form of utility in government formation is to be deter-

mined by empirical research, and to estimate utility functions, structural modeling is

required. Arguably, due to their simple two-stage move structure, BMAs provide a

convenient basis for structural modeling (following e.g. Turocy, 2005, 2010).

6 Conclusion

In this paper, I analyzed a general model of auctions under complete information that

allows for both monetary and non-monetary bids. The auction is based on the no-

tion of acceptance set bidding, i.e. players indicate which choices of the auctioneer

they would accept, and the auctioneer then maximizes utility (subject to acceptance).

The equilibrium outcome has been shown to be generically unique and it has been

characterized by a simple, but general program. The outcome was shown to be equiv-

alent in sealed-bid and Dutch formats of the BMA. In auctions with monetary trans-

fers, BMAs relate closely to VCG mechanisms (see Section 4), and in games without

transfers, they relate closely to proto-coalition bargaining (see Section 5). The BMA

itself is more general, however, as it allows players to bid by offering arbitrary trans-
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fers to influence the decision maker, and hence it provides a general framework for

analyses of economic influence.

As for government formation, on which I focused in this study, an interesting

next step would be the application of the model in empirical analyses. Following

the structural approach developed by Diermeier et al. (2002, 2003, 2007), where

the formateur’s decision is modeled using a logit choice function, the BMA can be

analyzed using the agent logit equilibrium (McKelvey and Palfrey, 1998), which is

well-established and technically straightforward (in particular, if one follows Turocy,

2010). This structural approach would allow researchers to estimate functional forms

and parameterization of utility in government formation, possibly also to distinguish

credible and non-credible pre-commitments, and finally to discriminate between the

two extensive forms with finite time horizon (as discussed here) and infinite time hori-

zon (as discussed in Breitmoser, 2010). The BMAs is sufficiently general to analyze

these questions, and based on the results of such empirical work, it might be possible

to analyze refined theoretical models.
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Binomial menu auctions: Supplementary proofs

Existence of a monotone best response (see page 10)

Lemma A.1. In sealed-bid BMAs, for all i ∈ N and any list of sealed bids σ−i of i’s

opponents, one of i’s best responses is monotone.

Proof. For contradiction assume the opposite, i.e. that all best responses are non-

monotone, let σ′
i denote a best response, and define r′ as the outcome that A will

implement in response to (σ′
i,σ−i). I claim that the monotone strategy σi based on

di := vi(r
′) must also be a best response to σ−i. To see this, note that A’s choice in

response to either (σ′
i,σ−i) or (σi,σ−i) satisfies (under subgame perfection)

r′ ∈ argmax
r∈R(σ′

i,σ−i)

vA(r) r′′ ∈ argmax
r∈R(σi,σ−i)

vA(r) (16)

using R(σ′
i,σ−i) = {r ∈ R |σi(r) = 1∀i ∈ N(r)}. By construction, vi(r)< di for all r ∈

R(σ′
i,σ−i)\R(σi,σ−i) and vi(r) > di for all r ∈ R(σi,σ−i)\R(σ′

i,σ−i). This implies

vi(r
′) ≤ vi(r

′′). Since σ′
i is a best response by assumption, vi(r

′) ≥ vi(r
′′), and thus

vi(r
′) = vi(r

′′), i.e. both σ′
i and σi are best responses (the contradiction).

T -round BMA (see Remark 3.5)

Definition A.2 (T -round BMA). The game proceeds for up to T rounds. In each

round t ≤ T , all players i ∈ N submit acceptance sets si : Ri →{0,1} and A responds

by proposing some r ∈ R . The game ends with outcome r if si(r) = 1 for all i ∈ N(r),

it ends with the outcome minR if there exists i ∈ N(r) such that si(r) = 0 and round

t = T is reached, and a new round begins otherwise.

In the following, I assume that players do not discount future payoffs, but the

result holds equivalently for discount factors sufficiently close to 1.

Lemma A.3. In any perfect equilibrium of the T -round BMA, for any T < ∞, f (R )

results along the path of play.
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Proof. By Proposition 3.3, the lemma holds true for round t = T . The following

shows that it holds true for round t < T if it holds true for round t ′= t+1. Assume that

a perfect equilibrium exists violating the claim and let r 6= f (R ) denote the respective

equilibrium outcome in round t. By the induction assumption, r∗ = f (R ) is the

continuation outcome. Since r 6= r∗, either r ≻A r∗ or r∗ ≻A r applies. If r∗ ≻A r, then

A is better off deviating unilaterally from proposing r toward proposing r∗ in round t.

For, it necessarily implies that r∗ ≻A r results. Alternatively, if r ≻A r∗, define R ⊂ R

as the set of options r′ ≻A r∗ that all i ∈ N(r′) signaled to accept in round t. Define

r′ = minR as the least preferable of these options in the eyes of A. By definition of

r∗ ≡ f (R ), there exists i ∈ N(r) such that r∗ ≻i r′ (r∗ is undominated), which implies

that this player i ∈ N is better off deviating unilaterally from pre-committing to accept

r′ toward rejecting it. Under full support, i’s decision with respect to r′ is relevant with

positive probability, and if it relevant, i is better off rejecting r′, as this implies that r∗

results (either in round t or in t +1, as it is the continuation outcome by assumption).

By induction, the lemma therefore holds for all t.

On the claim made in Footnote 6

Lemma A.4. If a ∈ Aeff and x ∈ X such that ui(a) > 0 ⇒ xi > x∗i for all i ∈ N, then

(a,x) is undominated.

Proof. Assume the opposite, i.e. that some (a′,x′) ∈ R dominates (a,x). First, con-

sider the case a′ = a. Dominance requires x′ 6= x, but A prefers x if ∑i∈N x′i < ∑i∈N xi,

and some i ∈ N with x′i > 0 prefers x otherwise. Second, in case a′ 6= a, ∑i∈NA
ui(a

′)<

∑i∈NA
ui(a) follows by efficiency of a. Since dominance requires uA(a

′)+∑i∈N x′i ≥

uA(a)+∑i∈N xi, this implies

∑
i∈N

[

ui(a
′)− x′i

]

< ∑
i∈N

[

ui(a)− xi

]

. (17)

Hence, there exist i ∈ N such that ui(a
′)− x′i < ui(a)− xi. Define N′ ⊂ N as the set

of all i ∈ N such that ui(a
′)− x′i < ui(a)− xi, which by the previous observation is

non-empty. The initially assumed dominance can be satisfied only if i /∈ N(a′,x′) for

all i ∈ N′. For all i ∈ N′, this implies x′i = 0 ⇒ ui(a
′)− x′i ≥ 0 ⇒ ui(a)− xi > 0 ⇒
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ui(a)> 0, and hence xi > x∗i ≥ 0 by assumption. Thus

∑
j∈N\N′

x′j = ∑
j∈N

x′j ≥ ∑
j∈N

x j > ∑
i∈N′

x∗i + ∑
j∈N\N′

x j

where, using ∑ j∈NA\{i} u j(a
′)≤ maxa′′∈A ∑ j∈NA\{i} u j(a

′′) for all i ∈ N′,

∑
i∈N′

x∗i = ∑
i∈N′

(

maxa′′∈A ∑ j∈NA\{i} u j(a
′′)−∑ j∈NA\{i} u j(a)

)

≥ ∑
i∈N′

∑
j∈NA\{i}

[

u j(a
′)−u j(a)

]

≥ ∑
j∈NA\N′

[

u j(a
′)−u j(a)

]

+
(

|N′|−1
)

∑
j∈NA

[

u j(a
′)−u j(a)

]

≥ ∑
j∈NA\N′

[

u j(a
′)−u j(a)

]

and combined this yields

∑
j∈NA\N′

u j(a
′)− ∑

j∈N\N′

x′j < ∑
j∈NA\N′

u j(a)− ∑
j∈N\N′

x j.

By dominance, i.e. by (a′,x′)≻A (a,x),

uA(a
′)+ ∑

i∈N\N′

x′i = uA(a
′)+ ∑

i∈N

x′i ≥ uA(a)+ ∑
i∈N

xi > uA(a)+ ∑
i∈N\N′

xi,

and hence there must exist j ∈ N \N′ such that u j(a
′)−x′j < u j(a)−x j, which contra-

dicts the initial assumption N′ contains all i ∈ N such that ui(a
′)−x′i < ui(a)−xi.
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