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Abstract

In the classical analysis many models used to real data description are

based on the standard Brownian diffusion-type processes. However, some

real data exhibit characteristic periods of constant values. In such cases

the popular systems seem not to be applicable. Therefore we propose an

alternative approach, based on the combination of the popular arithmetic

Brownian motion and tempered stable subordinator. The probability density

function of the proposed model can be described by a Fokker-Planck type

equation and therefore it has many similar properties as the popular arith-

metic Brownian motion. In this paper we propose the estimation procedure

for the considered tempered stable subdiffusive arithmetic Brownian motion

and calibrate the analyzed process to the real financial data.
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1 Introduction

Anomalous behavior characterized through constant time periods (called also trap-

ping events) is observed in variety of physical systems, including charge carrier

transport in amorphous semiconductors [29, 28, 25], transport in micelles [24], in-

tracellular transport [4], motion of mRNA molecules inside E. coli cells [9], for a

review including discussion of different applications see [5]. This specific behav-

ior is also typical for some financial data especially corresponding to interest rates
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and stock prices, for which the constant time periods occur when the liquidity of

the analyzed assets is low [12]. Description and modeling of such systems require

the appropriate mathematical tools that correspond to fundamental physical laws

and capture the most significant properties of the phenomena. Such tools as gen-

eralized Langevin equations, fractional Fokker-Planck-type equations (FFPEs) or

fractional Brownian motion are well-known and usually applicable to anomalous

diffusions, [5, 31, 21, 16].

In the domain of subdiffusion the typical approach is based on continuous

time random walk (CTRW), [29, 22], and subordinated Lévy processes as a limit

in distribution of CTRW, [20, 17]. The key issue in the framework of CTRW as

well as in subordination technique is the waiting-times distribution corresponding

to periods of constant values in which a test particle is immobilized. Let us note,

that a family of nonnegative infinitely divisible (ID) distributions is enough rich to

capture waiting-times distributions appearing in real physical systems, [18]. In the

class of the ID distributions of the special importance are one-sided Lévy stable,

Pareto, gamma, Mittag-Leffler, and tempered stable distributions.

Especially tempered stable distributions are the most appropriate in modeling

of waiting-times in intermediate case between sub and normal diffusion, [32, 8].

Moreover, it is worth noticing that the tempered stable distributions have many

interesting properties (i.e. finite moments), but simultaneously they remain close

to the purely α-stable distribution, [27]. The tempered stable distributions have

found many practical applications for instance in finance [15, 14], biology [11],

physics to description of anomalous diffusion and relaxation phenomena [32, 8],

turbulence [7] and in plasma physics [13], see also [30, 6]. Some physical systems

that also demonstrate subdiffusive behavior at short time, and normal (Gaussian)

at long times are analyzed in [3, 26].

In this paper we consider the model based on the combination of the classi-

cal arithmetic Brownian motion (ABM) and tempered stable subordinator. Let us

mention that the extended model based on subordinated ABM with general ID

subordinator was recently applied to option pricing, [19]. The considered sub-

diffusive ABM with tempered stable waiting-times capture the aforementioned

property, i.e. it demonstrates the subdiffusive behavior for small time scale and

Gaussian for large times. Moreover, it is based on the classical ABM therefore it

is not complicated from the theoretical point of view. For these reasons, the pre-

sented practical methods of data analysis, especially parameters estimation, can

be easily applied to the real data. In this paper we overview the main properties

of the considered ABM with tempered stable waiting-times. As a main result we

present in details the estimation procedure for the considered process and addi-

tionally describe the simple method of distinction between strictly α−stable and

tempered stable distribution of the subordinator. In order to demonstrate theoreti-

cal results we calibrate the subdiffusive ABM with tempered stable waiting-times
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to the real financial data. The similar considerations for Brownian diffusion with

purely α-stable subordinator are presented in [12, 23].

The paper is scheduled as follows. In Section 2, we recall the construction of

the subordinated ABM with tempered stable waiting-times. The estimation proce-

dure for considered process is presented in details in Section 3. The practical ap-

plications of theoretical results are presented in Section 4 to the real financial data,

i.e. United States Government Bonds (Inflation-Indexed 3.875%, Yield) from the

period 09.04.1999-03.09.2008. Last Section contains conclusions.

2 The arithmetic Brownian motion with tempered
stable waiting-times

Let us consider the arithmetic Brownian motion with tempered stable waiting-

times, i.e. process {Y (t)} defined as follows [18]:

Y (t) = X(Sα,λ,c(t)), (2.1)

where {X(τ)} is ABM with parameters µ and σ, represented by the following

stochastic differential equation:

dX(τ) = µdτ + σdB(τ). (2.2)

The inverse subordinator {Sα,λ,c(t)}, called inverse tempered stable subordinator,

is defined as follows, [18, 8]:

Sα,λ,c(t) = inf{τ > 0 : Tα,λ,c(t) > τ}, (2.3)

where {Tα,λ,c(t)} is a Lévy process with tempered stable increments and Laplace

transform given by, [32]:

E
(

e−uTα,λ,c(t)
)

= e−tΨ(u) = e−tc((λ+u)α−λα), (2.4)

where λ > 0, 0 < α < 1, c > 0. When λ = 0, then the Lévy process {Tα,0,c(t)}
becomes simply α−stable with the scale parameter c1/α. We assume the pro-

cesses {X(τ)} and {Tα,λ,c(t)} are independent. The probability density function

of {Tα,λ,c(t)} can be expressed in the following form:

p̃α,λ,c(x, t) = e−λx+cλαtpα,σ,1,0(x, t), (2.5)

where σ =
(

c ∗ cosπα
2

)1/α
and pα,σ,β,µ(x, t) is a probability density function of the

α-stable Lévy motion with the index of stability α, scale parameter σ, skewness

β and shift µ, [1].
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On Fig. 1 we present an exemplary sample path of the inverse tempered stable

subordinator Sα,λ,c(t), the arithmetic Brownian motion X(τ) and the tempered

subdiffusion process Y (t) = X(Sα,λ,c(t)). Let us recall, that the constant periods

of trajectories of subdiffusion process {Y (t)} correspond to the waiting-times that

are distributed according to the tempered stable law.
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Figure 1: An exemplary sample path of the inverse tempered stable subordina-

tor Sα,λ,c(t) (top panel), the classical arithmetic Brownian motion X(τ) (middle

panel) and the subdiffusion process Y (t) = X(Sα,λ,c(t)) (bottom panel). The pa-

rameters of the subdiffusive process are: α = 0.85, λ = 0.05, c = 0.05, µ = 1
and σ = 5.

Main properties and the simulation procedure for the process {Y (t)} one can

find in [18, 8, 19]. We only mention here that the probability density function

of the process {Y (t)} satisfies the following generalized fractional Fokker-Planck

equation:

δw(x, t)

δt
=

[

−µ
δ

δx
+

σ2

2

δ2

δx2

]

Φw(x, t), (2.6)

where the operator Φ is defined as:

Φf(t) =
d

dt

∫ t

0

M(t− y)f(y)dy.

According to [18], the memory kernel M(t) is defined via its Laplace transform
∫

∞

0

e−utM(t)dt =
1

Ψ(u)
=

1

c((λ+ u)α − λα)
. (2.7)
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Let us point out that in case λ → 0 the operator Φ is proportional to the fractional

Riemann-Liouville derivative, therefore (2.6) tends to fractional Fokker-Planck

equation. Using formula (2.7) we can obtain the form of the memory kernel M(t):

M(t) =
e−λttα−1

c
Eα,α((λt)

α), (2.8)

where

Eα,β(z) =
∞
∑

k=0

zk

Γ(αk + β)

is a generalized Mittag-Leffler function, [10].

3 Estimation procedure

The estimation procedure for parameters of the ABM with tempered stable waiting-

times is based on the fact that lengths of constant time periods observed in a real

data set are realizations of independent identically distributed (i.i.d.) random vari-

ables that are distributed according to the tempered stable law and the process

that arises after removing the trapping events is the classical ABM. For detailed

explanation of this algorithm in case of purely α-stable subordinator see [12, 23].

To estimate the parameters we apply the following scheme:

(a) From the data set Y1, Y2, ..., Yn determine the length of the constant time pe-

riods T1, ..., Tk that constitute i.i.d. random variables from tempered stable

distribution. For simplicity we assume the parameter c = 1. Therefore the

Laplace transform of the random variable Ti is given by

E
(

e−uTi
)

= eλ
α
−(λ+u)α , i = 1, 2, ..., k.

(b) Estimate the α and λ parameters from the sample T1, ..., Tk obtained in point

(a). This can be done by using the method of moments that in this case

proceeds as follows.

Let us consider the cumulant generating function K that is defined as:

K(u) = log
(

EeuTi
)

= λα − (λ− u)α.

The cumulants cm = E(Ti − c1)
m (for each i = 1, 2, ..., k and m = 1, 2, 3)

we can obtain computing m−th derivative of K function in point u = 0:

c1 = E(Ti) = αλα−1,

c2 = V ar(Ti) = −α(α− 1)λα−2,

5



c3 = E(Ti − c1)
3 = α(α− 1)(α− 2)λα−3.

Therefore we obtain

α = 1 +
c22

c22 − c1c3
, λ =

(1− α)c1
c2

=
c1c2

c1c3 − c22
.

Using method of moments (i.e. replacement of the theoretical central mo-

ments cm by the empirical ones) we obtain the formulas for estimators:

α̂ = 1 +
ĉ22

ĉ22 − ĉ1ĉ3
, λ̂ =

ĉ1ĉ2

ĉ1ĉ3 − ĉ22
,

where ĉm is an empirical central m−th moment (m = 1, 2, 3) calculated on

the basis of the vector (T1, T2, ..., Tk), i.e.

ĉ1 =
1

k

k
∑

i=1

Ti, ĉm =
1

k

k
∑

i=1

(Ti − ĉ1)
m for m = 2, 3.

(c) After removing the constant time periods we obtain the realization of the clas-

sical ABM {X(τ)}. The parameters µ and σ of the ABM we estimate by

using discrete version of equation (2.2), i.e.

X(τ)−X(τ − 1) = µ+ σZ(τ), τ = 1, 2, ...

where {Z(τ)} is a sequence of i.i.d. random variables with standard normal

distribution. Therefore the estimator µ̂ is equal to the mean of the differ-

enced (with order 1) series {X(τ)} while the estimator σ̂ is equal to the em-

pirical standard deviation of the differenced (with order 1) series {X(τ)}.

4 Applications

In this Section we consider the real data set of United States Government Bonds

(Inflation-Indexed 3.875%, Yield) expressed in USD from the period 09.04.1999-

03.09.2008 (2350 observations). Let us notice, the data demonstrate characteristic

trap-behavior typical for the subdiffusive processes, see Fig. 2.

In the first step of our analysis we divide considered data into two sets: the first

one represents lengths of the observed trapping events (DATA1), while the second

describes the data after removing the constant time periods (DATA2). According

to the theoretical results, DATA1 constitute the length of constant time periods of

the inverse subordinator, that is a significant component of the data, since lengths

of traps have large values and number of trapping events is 436, see Fig. 3. For
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Figure 2: The examined real data set of United States Government Bonds

(Inflation-Indexed 3.875%, Yield) expressed in USD. The considered period is

09.04.1999-03.09.2008. The data demonstrate characteristic trap-behavior typi-

cal for the subdiffusive processes.
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detailed description of the algorithm, see [23]. Moreover, tail behavior of DATA2

(without constant time periods) is close to the Gaussian case because the estimated

parameter of stability, so called tail index, calculated by using the McCulloch,

regression and moments methods, [2], is close to 2. For these reasons, for the

considered financial data we propose to use the subdiffusibe ABM.
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Figure 3: The lengths of constant time periods (DATA1). Constant periods are

defined here as a number of days in which the changes of the bond prices are

smaller than 0.01.

Firstly, let us examine the hypothesis, that the purely α−stable distribution

(i.e. tempered stable with λ = 0) better describes waiting-times behavior than the

tempered stable one. To this end, from DATA1 we estimate, by using the McCul-

loch, regression and moments methods, the α parameter under the assumption that

lengths of traps constitute i.i.d. random variables from strictly α−stable distribu-

tion. All the estimation methods return α̂ > 1, that contradicts the main assump-

tion about the purely α-stable distribution of the subordinator (in this case the α

parameter should be between 0 and 1). Therefore, as an alternative, we propose

the tempered stable distribution. By using the estimation procedure presented in

the previous Section we obtain the following values of α and λ estimators:

α̂ = 0.6786, λ̂ = 0.2203.

According to our assumption, DATA2 (that arises after removing the trap-

ping events) represents the classical ABM. Therefore, the estimators µ̂ and σ̂ we

calculate as the empirical mean and the standard deviation, respectively, of the

differenced (with order 1) series DATA2. We obtain the following values:

µ̂ = −0.001, σ̂ = 0.0443.
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5 Conclusions

In this paper we have examined the subdiffusive ABM with tempered stable waiting-

times that is the most appropriate in intermediate case between sub- and normal

diffusion. As a main result we have presented the estimation scheme for param-

eters of the considered process. To distinguish between models with purely α-

stable subordinator and tempered stable one, we have proposed a simple method

based on analysis of the estimated (from data corresponding to constant time pe-

riods) index of stability. In order to present the motivation of the paper and the

theoretical results we have calibrated the subordinated ABM with tempered stable

subordinator to the real financial data.
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for a power law-truncated Lévy process, Pysica A 336, 245-251 (2004)

[31] Stanislavsky A.A., Fractional dynamics from the ordinary Langevin equa-

tion, Phys. Rev. E 67, 021111 (2003).

[32] Stanislavsky A.A., Weron K. and Weron A., Diffusion and relaxation con-

trolled by tempered α-stable processes, Phys. Rev. E 78 051106 (2008).

11


