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Abstract

Relatively few published studies apply Heckman’s (1979) sample selection model to

the case of a discrete endogenous variable and those are limited to a single outcome

equation. However, there are potentially many applications for this model in health,

labor and financial economics. To fill in this theoretical gap, I extend the Bayesian

multivariate probit setup of Chib and Greenberg (1998) into a model of non-ignorable

selection that can handle multiple selection and discrete-continuous outcome equations.

The first extension of the multivariate probit model in Chib and Greenberg (1998)

allows some of the outcomes to be missing. In addition, I use Cholesky factorization of

the variance matrix to avoid the Metropolis-Hastings algorithm in the Gibbs sampler.

Finally, using artificial data I show that the model is capable of retrieving the param-

eters used in the data-generating process and also that the resulting Markov Chain

passes all standard convergence tests.

Keywords: Bayesian computing, latent variable models, Markov Chain Monte Carlo,

Bayesian modeling, sample selection model, multivariate probit
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1 Introduction

The problem of sample selection applies whenever a dependent variable is missing as a result

of a non-experimental selection process. Economists have been aware for a long time that

estimating such a model by ordinary least squares leads to inconsistent estimates.1 Gronau

(1974) seems to be among the first to recognize this problem, but Heckman (1979) offers a

truly pioneering work with a simple two-step estimator that has been widely used for more

than three decades.

Empirical applications of the sample selection model, however, have been mostly limited

to the case of a continuous endogenous variable in an outcome equation. In addition, the

majority of papers deal with a single selection and a single outcome equation in the sample

selection model. In practice, sample may be chosen based on more than one criterion, or

more than one outcome equations may be considered.

In this paper I offer a Bayesian model of sample selection with two additional features.

First of all, it allows binary dependent variable in the outcome equation as well.2 Secondly,

adding extra selection or outcome equations with dichotomous or continuous dependent

variables is straightforward. This extension is crucial in the presence of multiple selection

equations, as explained below. These two extensions seem to be an important contribution

to the existing literature with potential applications in health, labor and related empirical

economic research.

While technical issues limited the use of sample selection models with multiple binary

dependent variables, their applicability is potentially very wide. Consider an example from

health economics where a researcher is interested in joint estimation of two or more binary

morbid health events (for example, hip fracture and stroke) in a sample of Medicare-eligible

older Americans. Suppose further that she observes those outcomes only for respondents

who allowed her to access their Medicare claims. Clearly, joint estimation of the two health

events (outcome variables of interest) with a third equation for being in the analytic sample

(selection equation) tends to be more efficient than estimating them equation-by-equation.3

More importantly, in order to obtain consistent estimates all of the selection equations have

1There is no such problem if the disturbances in two equations have zero correlation.
2I review some earlier work on a discrete outcome variable in Heckman’s (1979) model and explain how

my model differs further on.
3This is a standard result in seemingly unrelated regression model, which does not apply if the explanatory

variables are the same or if the correlation/covariance terms are zero.

3



to be included.

Consider another example from financial economics. Suppose that a credit card company

studies the probability of default (outcome equation) for respondents who received a credit

card offer. The first selection equation may be if they accepted the offer and applied for a

card, and the second whether their application was approved by the bank. In this model,

the agent can default only if she was approved for a credit card, which in turn is possible

only if she has responded to such an offer.

In labor economics it might be of interest to study employment discrimination (observed

for candidates that seek a job) and wage discrimination (observed for candidates that seek a

job and are hired). These two outcome equations can be estimated together with selection

equation (if a candidate is seeking a job or not). All these and related models can be

estimated in the framework developed in this paper.

How is the problem of sample selection accounted for in the multivariate probit model?

To continue with the health economics example, suppose that there exists some unobserved

factor that affects both the probability of being selected into a sample and of having a morbid

health event. If healthier individuals are more likely to allow access to their Medicare claims,

say, because of a better cognitive function, then estimating the probability of a morbid health

event only for the observed subsample is not representative of the entire population, as only

its healthier part is considered.

From the discussion above, it is apparent that in order to consistently estimate a model

with sample selection, it is necessary to account for an omitted variable problem. In general,

the sample selection problem arises if the unobserved factors determining the inclusion in

the subsample are correlated with the unobservables that affect the endogenous variable of

primary interest (Vella 1998). In the current paper the specification error of omitted variable

resulting from selection is dealt with by considering the unobserved omitted variable as a

part of the disturbance term and then jointly estimating the system of equations accounting

for the correlations in the variance-covariance matrix.

The multivariate probit model can be used to handle multiple correlated dichotomous

variables along the lines of Ashford and Sowden (1970) and Amemiya (1974). It seems, how-

ever, that the potential of this model has not been fully realized despite its connection to

the normal distribution, which allows for a flexible correlation structure. As noticed in Chib

and Greenberg (1998), at least part of the problem in earlier applications arose from the
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difficulties associated with evaluating the likelihood function by classical methods, except

under simplifying assumptions like equicorrelated responses, as in Ochi and Prentice (1984).

Chib and Greenberg (1998) describe how the model can be reformulated in a Bayesian

context using the technique of data augmentation (discussed in Albert and Chib [1993],

among others). The discrete dependent variable in the probit model can be viewed as the

outcome of an underlying linear regression with some latent dependent variable (i.e. unob-

served by the researcher). Consider a decision to make a large purchase, as in Greene (2003,

p. 669). If the benefits outweigh the costs (benefits-costs>0) then the latent dependent

variable is positive and the purchase is made (the observed discrete outcome is 1), and vice

versa. If the researcher makes a further assumption that the disturbance term in the model

with the latent dependent variable has a standard normal distribution, then the univariate

probit model results. The extension to the multivariate case is relatively straightforward.

The latent variables are clearly not observed, but their distributions are specified to be

normal. Chib and Greenberg (1998) use this fact and re-introduce the latent variable back

into the multivariate probit model. In a typical Bayesian model the prior distribution of the

parameters and the likelihood function are used to obtain the joint posterior distribution,

which combines the information from the prior and the data. Chib and Greenberg (1998) find

the joint posterior distribution of the multivariate probit model as the product of the prior

distribution of the parameters and augmented likelihood function. The latter is obtained

as the product of normal distributions for latent variables taken over all respondents in

the sample. It is easy to show that, after integrating over the latent variables, the joint

posterior distribution of the parameters is exactly the same as the posterior distribution

obtained without introducing any latent variables (see Koop, Poirier and Tobias [2007] for

related examples). The computational advantage of this method — it does not require the

evaluation of the truncated multivariate normal density — is the greater the more discrete

dependent variables are included into the model.

Using the full conditional posterior distributions of the coefficient vector, along with

elements in the variance matrix and the latent data, it is possible to construct a Markov

Chain Monte Carlo (MCMC) algorithm and simulate the parameters jointly with the latent

data. In the Chib and Greenberg (1998) formulation, the conditional posterior distribution

for the elements in the variance matrix has a nonstandard form and the authors use a

Metropolis-Hastings algorithm to draw those elements. This paper modifies the Chib and
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Greenberg (1998) procedure by using the Cholesky factorization of the variance matrix. This

allows a convenient multivariate normal representation of the parameters that are used to

obtain the variance matrix, which considerably facilitates estimation.

Another complication in the sample selection model follows from the fact that some of

the dependent binary variables in the outcome equation are not observed given the selection

rule into the sample. The posterior distribution of the latent data can be used to simu-

late those missing observations conditional on the covariance structure of the disturbance

term. Consider first an individual t with complete data in m × 1 vector of binary responses

y.t = (y1t, ..., ymt)
′ for all selection and outcome equations. The Chib and Greenberg (1998)

procedure implies that at each MCMC simulation the latent vector ỹ.t = (ỹ1t, ..., ỹmt)
′ is

drawn from the truncated multivariate normal distribution with a m × 1 mean vector and

m×m covariance matrix Σ.4 The distribution is truncated for the ith element ỹit to (−∞, 0]

if the binary outcome yit = −1 and to (0, +∞) if yit = 1. Now suppose that individual t

has missing binary outcome yit for some i. The only difference with the case of an observed

binary outcome yit comes from the fact that the conditional multivariate normal distribution

for ỹit is no longer truncated in the ith dimension. That is, if yit is missing for some i, then

the latent variable ỹit is unrestricted and can take any value in the interval (−∞,∞).

Identification of the parameters is an important issue in models of discrete choice. It is

well-known that the multivairate probit model is not likelihood-identified with unrestricted

covariance matrix. Even though the formulation of the variance matrix in this paper uses

only m(m − 1)/2 identified parameters, this turns out not to be sufficient for identification.

Meng and Schmidt (1985) offer an elegant treatment of the problem of identification in the

censored bivariate probit model using the general principle in Rothenberg (1971) that the

parameters in the model are (locally) identified if and only if the information matrix is

nonsingular. The conclusion in Meng and Schmidt (1985), that the bivariate probit model

with sample selection is in general identified, applies also with my parameterization of the

model.

This paper is organized as follows. Section 2 reviews the literature on sample selection

especially on extensions to models with discrete outcome equation and Bayesian treatment.

Section 3 sets up the model and derives the details of the multivariate probit estimator.

4The mean vector for individual t is a product of m × k matrix of covariates and a k × 1 vector of

coefficients to be defined later.
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Section 4 develops the Gibbs sampler. Section 5 considers the problem of identification

in greater detail. Finally, section 6 provides an illustrative example and the last section

concludes the discussion.

2 Discrete Outcome Variable in Sample Selection Model

2.1 Classical treatment of a discrete outcome variable

The model of incidental truncation, which is another name for sample selection model, has

been widely used in economic applications when the variable of interest is observed only

for people who are selected into a sample based on some threshold rule. Heckman’s (1979)

treatment of sample selection model is also a standard topic in most modern econometric

textbooks (such as Greene 2003 and Wooldridge 2002).

However, there are relatively few applications of Heckman’s (1979) model to discrete (and

count) data and Greene (2008) reviews a handful of such models, starting with Wynand and

van Praag (1981). In a recent application to teen employment, Mohanty (2002) uses the

formulation in Meng and Schmidt (1985), which is very similar to the bivariate probit model

with sample selection in Wynand and Praag (1981). In Mohanty (2002) the applicant i

for a job can be selected (SELi = 1) or not (SELi = 0) only if she has applied for a job

(SEEKi = 1). Both discrete variables are modeled as the latent variables y1i (SEEKi = 1

if y1i > 0 and SEEKi = 0 otherwise) and y2i (SELi = 1 if y2i > 0 and SELi = 0 otherwise)

that have bivariate normal distribution with correlation coefficient ρ.

Estimating the hiring equation (SELi) only for the subsample of teens who applied for

a job (SEEKi = 1) produces inconsistent estimates as long as ρ 6= 0. Indeed, univariate

probit shows misleading evidence of employment discrimination against Black teens, which

disappears when participation and hiring equations are estimated jointly (Mohanty 2002).

Another relevant example in classical econometrics is Greene (1992), who refers to an

earlier paper by Boyes, Hoffman and Low (1989). The (part of the) model in Greene (1992)

is bivariate probit where the decision to default or not on a credit card is observed only for

cardholders (and not the applicants that were rejected by a credit card company).

Terza (1998) is another important reference in this literature. He develops a model for

count data that includes an endogenous treatment variable. For example, the number of

trips by a family (count variable of interest) may depend on the dummy for car ownership

7



(potentially endogenous). In this case the dependent variable for car ownership in the first

equation appears as explanatory variable in the equation for the number of trips and the

two equations are estimated jointly. Terza (1998) compares three estimators for this model:

full information ML, non-linear weighted least squares (NWLS) and a two-stage method of

moments (TSM) similar to Heckman’s (1979) estimator.5

The setup in Terza (1998) can be potentially used in models of discrete choice with

sample selection, as in a recent paper by Kenkel and Terza (2001). Kenkel and Terza (2001)

use a two-step estimator in the model of alcohol consumption (number of drinks) with an

endogenous dummy for advice (from a physician to reduce alcohol consumption). The first

stage is univariate probit for receiving advice and the second stage applies non-linear least

squares to the demand for alcohol (number of drinks). Kenkel and Terza (2001) find that

advice reduces alcohol consumption in the sample of males with hypertension, and the failure

to account for the endogeneity of advice would mask this result.

Munkin and Trivedi (2003) discuss the problems with different estimators of selection

models with discrete outcome equation. The first class of models, which uses moment-based

procedures, results in inefficient estimates and does not allow the estimation of the full set

of parameters in the presence of correlated multiple outcomes. A second possibility is a

weighted nonlinear instrumental variable approach that has not been very successful be-

cause of difficulties in consistent estimation of weights (Munkin and Trivedi 2003). Finally,

simulated maximum likelihood method requires a sufficient number of simulations for con-

sistency where it is not clear what is “...the operational meaning of sufficient” (Munkin and

Trivedi 2003, p. 198).

It seems that none of the models discussed so far allows multiple correlated discrete

dependent variables in the presence of sample selection (except for the bivariate case). The

approach that I adopt in this paper is to extend the Bayesian multivariate probit model in

Chib and Greenberg (1998), allowing for some missing responses. I review existing Bayesian

treatments of sample selection in the next subsection and then provide further details on

Chib and Greenberg (1998).

5The estimators are listed in the order of decreasing efficiency and computational difficulty. NWLS

estimator may result in correlation coefficient being greater than one in absolute value.

8



2.2 Bayesian treatment of Heckman model

Recent Bayesian treatments of sample selection model are almost exclusively based on

Markov Chain Monte Carlo (MCMC) methods with data augmentation.6 The idea of data

augmentation was introduced by Tanner and Wong (1987), and used in Bayesian discrete

choice models starting (at least) from Albert and Chib (1993).7 Latent variables in these

models are treated as additional parameters and are sampled from the joint posterior dis-

tribution. In these models, however, the joint posterior distribution for parameters and

latent variables typically does not have a recognizable form. Gibbs sampler is an MCMC

method used when the joint posterior distribution can be represented as a full set of (simpler)

conditional distributions. It is possible then to obtain the sample from the joint posterior dis-

tribution by iteratively drawing from each conditional distribution, given the values obtained

from the remaining distributions. The model developed herein shares the two aforementioned

features (data augmentation and Gibbs sampling) and simultaneous equation structure with

previous studies by Li (1998), Huang (2001) and van Hasselt (2008).

Li (1998) develops Bayesian inference in the following simultaneous equation model with

limited dependent variables (SLDV):

y∗

1 = y2γ1 + X1δ1 + u1

y∗

2 = X2δ2 + u2, (1)

where y∗

1 is of Tobit type (a researcher observes y1 = y∗

1 if y∗

1 > 0 and y1 = 0 otherwise) and

y∗

2 is of probit type (the researcher observes y2 = 1 if y∗

2 > 0 and y2 = 0 otherwise).8 The

vector of disturbances (u1, u2)
′ is assumed to follow bivariate normal distribution with the

variance of u2 set to 1 for model identification:

Σ =

(
σ2

11 σ12

σ12 1

)
,

6Earlier developments in Bayesian statistics model selection by means of various weight functions. For

example, Bayarri and DeGroot (1987 and four other papers, as cited in Lee and Berger 2001) mostly con-

centrate on indicator weight function: potential observation is selected into a sample if it exceeds a certain

threshold. Bayarri and Berger (1998) develop nonparametric classes of weight functions that are bounded

above and below by two weight functions. Lee and Berger (2001) use the Dirichlet process as a prior on the

weight function.
7Notice that the selection equation in a Heckman-type model is univariate probit.
8To avoid the confusion with my parameters later on, I use different Greek letters from those used in the

original papers throughout the literature review.
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where σ2
11 is the variance of u1 and σ12 is the covariance between u1 and u2. Decomposing

the joint bivariate distribution of (u1, u2)
′ into the product of the marginal distribution of u2

and the conditional distribution of u1|u2 allows convenient blocking in the Gibbs sampler.

This decomposition in Li (1998), together with the more convenient reparametrization of the

variance matrix

Σ =

(
σ2 + σ2

12 σ12

σ12 1

)
,

appear repeatedly in later studies. With these changes the model is now re-defined as

y∗

1 = y2γ1 + X1δ1 + u2σ12 + v1

y∗

2 = X2δ2 + u2, (2)

with u2 = y∗

2 − X2δ2, σ2 = σ2
11 − σ2

12, and v1 ∼ N(0, σ2). In the resulting Gibbs sampler

with data augmentation, all conditional distributions have recognizable forms that are easy

to draw from (multivariate normal, univariate truncated normal and gamma).9

Huang (2001) develops Bayesian seemingly unrelated regression (SUR) model, where

dependent variables are of the Tobit type (researcher observes yij = y∗

ij if y∗

ij > 0 and

yij = 0 otherwise). The Gibbs sampler with data augmentation in Huang (2001) consists of

multivariate normal, Wishart and truncated multivariate normal distributions.

In the paper by van Hasselt (2008), two sample selection models — with unidentified pa-

rameters and with identified parameters — are compared.10 The idea behind the first model

is borrowed from McCulloch and Rossi (1994), who used a similar approach in multinomial

probit context. The output from the Gibbs sampler is used to approximate the posterior

distribution of the identified parameters. The model with identified parameters in van Has-

selt (2008) uses marginal-conditional decomposition of the disturbance terms together with

9Chakravarti and Li (2003) apply this model to estimate dual trade informativeness in futures markets.

Probit equation estimates a trader’s decision to trade on her own account and tobit equation measures

her (abnormal) profit from her own account trading. Chakravarti and Li (2003) did not find significant

correlation between a dual trader’s private information and her abnormal profit.
10Another interesting paper by van Hasselt (2005) compares the performance of sample selection and two-

part models (when two equations are estimated independently) in a Bayesian setup. In classical econometrics

Leung and Yu (1996) provide conclusive evidence against negative results in Manning, Duan and Rogers

(1987) who claim that two-part model performs better than sample selection model even when the latter

is the true model. Leung and Yu (1996) show that problems with sample selection model are caused by a

critical problem in the design of experiments in Manning, Duan and Rogers (1987).
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more convenient parameterization of the variance matrix, as in Li (1998).11 The major con-

tribution of van Hasselt (2008) is relaxing the normal distribution assumption in the sample

selection model via mixture of normal distributions. I do not follow that route and my model

remains fully parametric.

In all the papers cited above the outcome variable is continuous and not discrete. There

are two Bayesian papers with discrete outcome variable (and multiple outcome equations)

that are worth mentioning: Munkin and Trivedi (2003) and Preget and Waelbroeck (2006).

Munkin and Trivedi (2003) develop a three-equation model with the first equation for

count data (the number of doctor visits), the second equation for a continuous variable (the

associated health expenditures) and the third equation for a dummy variable (the type of

health insurance plan). The selection problem — demand for health care that potentially

depends on the type of health insurance — is modeled by using an (endogenous) dummy

variable for private health plan. There is no problem of missing dependent variable for re-

spondents that are not in the sample (i.e. who did not purchase private insurance). Neither

of the correlation coefficients for private health plan with two variables of interest is statis-

tically different from zero and the type of insurance does not affect the level of health care

use (Munkin and Trivedi 2003).12

Preget and Waelbroeck (2006) develop a three-equation model with application to timber

auctions. There are two binary dependent variables (if a lot received any bids and, conditional

on receiving at least one bid, if a lot received two or more bids) and one continuous variable

(highest bid for a lot) with an endogenous dummy variable for the number of bids. Preget

and Waelbroeck (2006) comment that in such models the likelihood function is not always

well behaved, especially in the direction of the correlation coefficients.13 While in Preget and

11McCulloch, Polson and Rossi (2000) show that fully identified multinomial probit model comes at a cost:

higher autocorrelation in the Markov Chain.
12In a later work, Deb, Munkin and Trivedi (2006), perhaps dissatisfied with a sample selection model,

use a two-part model with endogeneity in a similar context.
13Consider the following sequential probit model: the second binary outcome is missing for all respondents

whose first outcome is “No.” The third binary outcome, if present, is missing for all respondents who answered

“No” in the second equation and so on. Waelbroeck (2005) argues that in this model the likelihood function is

not globally concave and flat in some directions, which limits practical applicability of the model. Notice that

in a two-equation case, sequential probit is the same model as censored probit except that the two models

may have different interpretation. Keane (1992) discusses similar computational issues in multinomial probit

model.
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Waelbroeck (2006) the correlation coefficients are never statistically different from zero, they

find that their Bayesian algorithm “...yields a remarkably stable coefficient for the binary

endogenous variable and was able to deal with irregularities in the likelihood function.”

Two conclusions seem to follow from my review of relevant studies. First of all, there exist

serious computational difficulties when the sample selection model with multiple dichoto-

mous dependent variables is estimated by methods of classical econometrics. For example,

Munkin and Trivedi (2003) comment on difficulties associated with estimating their model in

a simulated maximum likelihood framework. This provides strong motivation for a Bayesian

econometric methodology and also explains why models similar to mine are typically esti-

mated in a Bayesian and not classical tradition. Second, even in the Bayesian literature,

there seem to be no published papers that can be used directly to estimate a model with

three or more dichotomous dependent variables. This constitutes an important contribution

of the current paper.

While my work shares the methods with previous studies (data augmentation, Gibbs

sampling and simultaneous equation structure) it comes from a different area — multivariate

probit model developed in Chib and Greenberg (1998). The next section introduces the

multivariate probit in Chib and Greenberg (1998) and provides the extensions that make it

applicable in the sample selection model.

3 Multivariate Probit and Sample Selection

Suppose that a researcher observes a set of potentially correlated binary events i = 1, ..., m

over an independent sample of t = 1, ..., T respondents. Consider the multivariate probit

model reformulated in terms of latent variables as in Chib and Greenberg (1998). For each

of the events i = 1, ..., m define a T × 1 vector of latent variables ỹi. = (ỹi1, ..., ỹiT )′ and a

T × ki matrix of explanatory variables Zi where each row t represents a 1 × ki vector Zit.

Then each latent variable can be modeled as

ỹi. = Ziβi + εi., (3)

where εi. is a vector of disturbance terms that have normal distribution. There is potential

correlation in the disturbance terms for respondent t across events i = 1, ..., m coming from

some unobserved factor that simultaneously affects selection and outcome variables. Let
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ỹ.t = (ỹ1t, ..., ỹmt)
′ be the vector of latent variables for respondent t such that

ỹ.t ∼ Nm(Ztβ, Σ), (4)

where Zt = diag(Z1t, ..., Zmt) is an m×k covariate matrix, βi ǫ Rki is an unknown parameter

vector in equation i = 1, ..., m with β = (β′

1, ..., β
′

m)′ ǫ Rk and k =
∑m

i=1 ki, and Σ is the

variance matrix.

The sign of ỹit for each dependent variable i = 1, ..., m uniquely determines the observed

binary outcome yit:

yit = I(ỹit > 0) − I(ỹit <= 0) (i = 1, ..., m), (5)

where I(A) is the indicator function of an event A. Suppose it is of interest to evaluate the

probability of observing a vector of binary responses Y. = (Y1, ..., Ym)′ for indivial t. Chib

and Greenberg (1998) show that the probability y.t = Y.t can be expressed as

∫

Bmt

...

∫

B1t

φm(ỹ.t|Ztβ, Σ)dỹ.t, (6)

where Bit ǫ (0,∞) if yit = 1 and Bit ǫ (−∞, 0] if yit = −1. Define Bt = B1t × ... × Bmt.

Alternatively, the probability y.t = Y.t can be expressed without introducing latent vari-

ables as

pr(y.t = Y.t|β, Σ) =

∫

Amt

...

∫

A1t

φm(w|0, Σ)dw, (7)

where φm(w|0, Σ) is the density of a m-variate normal distribution and Ait is the interval

defined as

Ait =

{
(−∞, Zitβi) if yit = 1,

(Zitβi,∞) if yit = −1.

The multidimensional integral over the normal distribution in (7) is hard to evaluate by

conventional methods.14

Instead of evaluating this integral, Chib and Greenberg (1998) use the formulation in (6)

and simulate the latent variable ỹ.t from the conditional posterior distribution with mean

Ztβ and variance matrix Σ. This distribution is truncated for the ith element to (−∞, 0] if

14Quadrature method is an example of nonsimulation procedure that can be used to approximate the

integral. Quadrature operates effectively only when the dimension of integral is small, typically not more

than four or five (Train 2003). The GHK simulator is the most widely used simulation method after Geweke

(1989), Hajivassiliou (as reported in Hajivassiliou and McFadden 1998) and Keane (1994).
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the observed outcome is yit = −1 and to (0, +∞) if yit = 1. The current model also assumes

that yit = 0 when the response for event i is missing for t.

It is important to understand what missing binary response means in terms of the latent

data representation. If respondent t has missing binary response yit for some i then no

restriction can be imposed on the latent normal distribution in the ith dimension. Then

the vector ỹ.t is simulated from the m-variate normal distribution with the same mean and

variance as in the complete data case but the distribution is not truncated for the ith element.

For the case of missing outcome i the latent variable ỹit can take any value in the interval

(−∞,∞).15

The multivariate model of incidental truncation can not be estimated using only the

observed data because the endogenous selection variables are constant and equal to 1. Now,

due to simulated missing data one can estimate the variance matrix Σ, which is the focus

of the procedure to account for sample selection. The covariances in Σ effectively adjust for

sample selectivity in the outcome equations by controlling for unobserved heterogeneity.

The issue of sample selection arises whenever the unobserved factors determining the

inclusion in the sample are correlated with the unobservables that affect the outcome vari-

able(s) of primary interest (Vella 1998). The critical idea in the current work is to account

for selection in binary outcome equation(s) by jointly estimating selection and outcome

equations while controlling for possible unobserved effect through multivariate probit with

correlated responses. If the covariance terms belong to the highest posterior density region,

this indicates the presence of unobserved effect and, hence, sample selection bias.

The elements in the variance matrix in the Chib and Greenberg (1998) formulation do

not have the conditional posterior distribution of a recognizable form, which forces them

to employ a Metropolis-Hastings algorithm. This paper makes the technical advance that

allows convenient multivariate normal representation of the parameters used to obtain the

variance matrix. Consider the Cholesky factorization of the inverse of the variance matrix

Σ−1 = F̆ · F̆ ′ where F̆ is the lower triangular matrix. If the diagonal elements of F̆ are

arrayed in a diagonal matrix Q then Σ−1 = F̆Q−1Q2Q−1F̆ ′ = FQ2F (Greene 2003). In the

current work the variance matrix is defined by F which is a lower triangular matrix that has

15This methodology allows for continuous endogenous variables as well. In this case ỹjt is trivially set to

the observed yjt for a continuous variable j in each iteration of the MCMC algorithm introduced below.
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ones on the main diagonal and D−1 = Q2 which is a diagonal matrix. Then

Σ = (F ′)−1DF−1, (8)

with D = diag{d11, ..., dmm} and F is lower triangular

F =




1 0 0 · · · 0

f21 1 0 · · · 0

f31 f32 1 · · · 0
...

...
...

. . .
...

fm1 fm2 fm3 · · · 1




.

Finally, consider the system of m equations

ỹ︸︷︷︸
Tm×1

=




ỹ1.

ỹ2.

...

ỹm.




, Z︸︷︷︸
Tm×k

=




Z1 0 · · · 0

0 Z2 · · · 0

...
...

. . .
...

0 0 · · · Zm




, β︸︷︷︸
k×1

=




β1

β2

...

βm




,

so that the model can be represented as

ỹ = Zβ + ε, (9)

where k =
∑m

i=1 ki and

ε︸︷︷︸
Tm×1

=




ε1

ε2

...

εm




.

Under the maintained assumption of the normally distributed vector ε it follows that

ε|(β, F, D, Z) ∼ N(0, (F ′)−1DF−1 ⊗ IT ). (10)

4 Deriving the Gibbs Sampler

Consider a sample of m × T observations y = (y.1, ..., y.T ) that are independent over t =

1, ..., T respondents but are potentially correlated over i = 1, ..., m events. Given a prior

density p(β, F,D) on the parameters β, F and D the posterior density is equal to

p(β, F,D|y) ∝ p(β, F, D)p(y|β, Σ), (11)
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where p(y|β, Σ) =
∏T

t=1 p(y.t|β, Σ) is the likelihood function. Define y.t = (yst, yot), where

yst and yot are selection and outcome variables with some of the y.t’s missing. In this

representation the evaluation of the likelihood function is computationally intensive from

a classical perspective. Albert and Chib (1993) developed an alternative Bayesian frame-

work that focuses on the joint posterior distribution of the parameters and the latent data

p(β, F, D, ỹ1, ..., ỹT |y). It follows then that

p(β, F,D, ỹ|y) ∝ p(β, F, D)p(ỹ|β, Σ)p(y|ỹ, β, Σ) (12)

= p(β, F, D)p(ỹ|β, Σ)p(y|ỹ).

It is possible now to implement a sampling approach and construct a Markov chain from the

distributions [ỹ.t|y.t, β, Σ] (t ≤ T ), [β|y, ỹ, Σ] and [F,D|y, ỹ, β].

With unrestricted F or D matrix the multivariate probit model is not identified. The

observed outcomes y.t for respondent t depend only on signs but not magnitudes of the latent

data ỹ.t. In a multivariate probit model with m equations only m(m − 1)/2 parameters

in the variance matrix are identified. Consider the following transformation of the model

F ′ỹ.t ∼ N(F ′Ztβ,D), where D is some unrestricted diagonal matrix. The latent regression

has the form F ′ỹ.t = F ′Ztβ + D1/2ε.t, where ε.t is m-variate normal with a zero mean vector

and an m × m identity variance matrix. However, pre-multiplying this equation by α > 0

results in αF ′ỹ.t = F ′Zt(αβ) + αD1/2ε.t which is the same model corresponding to the same

observed data y.t. Since the parameters in D1/2 cannot be identified, D is set to identity

matrix extending the logic from the univariate probit model in Greene (2003).16

The posterior density kernel is the product of the priors and the augmented likelihood

in equation (12).17 The parameters in β and F are specified to be independent in the prior.

Let the prior distribution for β be normal φk(β|β,B−1) with the location vector β and the

precision matrix B.

It is convenient to concatenate the vectors below the main diagonal in F matrix as

Fvector =




F2:m,1

F3:m,2

...

Fm,m−1




,

16Observe that this is not sufficient for identification and later I give an example from Meng and Schmidt

(1985) when the model is not identified with two equations.
17The term “augmented likelihood” emphasizes the fact that the likelihood includes latent variables.
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where Fi+1:m,i for i = 1, ..., m− 1 represents elements from i+1 to m in column i. The prior

distribution of Fvector is assumed to be
(m(m−1)

2

)
-variate normal

Fvector ∼ N(F vector, H
−1). (13)

In this expression F vector is the prior mean of the normal distribution, and the prior variance

matrix H−1 is block-diagonal with

H =




H2:m,2:m 0 · · · 0

0 H3:m,3:m · · · 0

...
...

. . .
...

0 0 · · · H1,1




.

This precision matrix has (m− 1)× (m− 1) matrix H2:m,2:m in the upper left corner and the

matrix dimension is decreasing by one in each consequent block on the main diagonal. The

lower right matrix H1,1 is a scalar. The posterior density kernel is now

|B|1/2 exp
{
− 1

2
(β − β)′B(β − β)

}
(14)

· |H|1/2 exp
{
− 1

2
(Fvector − F vector)

′H(Fvector − F vector)
}

· |Σ|−T/2

T∏

t=1

exp
{
− 1

2
(ỹ.t − Ztβ)′Σ−1(ỹ.t − Ztβ)

}
I(ỹ.t ǫ Bt).

A Gibbs sampler is constructed by drawing from the following conditional posterior dis-

tributions: the vector of coefficients β, the Fvector from the variance matrix decomposition

and the latent vector ỹ.t for each respondent t ≤ T .18

In a typical iteration the Gibbs sampler initiates by drawing the vector of the coefficients

β conditional on Fvector and ỹ.t obtained from the previous draw. The posterior distribution

of β comes from the posterior density kernel and is normal

β|(ỹ, Σ) ∼ Nk(β|β, B
−1

), (15)

where B = B +
∑T

t=1 Z ′

tΣ
−1Zt and β = B

−1
(Bβ +

∑T
t=1 Z ′

tΣ
−1ỹ.t). In this last expression it

is understood that for each t , ỹ.t ǫ Bt.

18Technical Appendix A.1 provides complete details of the Gibbs sampler derivation.
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To obtain the conditional posterior distribution of F , an alternative expression for the

density of ỹ is useful:

p(ỹ|y, β, F, D) ∝ |Σ|−T/2

T∏

t=1

exp
{
− 1

2
(ỹ.t − Ztβ)′Σ−1(ỹ.t − Ztβ)

}
I(ỹ.t ǫ Bt)

= |FD−1F ′|T/2

T∏

t=1

exp
{
− 1

2
ε′tFD−1F ′εt

}
I(ỹ.t ǫ Bt)

=
T∏

t=1

m∏

i=1

exp
{
− 1

2
(εt,i + F ′

i+1:m,iεt,i+1:m)2
}

=
m∏

i=1

exp
{
− 1

2

T∑

t=1

(εt,i + F ′

i+1:m,iεt,i+1:m)2
}

, (16)

where for each t , ỹ.t ǫ Bt. In this derivation the restriction D = Im is already imposed.

Then the posterior conditional distribution of Fvector is also normal

Fvector|(y, ỹ, β) ∼ N(
m(m−1)

2

)(F vector, H
−1

). (17)

The conditional posterior normal distribution has the posterior precision matrix

H = H +




∑T
t=1 εt,2:mε′t,2:m 0 · · · 0

0
∑T

t=1 εt,3:mε′t,3:m · · · 0

...
...

. . .
...

0 0 · · · ∑T
t=1 εt,mε′t,m




.

The posterior mean of the normal distribution is equal to

F vector = H
−1

H F vector − H
−1




∑T
t=1 εt,2:mεt,1∑T
t=1 εt,3:mεt,2

...
∑T

t=1 εt,mεt,m−1




.

Finally, the latent data ỹ.t are drawn independently for each respondent t ≤ T from the

truncated multivariate normal distribution as described in Geweke (1991). The algorithm

makes draws conditional on Zt, β and F as well as ỹ.t obtained in the previous draw. The

multivariate normal distribution is truncated to the region defined by the m×2 matrix [a, b]

with a typical row i equal to (0,∞), if yit = 1 and (−∞, 0) if yit = −1. If yit is not observed,

then row i is (−∞,∞).
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Thus, this work extends Chib and Greenberg (1998) in the following two ways: (i) it

permits missing outcome variables ỹ.t, and (ii) it re-parameterizes the variance matrix in

terms of more convenient multivariate normal Fvector that is used to obtain Σ.

5 The Problem of Identification

Identification is an important issue in models of discrete choice. Meng and Schmidt (1985)

in their elegant article offer an excellent treatment of identification in a bivariate probit

model under various levels of observability. Meng and Schmidt (1985) rely on the general

principle in Rothenberg (1971) that the parameters are (locally) identified if and only if the

information matrix is nonsingular. In particular, their Case Three: Censored Probit is very

similar to the following bivariate sample selection model: the binary variable of interest y2t

is observed for respondent t only if she is selected in the sample (y1t = 1).19

Let F t = F (Z1tβ1, Z2tβ2; f21) specify the bivariate normal cumulative distribution func-

tion and Φ(Zhtβh) specify the univariate standard normal cumulative distribution function

with h = 1, 2 for respondent t. Recall that the sign of ỹit perfectly predicts yit and one can

write

p(y|ỹ) =
T∏

t=1

I(ỹ1t > 0)I(ỹ2t > 0)I(y1t = 1)I(y2t = 1)

+I(ỹ1t > 0)I(ỹ2t ≤ 0)I(y1t = 1)I(y2t = −1) + I(ỹ1t ≤ 0)I(y1t = −1).

The likelihood function in the bivariate model can be obtained after I integrate over ỹ in the

19I employ different parametrization of the variance matrix and, thus, the parameters have to be scaled

to be comparable with Meng and Schmidt (1985).
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following way
∫

B

p(y, ỹ|β, Σ)dỹ =

∫

B

p(y|ỹ, β, Σ)p(ỹ|β, Σ)dỹ =

∫

B

p(y|ỹ)p(ỹ|β, Σ)dỹ

=
T∏

t=1

∫
∞

−∞

∫
∞

−∞

[
I(ỹ1t > 0)I(ỹ2t > 0)I(y1t = 1)I(y2t = 1)

+I(ỹ1t > 0)I(ỹ2t ≤ 0)I(y1t = 1)I(y2t = −1) + I(ỹ1t ≤ 0)I(y1t = −1)
]

·f(Z1tβ1, Z2tβ2; f21)dỹ1tdỹ2t

=
T∏

t=1

∫
∞

0

∫
∞

0

I(y1t = 1)I(y2t = 1)f2dỹ1tdỹ2t

+
T∏

t=1

∫ 0

−∞

(∫
∞

0

I(y1t = 1)I(y2t = −1)f2dỹ1t

)
dỹ2t

+
T∏

t=1

∫ 0

−∞

I(y1t = −1)φ(Z1tβ1)dỹ1t

=
T∏

t=1

F (Z1tβ1, Z2tβ2; f21)
I(y1t=1)I(y2t=1)

·[Φ(Z1tβ1) − F (Z1tβ1, Z2tβ2; f21)]
I(y1t=1)I(y2t=−1)

·[1 − Φ(Z1tβ1)]
I(y1t=−1),

where f = f(Z1tβ1, Z2tβ2; f21) is bivariate normal density function and φ(·) is univariate

normal density function. Define qit = yit+1
2

for i = 1, 2 and take the natural logarithm of

this expression to obtain

ln L(Z1β1, Z2β2; f21) = (18)
T∑

t=1

[
q1tq2t ln F t + q1t(1 − q2t) ln[Φ(Z1tβ1) − F t] + (1 − q1t) ln[1 − Φ(Z1tβ1)]

]
,

which is equivalent to equation (6) in Meng and Schmidt (1985) except for the correlation

coefficient ρ being replaced by the parameter f21 that enters F t as defined below equation

(8). The general conclusion reached by Meng and Schmidt (1985) is that the parameters

in this model are identified except in certain “perverse” cases. First of all, peculiar config-

urations of the explanatory variables may cause nonidentification, but this problem can be

addressed only given the data at hand. Second, nonidentification may be caused by certain

combinations of parameters in the model. For example, the censored bivariate probit model
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with my parametrization is not identified when Z1tβ1 = −f21√
1+f2

21

Z2tβ2 for all respondents t

and I show this result in Technical Appendix A.2.20 The information matrix is then singular

because the row for the second intercept (i.e. for (k1 +1)th term) is the last row (i.e. for the

parameter f21), divided by a constant. In this particular example the problem of noniden-

tification does not arise as long as the set of explanatory variables is not the same in two

equations.

Meng and Schmidt (1985) comment that there might also be other combinations of pa-

rameters or particular configurations of explanatory variables leading to nonidentification.

Since it is not possible to foresee all such problems a priori, it is the responsibility of the

researcher to check if the parameters in the model are identified. However, it is very reassur-

ing that the sample selection model is generally identified, except in some (not very likely)

cases.

6 Experiments with Artificial Data

The purpose of the experiment with artificial data is to study if the model can retrieve the

parameters and the correlation coefficient that are used to generate the data when some of

the outcome variables are missing. It is also of interest to assess the convergence properties

of the model. I construct the following bivariate probit model with sample selection. Let

y2t be the dichotomous dependent variable of interest that is observed only if the selection

variable y1t is equal to 1.

For this experiment I generate t = 1, ..., 500 independent latent variables (ỹ1t, ỹ2t)
′ from

the bivariate normal distribution with mean µt = [Z1tβ1,.

√
1 + f2

21, Z2tβ2,.]
′, where a 1 × 3

vector Zit contains intercept, one discrete and one continuous variable as described below

and βi,. = [βi,1 βi,2 βi,3]
′ for i = 1, 2. Each equation contains the intercept denoted βi,1,

continuous variable βi,2 and discrete variable βi,3. Continuous variable in each equation is

drawn from the normal distribution with µ = −0.5 and σ = 2. Discrete variable takes values

of −1 and 1 with equal probability. All continuous and discrete variables are independent

from each other. The coefficients used to generate the artificial data are provided in the

20Another example of nonidentification given in Meng and Schmidt (1985) is when there are only intercepts

included in all equations. While such a model cannot be used in a meaninful way for economic analysis, it

provides an interesting limiting case when all the covariate coefficients go to zero.
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second column of Table 1. The correlation coefficient is set to 0.5 with the corresponding

value of f21 ≈ −0.5774. Finally, the 2 × 2 covariance matrix is the same for all respondents

and is set to

Σ =

[
1 + f 2

21 −f21

−f21 1

]
.

Observe that the true parameters of the first equation are multiplied by
√

1 + f2
21 and in

each simulation I normalize the draws of β1,. by
√

1 + f2
21 obtained in the same draw. After I

obtain the 500× 2 matrix of the latent variables ỹ, I convert it into the matrix of “observed”

dichotomous dependent variables y which is used in the simulator. The coefficients that

were chosen place approximately one third in each of the three bins (yes, yes), (yes, no) and

(no,missing).

The implementation of the Gibbs sampler is programmed in the Matlab environment with

some loops written in C language. All the codes successfully passed the joint distribution

tests in Geweke (2004). The results in this section are based on 24,000 draws from the

posterior (the first 6,000 draws were discarded as burn-in iterations). The prior for i = 1, 2

vector of coefficients βi,. is mutlivariate normal with the mean vector set to zeros and the

variance matrix equal to the identity matrix of dimension 3. The prior for f21 is standard

normal distribution.

The results of the experiment are shown in Figures 1-3 and Table 1.21 The simulator

works quite well in this experiment with low autocorrelation and stable results with his-

tograms centered almost at the values of the parameters used to generate the data. Geweke’s

convergence diagnostic test (Geweke 1992) does not indicate problems with the convergence

of the Markov Chain. The only slight problem is that the mean of the correlation coefficient

ρ in the sample obtained from the joint posterior distribution (0.23) is somewhat lower than

the value of 0.5 used to obtain the artificial data but it still belongs to the 95% highest

posterior density interval.

7 Concluding Remarks

This paper develops a sample selection model for discrete or mixed continuous-discrete out-

comes with multiple outcome and selection equations. To facilitate the estimation of a

21To obtain some of the statistics I used the MATLAB program momentg.m by James LeSage.
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resulting multivariate probit model, a Bayesian reformulation in terms of latent variables

is extended from the Chib and Greenberg (1998) paper that offers a convenient simulation

procedure aimed at resolving the problems of evaluating the integral of multivariate normal

density. The essence of the method is to jointly simulate the parameters and the latent vari-

ables from conditional posterior distributions using a Markov Chain Monte Carlo algorithm.

If there is any unobserved heterogeneity for each agent t, it is properly accounted for as a

part of the disturbance terms by the covariance structure of the variance matrix resulting

from a joint estimation of a system of equations.

This paper also makes two technical advances to the Chib and Greenberg (1998) setup by

(i) adding some missing binary responses and (ii) simplifying the estimation of the variance

matrix via a multivariate normal representation of the elements in the lower triangular matrix

from the Cholesky factorization of Σ−1. I also discuss how the results on identification in

Meng and Schmidt (1985) apply in the bivariate probit model with sample selection.

In addition to introducing the multivariate probit model with sample selection, this paper

also offers some interesting topics for further research. In particular, it might be of interest

to further study the identification in the case of three and more equations, which clearly

depends on the selection rule into a sample. The likelihood is different in each particular

case and extensive study of this topic along the lines of Meng and Schmidt (1985) may be

rewarding. Alternatively, some of the potentially interesting topics in empirical health and

labor economics outlined in the introduction can be done with little (or no) modification of

the model in this paper.
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