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Abstract 

Over the last few decades, the prevalence of obesity among US citizens has grown 

rapidly, especially among low-income individuals. This has led to questions about the 

effectiveness of nutritional assistance programs such as the Supplemental Nutrition 

Assistance Program (SNAP), formerly known as the Food Stamps Program (FSP). 

Results from previous studies generally suggest that FSP participation increases 

obesity. This finding is however based on analyses that assumed that participants do 

not misclassify their program participation. Significant misclassification errors have 

been reported in the literature. Using propensity score matching estimation and a new 

method to conduct extensive sensitivity analysis, we find that this finding is quite 

sensitive to misclassification errors above 10% and to functional form assumptions.   

JEL codes: C63, D12, I1 
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1. Introduction  

Obesity is increasing worldwide in dramatic rates. The World Health Organization 

indicated that there were 1.6 billion overweight adults and at least 400 million obese 

adults in the world in 2005 (WHO (2006) Obesity and Overweight. Fact Sheet No 311. 

World Health Organization). By 2015, these figures are expected to rise to 2.3 billion 

overweight and 700 million obese adults. Obesity effects on health are well supported 
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by the medical literature and include a long non-exhaustive list that includes 

osteoarthritis, sleep apnea, asthma, high blood pressure, gallbladder disease, 

cholesterol, type II diabetes, cardiovascular disease, stroke, renal and genitourinary 

diseases (Bray, 2004; Ejerblad et al., 2006; Esposito et al., 2004; Grundy, 2004; van 

der Steeg et al., 2007; Whitmer et al., 2005). Obesity may also inflict severe 

emotional harm, such as social stigmatization, depression, and poor body image. 

 Researchers have rightly responded to this unprecedented rise of obesity as 

evidenced by the exploding number of papers published in the nutrition/medical as 

well as the economics literature. The economic causes of obesity are nicely analyzed 

in Rosin (2008). Among the many factors linked to the high obesity prevalence are 

the increased opportunity cost of time for food preparation, along with the availability 

of “cheap” calories provided by fast-food restaurants, as well as the adoption of 

sedentary lifestyles (Cutler et al., 2003; Lakdawalla et al., 2005; Philipson and Posner, 

2003). One interesting aspect of the obesity epidemic is that prevalence rates have 

been found to be higher and to increase more rapidly among lower income people, a 

group usually associated with fewer resources and poor diets. 

To this respect, a number of nutrition assistance programs funded by the U.S. 

government target specific groups of low income people to address dietary and 

nutrition concerns. The Supplemental Nutrition Assistance Program (SNAP), 

formerly known as the Food Stamps Program (FSP)1

                                                 
1 For the rest of the paper we use the term FSP rather than SNAP since this program is still more popularly known 
as the food stamps program.    

 is by far the largest nutrition 

assistance program in the US. The FSP as implemented in 1964 was designed to 

alleviate hunger by distributing coupons that could only be used to purchase food at 

grocery stores. FSP benefits are given to a single person or family who meets the 

program’s requirements pertaining to income, assets, work and immigration status. 



4 
 

Most benefit periods last for 6 months but some can be as short as 1 month or as long 

as 3 years. Currently, electronic benefit transfers that operate essentially as debit cards 

have replaced food stamp coupons. According to USDA data, about 40 million 

individuals and 18 million households nation-wide participate in this program, with 

total amount of benefits reaching 65 billion USD in 2010. Eligibility and benefits are 

based on household size, household assets, and income. Other food assistance 

programs in the US include the School Breakfast Program (SBP), the National School 

Lunch Program (NSLP) and the Women, Infant and Children Program (WIC).  

Due to increasing obesity rates in the US, particularly among low-income 

individuals, we focus our study on assessing the effect of FSP on obesity. There are 

two main theories on how food stamp benefits could contribute to weight gain: (1) 

food stamps encourage beneficiaries to spend more money on food than they 

otherwise would (and presumably, to eat more); and (2) food stamp participation is 

linked to a cycle of deprivation followed by abundance and binge eating, which 

results in weight gain over time (Ver Ploeg et al. 2007). 

Several studies have examined the effect of FSP participation on various 

outcomes. These studies differ in terms of the targeted groups (e.g., children, adult 

women/men and the elderly), the outcomes of interest (e.g., Body Mass Index, food 

security index, probability of being overweight/obese), the nature of the data (e.g., 

cross-sectional, longitudinal), the sources of the data2  and the methodology they 

employ 3

                                                 
2  The Panel Study of Income Dynamics (PSID) along with the Child Development Supplement (CDS), the 
National Health and Nutrition Examination Survey (NHANES), the National Longitudinal Survey of Youth 
(NLSY79), the Health and Retirement Study (HRS) and the Asset and Health Dynamics Among the Old (AHEAD) 
are some of them. 

. Results from a number of past studies suggest a positive effect of FSP 

participation on adult obesity. For example, Baum (2007) found that FSP participation 

3 Descriptive statistics, OLS and Logistic Regressions, IV estimators (with and without fixed effects), Bivariate 
Probit, Dynamic and Lagged Models, Hazard Models and Propensity Score Matching. 
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increases the probability of being obese in females aged 20-28 while the amount of 

food stamps benefit was positively related to BMI in males of the same age. Gibson 

(2003) concluded that FSP participation is responsible for a 2 percentage point 

increase in the BMI of adult women. This effect was even greater in the case of long-

term participation of women. Chen et al. (2005) also showed that women FSP 

recipients have an obesity rate that is 6.7 percent higher than that of women non-

recipients. On the other hand, Kaushal (2007) found no significant effect of FSP 

participation on obesity of both men and women.  

These past studies, however, did not take into account the misclassification 

errors associated with self-reported FSP participation status. This issue is important 

since results could be sensitive to these misclassification errors that have been 

reported in the literature to be non-trivial. For instance, Bollinger & David (1997) and 

Bitler et al. (2003) suggest that about 10%-15% of FSP recipients do not report FSP 

participation when asked by the interviewer. Meyer et al. (2010) report an even higher 

35%-50% misclassification error. If this is the case, then the findings from past 

studies that associated FSP participation with increasing obesity could be biased and 

misleading. Our objective in this study is to assess the effect of misclassification 

errors on the effects of FSP participation on obesity. We also take into account the 

complex endogeneity issues inherent in these types of analysis and extensively test the 

robustness of our results to deviations from functional form assumptions. Specifically, 

we simulate various scenarios where we vary percentages of misreported participation 

in the FSP.  

Also, since FSP participation is not randomly but rather endogenously 

assigned to subjects according to some observable (e.g., eligibility criteria) and 

unobservable (e.g., information acquisition, attitudes etc.) factors, there is always the 
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chance that some of these factors are highly correlated with the outcome of interest, 

making it hard to identify the causal effect of FSP participation without a proper 

identification strategy. Hence, if one or more variables influencing FSP participation 

also affect BMI, then simple descriptive statistics or regression analysis of BMI or the 

probability of being overweight/obese on a binary variable indicating FSP 

participation, would be biased due to the well known problem of self-selection. On 

the other hand, if one employs techniques which are designed to circumvent self-

selection bias (e.g., selection models, IV estimators), obtaining a consistent point 

estimate requires a valid exclusion restriction which is not always plausible with 

typical data limitations. Lastly, estimators that do not rely on such restrictions but 

account for selection bias (e.g Heckman’s bivariate normal selection, propensity score 

matching) assume specific functional forms for identification, thus failing to reveal 

the true underlying patterns when these functional forms are not known. In this study, 

we employ propensity score matching estimators and perform an extensive sensitivity 

analysis to test the robustness of restrictive assumptions. Quoting Angrist & Pischke 

(2010), scrutinizing our results through a sensitivity analysis process is what takes the 

con out of the econometrics.  

We build on the work of Ichino et al. (2008) who proposed an excellent way 

of testing the robustness of matching estimators while avoiding parametric 

assumptions. We extend this method to account for the misclassification errors which 

are common in some areas of interest, such as the one involving FSP participation. 

Our data come from the 2005–2006 National Health and Nutrition Examination 

Survey (NHANES). NHANES is designed to assess the health and nutritional status 

of adults and children in the US and is unique in that it combines interviews and 

physical examinations.  
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2. Methods 

 

2.1 Propensity score matching 

The research question of interest to us is whether participating in the FSP 

increases the probability of being obese. Formally, assume that there is a binary 

variable iY  that takes the value of 1 if respondent i has both a BMI4 greater than 30 

kg/m2 

iT

and a waste circumference (WC) greater than 100 cm, and 0 otherwise. The 

second condition (WC > 100 cm) is usually added in order to account for the 

misleading classification of BMI when it comes to athletes or elder people. Define a 

second binary variable , which equals 1 for participants and 0 for the non-

participants. In notation form: 

1,  if BMI 30 and WC 100

0,  otherwise

i i

iY
≥ ≥

= 


                              (1) 

and 

1,  if individual is receiving FSP benefits

0,  otherwise
iT


= 


              (2) 

A mere comparison of the mean iY , namely the obesity rate, between the 

treated and the control group does not reveal a causal relationship between the FSP 

participation and the outcome of interest. It is likely that the two groups differ in 

many other characteristics that could lead to differences in the mean iY  even if food 

stamps were not received by either group. If we denote by ( )1Y  the potential 

                                                 
4 The BMI (Body Mass Index) is used to define nutritional status and is derived from the division of Weight in 
kilograms by the square of height in meters. The acceptable range is the same for men and women and lies 
between 20 and 25. Obesity is taken to start at a BMI of 30 and gross obesity at 40. A BMI of 18-20 is defined as 
mild starvation and severe starvation begins when BMI falls below 16. 
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outcome for the treated population and by ( )0Y  the potential outcome for the same 

individuals, have they not been treated, we can define the effect of the treatment on 

each treated individual as:  

(1) (0)i i it Y Y= −       (3) 

which averaged over the population gives us the average treatment effect on the 

treated (ATT), namely: 

( ) ( )1 | 1 0 | 1ATTt E Y T E Y T= = − =           (4) 

Since [ (0) | 1]E Y T =  is not observed, one needs to make some additional 

assumptions in order to estimate the ATT. The first is that Y , conditional on a set of 

observable covariates C ,  does not influence participation in the program: 

0Y  T  |  C,  C⊥ ∀         (5) 

This assumption is widely known as the Conditional Independence 

Assumption (CIA), the restrictive nature of which seems unappealing to many 

researchers and decreases the popularity of matching estimators. A second assumption 

is the common support or overlap condition, which ensures that for every FSP 

participant, there are non-participants with the same observable covariates, that is: 

( )1 1Pr T |C= <        (6) 

In all our estimations, we ensure that observations falling out of the common 

support region are excluded. If assumptions (5) and (6) hold, then after conditioning 

on a vector of C covariates, ATT becomes estimable through (4) by substituting the 

unobservable part [ (0) | 1, ]E Y T C= , with its observable counterpart, [ (0) | 0, ]E Y T C= . 

To solve the dimensionality problem arising when C includes many covariates, 
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Rosenbaum and Rubin (1983) suggested the use of the propensity score           𝑃(𝐶𝑖) = Pr (𝑇𝑖 = 1|𝐶𝑖), instead of C as the conditioning variable. The propensity 

score matching estimator of ATT is then given by: 

( ) ( ) ( ) ( )1 | 1, 0 | 0,PSMATT E Y T P C E Y T P C= = − =          (7) 

In our case and inasmuch as the FSP is designed to help low-income groups, 

we used as a control group the eligible non-recipients that are classified using the 

most important eligibility criterion of FSP participation, the Poverty Income Ratio 

(PIR).  The PIR is also the only available eligibility criterion in our dataset. Other 

unobservable characteristics that cannot be controlled for (and which could render 

CIA implausible) are less likely to differ among individuals of these two classes. 

ATT can be estimated using several matching algorithms such as nearest 

neighbor, kernel, stratification, radius and spline smoothing. We use nearest 

neighbour propensity score matching, using the four nearest neighbours5

                                                 
5 When selecting the number of matches one has to consider the bias-variance trade-off, since utilizing multiple 
matches for each treated individual will generally increase bias (2nd, 3rd, and 4th closest matches are, by 
definition, farther away from the treated individual than is the 1st closest match) while on the other hand, it can 
decrease variance due to the larger matched sample size (Stuart 2010). We use four matches in order not to rely on 
too little information but to also avoid incorporating observations that are not sufficiently similar. Like all 
smoothing parameters, the final inference can depend on the choice of the number of matches (Abadie et al. 2004). 

 and report 

analytical standard errors since the bootstrap variance estimator is invalid for nearest 

neighbor matching (Abadie & Imbens 2006). The variables used to estimate the 

propensity score are shown in Table 1. The first two variables are the outcome and the 

control variable respectively. In selecting the variables to be included in the 

propensity score estimation we rely on the advice of  Rubin & Thomas (1996) and the 

evidence provided by Brookhart et al. (2006) that one should include in the estimation 

of propensity scores all variables that are thought to be related to the outcome, 

regardless of whether they are related to the exposure. Household’s FSP participation 

(FS_hh) was used instead of the individual’s participation status since FSP benefits 
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are most certainly shared among the members of the household. For the same reason, 

WIC participation (WIC_hh) was included in the set of covariates. Other factors such 

as Alcohol and Smoker were included to account for the non-food expenses of the 

groups which could reduce available resources for food and decrease or increase the 

probability of being obese.  Chronic and DocDiab are used to account for the possible 

links between these different conditions and obesity. To account for the absence of 

spatial information, we use pseudo-strata and pseudo-primary sampling unit dummies 

(PSU1-2, Strata1-15) that are available in NHANES6

 

. Square, cubic and interaction 

terms for all continuous variables and their transformations were also included in the 

model. Millimet and Tchernis (2009) showed that over-specifying the model used to 

estimate the propensity score is always the best strategy, considering the penalty 

associated with the under-specification of the model. Finally, we include demographic 

variables such as age, ethnic characteristics, educational level, income, marital status, 

and household size to capture the biological differences affecting BMI, the awareness 

about nutrition issues as well as the within-household consumption dynamics in the 

allocation of resources. The results of the above procedure will be referred to as the 

Unconfounded Baseline Estimates (UBEs) and are then tested in ways described 

below. 

2.2. Misclassification errors 

Due to the self-reported nature of the FSP participation data at hand, (7) is not 

estimable, since what we observe is not iT  but 
,i obsT . The difference between iT  and 

,i obsT depends on whether the individuals that stated non-participation in FSP were 

                                                 
6  Actual strata and primary sampling units are not to be disclosed due to the risk of identification of the 
respondents. However, their ‘pseudo’ counterparts are designed to give the exact same results. 
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actually non-recipients or not7

( ),Pr 1| 0i i obsT T= =

. Given that there is no way to identify  the subjects that 

made a false-statement, it might seem tempting to use the probability 

 as a weight in order to derive the two right-hand side parameters 

of (7) by their 
obsiT ’s counterparts. Nevertheless, even if such weights were available, 

the misclassification of subjects in the treated and the control groups would have 

caused a severe bias to these observable counterparts through ( )P C , thereby making 

the results completely uninformative. In addition, in the estimation with a confounder 

(analyzed in the next section) if the researcher assumes that its distribution follows 

that of a known variable, there would be no possible way to define the parameters Prij

that characterize its distribution, since actual i’s are not known.  

We circumvent this problem by simulating different scenarios where a 

respondent that reported not to have received food stamps misrepresents her true state 

of participation by some probability ( ),Pr 1| 0i i obsT T= = . To avoid further functional 

form assumptions about the probability distribution, we test different misclassification 

values8 in an attempt to discover a cut-off point, beyond which our results fall flat.  

Specifically, we test misclassification error percentages of 5, 10, 15, 20, and 25 to 

cover the possible misclassification errors suggested by Bollinger & David (1997), 

Bitler et al. (2003), and Meyer et al. (2010).  To accomplish this, we created m new 

databases9

                                                 
7 Although we ignore the portion of individuals acting the other way around (i.e., reporting being FSP participants 
while they are not) due to the fact that it is usually a small group, the methodology proposed can be easily 
extended to include this option as well. 

 for each level of misclassification errors (i.e. 5xm in total), with each of 

these datasets containing all the variables that are exactly as in the original database 

8 Note that these values can be further decomposed into ( ),Pr 1| 0, 1i i obsT T Y= = = and 

( ),Pr 1| 0, 0i i obsT T Y= = = , if the researcher has strong evidence or a meaningful explanation on why the 

probability of misclassification can be related to the outcome of interest.  
9 We used m=1000 but we keep this notation for demonstration simplicity. 
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and a new participation indicator (FS_hh_new). The values of this dummy are similar 

to FS_hh, with the only difference being that a random10

It should be mentioned that during this database generation process, a 

Hotelling’s test was performed in each of the m databases to make sure that the 

averages of the covariates in the treated group and the weighted averages of the same 

covariates in the control group were not significantly different.

 percentage of zeroes (5%-

25% depending on the level of misclassification error examined) in the latter (FS_hh) 

are transformed into ones in the former (FS_hh_new). Hence, we consider 5%-25% of 

non-participation reports to be false-statements.  

11

                                                 
10 Determined by a pseudo-random number generator of Stata/SE 11. 

 The procedure was 

carried out in an iterative way and if the test revealed that the two groups (participants 

and eligible nonparticipants) could be distinguished on at least one of the covariates at 

the 10% confidence level, the database was discarded and the procedure was 

continued until m databases were created. This way, the danger of violating the 

balancing property (i.e. having the treated and control units have the same distribution 

of observable covariates) is mitigated. This precaution however proved unnecessary 

since no single database was discarded for this reason, which shows that the balancing 

property was not at all threatened by the misclassification errors. After this, we then 

proceeded with the estimation of the 𝐴𝑇𝑇𝑃𝑆𝑀𝑚𝑖𝑠  (i.e., the average of the ATTs of each 

database). Since our previous step led to the generation of m different participation 

dummies, for each level of misclassification errors we get m ATTs. Although it is 

relatively easy to obtain a point estimate by averaging over all point estimates, the 

calculation of the standard errors is less straightforward. Using Rubin's (1987a) 

combination of repeated complete-data variances, we derive the standard errors as: 

11 We use weighted averages for the control group since we employ a 4 to 1 nearest neighbor matching. The 
weights are the common normalized weights that were then used in the estimation of the 4 to 1 nearest neighbor 
matching. 
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1
1mis

PSM
mATT

se V B
m

 = + + 
 

      (8) 

where 
1

1
m

 + 
 

 is the correction factor (correcting for the fact that m is finite), V is 

the average of the variances associated with each of the m estimated ATTs : 

𝑉� =
1𝑚∑ 𝑉𝑘𝑚𝑘=1         (9) 

and 𝐵𝑚 is the variance among the m estimated ATTs : 

𝐵𝑚 =  
1𝑚−1∑ (𝐴𝑇𝑇𝑘 − 𝐴𝑇𝑇������)2𝑚𝑘=1       (10) 

For a large number of replications the statistic ( 𝐴𝑇�𝑇 − 𝐴𝑇𝑇������)/𝑠𝑒𝐴𝑇𝑇𝑃𝑆𝑀𝑚𝑖𝑠   is 

approximately normal.  

 

2.3 Confounders 

Another possible pitfall of the methodology is the bias that could arise from 

the subtraction of (7) from (4), i.e., the possible bias of the estimated PSMATT  

estimator in the case of a failure of the CIA: 

( ) ( ) ( )0 1 0 0BIAS E Y |T ,P( C ) E Y |T ,P C= = − =          (11) 

This bias is minimized when ( ) 0.5P C =  (Black and Smith, 2004; Heckman 

and Navarro-Lozano, 2004). Hence, Black and Smith (2004) suggested to estimate the

PSMATT , within a ‘thick support’ region of the propensity score (i.e.,

( )0.33 0.66P C< < ). However, if treatment effect varies with C , the estimated 

parameter would deviate from the corresponding population parameter and thus might 

not be very informative. We follow a different strategy instead: we assume that CIA 
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holds and scrutinize our results by simulating several binary ‘confounders’ U .12

( ) ( ) ( )1 1 1 0conf
PSMATT E Y |T ,P( C,U ) E Y |T ,P C,U= = − =      

 In 

case of CIA failure, such confounders once added would impose CIA to the model 

and consequently would transform (7) into:  

  (12) 

We are particularly interested in assessing how the baseline estimates (7) 

would change with the addition of possible confounders U, in order to perform a 

robustness check of our estimates. If our findings suggest that PSMATT  estimates are 

robust to such confounders U, then one can be more confident of the interpretation of 

the results. According to Ichino et al. (2008), it is preferable to avoid parametric 

assumptions about the simulated confounder. Different hypotheses about the 

distribution of the confounding factor could be tested by imposing the values of the 

parameters characterizing the distribution of U (𝑃𝑟𝑖𝑗 = Pr(𝑈 = 1|𝑇 = 𝑖, 𝑦 = 𝑗,𝐶)) ∀ 𝑖, 𝑗 ∈ {0,1} ) then predicting a value for each subject according to these parameters, 

and finally estimating 𝐴𝑇𝑇𝑃𝑆𝑀𝑐𝑜𝑛𝑓
 and repeating the same process n times for the same 

distribution parameters.13

 In each of the n iterations, two logit models (two odds ratios) are fitted 

(calculated) to assess the plausibility of the existence of such a confounder. The first 

(Pr(𝑌 = 1|𝑇 = 0, U,𝐶)) is estimated to show the effect that such a confounder would 

have on the odds of being obese in the case of no treatment (outcome effect), while 

the second (Pr(𝑇 = 1| U,𝐶)) is employed to highlight the relative importance of the 

hypothesized confounder on the participation probability (selection effect). The 

 The formulas for the calculation of the standard errors of 

the 𝐴𝑇𝑇𝑃𝑆𝑀𝑐𝑜𝑛𝑓
 are also those shown in (9)-(11) by replacing the subscript m with n.  

                                                 
12 If UBEs are robust in the presence of binary confounders, then this result holds even if the true ones are 
continuous  (see Ichino et al. (2006) for a proof via Monte Carlo simulations). 
13 We used n=1000 but keep this notation for its demonstration simplicity. 
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results of these two odd ratios are referred to as α and ε respectively. The mean 𝐴𝑇𝑇𝑃𝑆𝑀𝑐𝑜𝑛𝑓
 are the Confounded Baseline Estimates (CBEs) that should also be compared 

with the UBEs. 

As a first simulation practice, we simulate a neutral confounder (i.e., a 

confounder which has exactly a 50% chance to be 1 in all possible treatment/outcome 

combinations) and the confounders that mimic the distribution of some of the 

demographic variables (Male, Chronic, Educ1, Educ2, Educ3, MarStat1, MarStat2). 

The results are shown in Tables 5-7. Since these results are highly dependent upon the 

selection of the covariates, we then search for the existence of a set of parameters prij 

that could drive ATT to zero. As shown in Ichino et al. (2006), such ‘dangerous’ 

confounders can be simulated by fixing the probability Pr(U = 1) and the difference 

pr11 − pr10 at some predetermined values14 and then assigning positive values15 to d= 

p01 – p00 and s= pr1. – pr0.  

 

where pr𝑖. = Pr(𝑈 = 1|𝑇 = 𝑖,𝐶). We are then able to 

assess the plausibility of this particular configuration of parameters through α and ε. If 

only highly implausible confounders are driving 𝐴𝑇𝑇𝑃𝑆𝑀𝑐𝑜𝑛𝑓
 to zero, our findings are 

considered robust to functional form assumptions. 

2.4 Misclassification errors and Confounders 

Up to this point, we have managed to test the robustness of our UBEs by 

assuming misclassification errors and confounding variables separately. However, we 

do not know how the results would look like if these two deviations coexisted in our 

                                                 
14 We have set the value of Pr(U = 1) to 0.3 and that of  p11 − p10 to 0. Since these quantities are not expected to 
represent a real threat to the baseline estimate, the results remain qualitatively intact when considering different 
values.  
15 To do so, we used the Matlab code available on the website http://www.tommasonannicini.eu , which returns all 
the prij parameters that simulate U with d and s varying from 0.1 to 0.6, given the fixed parameters.  
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settings. Hence, we need a combination of the two procedures described above to 

further test the validity of our results. In this paper, the combining rule is a nested 

imputation approach as described in Shen (2000) and employed in D. B. Rubin (2003) 

and Harel (2007). According to this procedure, in each of the m databases created for 

each level of misclassification errors (as previously demonstrated under the subtitle 

“Misclassification errors”), we construct n confounders for each set of parameters 

prij

𝑠𝑒𝐴𝑇𝑇𝑃𝑆𝑀𝑚𝑖𝑠,𝑐𝑜𝑛𝑓 = �𝑉� + �1 − 1𝑛�𝐵𝑛 + (1 +
1𝑚)𝐵𝑚    (13) 

 as described above in the calculation of 𝐴𝑇𝑇𝑃𝑆𝑀𝑐𝑜𝑛𝑓
 . As a result we end up with m×n 

(i.e. 1 million) ATTs for each level of misclassification errors and for each confounder 

examined, the average of which provides the Misclassified Confounded Estimates 

(MCEs). The calculation of the standard errors of the 𝐴𝑇𝑇𝑃𝑆𝑀𝑚𝑖𝑠,𝑐𝑜𝑛𝑓
s is now more 

tedious since the variability comes from multiple sources and is represented as: 

where (1 − 1𝑛) and (1 +
1𝑚) are the correction factors (correcting for the fact that m 

and n are finite), 𝑉�  is the average of the variances associated with each of the m×n 

estimated ATTs : 

𝑉� =
1𝑚×𝑛∑ ∑ 𝑉𝑘𝑗𝑛𝑗=1𝑚𝑘=1  ,      (14) 

𝐵𝑚 is the between database variance: 

𝐵𝑚 =  
1𝑚−1∑ (𝐴𝑇𝑇𝑘 − 𝐴𝑇𝑇������)2𝑚𝑘=1       (15) 

and 𝐵𝑛 is the average between imputation variance: 

𝐵𝑛 =  
1𝑚∑ 1𝑛−1∑ (𝐴𝑇𝑇𝑘𝑗 − 𝐴𝑇𝑇𝑘�������)2𝑛𝑗=1𝑚𝑘=1      (16) 

For a large number of replications the statistic ( 𝐴𝑇�𝑇 − 𝐴𝑇𝑇������)/𝑠𝑒𝐴𝑇𝑇𝑃𝑆𝑀𝑚𝑖𝑠,𝑐𝑜𝑛𝑓
,
 

approximates normal. 
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To sum up, the methodology we employ in this paper consists of four steps. First, 

we estimate PSMATT  using nearest neighbour propensity score matching, using the 

four nearest neighbours while assuming that CIA holds and that

( ),Pr 1| 0 0i i obsT T= = = . The results of this procedure are the Unconfounded Baseline 

Estimates (UBEs). Second, we test the robustness of the UBEs, by simulating 

different misclassification scenarios; these are the Misclassified Baseline Estimates 

(MBEs) that are compared with the UBEs to check their robustness against different 

levels of misreported participation. In the next stage, we derive the CBEs and MCEs 

by augmenting the functional form used to estimate the UBEs and MBEs separately 

with a neutral confounder (i.e., a confounder which has exactly 50% chance to be 1 in 

all possible treatment/outcome combinations) and with confounders which mimic the 

distribution of known demographic variables (Male, Chronic, Educ1, Educ2, Educ3, 

MarStat1,  MarStat2

 

). In the final step, we generate confounders that could drive the 

CBEs and MCEs to zero and test the plausibility of their existence through α and ε.  

This final step is non-trivial and took an enormous amount of computer time to run. 

3. Data and Results 

Researchers face additional problems when they have to deal with data on FSP 

participation and weight outcomes. The first is that many US national surveys collect 

self-reported data for weight and height which can render biased BMI values (Hill and 

Roberts, 1998; Roberts, 1995). We circumvent this problem by using the 2005-06 

National Health and Nutrition Examination Survey (NHANES) which measures the 

weight and height of individuals, thus reducing intentional and unintentional 

deviations from the true values (i.e., measurement errors).  
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The 2005-2006 National Health and Nutrition Examination Survey (NHANES) is 

designed to assess the health and nutritional status of adults and children in the United 

States. The survey is unique in that it combines interviews and physical examinations 

and includes demographic, socioeconomic, dietary, and health-related questions. The 

examination component consists of medical, dental, and physiological measurements, 

as well as laboratory tests administered by highly trained medical personnel. The 

dataset includes 10,348 respondents in its fullest module. Observations for individuals 

younger than 18 years old were dropped from all subsequent analysis. Thus, 4267 

observations were used in our estimations, of which 474 self-reported to be food 

stamp recipients.  

Results from the probit model used to estimate the propensity scores are given in 

table 2, which also contains the percentage reduction of bias16 due to the matching 

procedure as well as the probability of a type I error if we reject the null hypothesis of 

no remaining bias after the matching. There are only few remarks to be made on these 

results. First, we need to mention that we have not excluded the statistically 

insignificant covariates in the construction of the propensity scores since our aim is to 

get the most accurate estimation of that score and not of the model. Second, since no 

figure in the last column is smaller than 0.10, we can accept the hypothesis of no 

remaining bias for all covariates at the 10% confidence level. Finally, looking at the 

third column, we notice that there are only two cases (Age2*Alcohol, Hsize2

At a first glance in Table 3, one can notice that the UBEs show that FSP 

participation increases the likelihood of being obese by 10.5% for individuals who 

) where 

the matching procedure increased the bias between the treated and the control group, 

but not severely since we still accept the null of no remaining bias.  

                                                 
16 We refer to bias as the standardized percentage difference in covariates means (Rosenbaum & Rubin, 
1985). 
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assign themselves in the program. As we move on to Table 4 where the MBEs are 

presented for the five levels of misclassification errors17

In Tables 5-7, the CBEs and MCEs for potential confounders that mimic the 

distribution of known covariates for 5% and 10% misclassification errors are 

presented. We only test the results on these two levels of misclassification errors since 

in our previous step, we found that for higher misclassification levels, the 𝐴𝑇𝑇𝑃𝑆𝑀𝑚𝑖𝑠  is 

insignificant even if the assumed functional form is correct. The CBEs show that 

when there are no misclassification errors, the results are robust to the existence of 

possible confounders that mimic the distribution of all selected covariates. From the 

values of α and ε, we conclude that such confounders are quite plausible. This is also 

true for the MCEs under 5% misclassification errors. However, when 10% 

misclassification errors are assumed, the 𝐴𝑇𝑇𝑃𝑆𝑀𝑚𝑖𝑠,𝑐𝑜𝑛𝑓
 becomes more sensitive to the 

existence of unmeasured variables, since for some confounders (those that mimic the 

distribution of Male, Educ

,  we can see that when 5% 

and 10% misclassification errors are assumed, the effect of the FSP on the likelihood 

of being obese of the participants slightly decreases but still remains statistically 

significant at the 10% level. However, if 15% or more of the participants have made a 

false-statement about their participation status, the 𝐴𝑇𝑇𝑃𝑆𝑀𝑚𝑖𝑠  suggests that there are no 

significant FSP effects on likelihood of being obese. Hence, the positive ATT is only 

robust to misclassification errors of 10% or less. 

2, MarStat2

In Tables 8-10, the CBEs and MCEs are also presented but this time with 

confounders that are designed to carry all the properties of a ‘dangerous’ confounder. 

) it is statistically insignificant at the 10% 

significance level.  

                                                 
17 In the first line we also include the UBEs to facilitate comparisons. As a matter of fact, UBEs can be considered 
a special case of MBE where the level of misclassification errors is 0%. 
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As we move down each row in these tables, the selection effect (ε) is held constant 

and the outcome effect (α) of the hypothesized unmeasured variable increases whilst 

the exact opposite is true when moving along each line. Moving down the first 

column of Table 8, we find that for 0% misclassification errors the result of a positive 

effect of the FSP on the likelihood of being obese of the participants is very robust to 

unobservable confounders. If a variable that we could not capture was present with a 

selection effect of 1.58 to 1.6318, it should also have an outcome effect of more than 

7.33 19

 

 to drive the 𝐴𝑇𝑇𝑃𝑆𝑀𝑚𝑖𝑠,𝑐𝑜𝑛𝑓
 to being statistically indistinguishable from zero. 

However, for unobservable confounders with higher selection effects, the non-

significance of the point estimates indicates that the positive effect of the FSP could 

prove to be an artifact of the omitted variable(s). The same pattern is also observed for 

the 5% misclassification errors (Table 9) but in this case the estimator appears to be 

also more sensitive to the outcome effect of the possible confounders (although 

confounders with such high outcome effects are highly implausible). Finally, for 10% 

misclassification errors (Table 10), the MCEs indicate that 𝐴𝑇𝑇𝑃𝑆𝑀𝑚𝑖𝑠,𝑐𝑜𝑛𝑓
 is very 

sensitive to additional confounders since it becomes statistically insignificant even for 

small outcome/selection effects. Overall, the positive effect of FSP participation on 

obesity for participants is very (quite) robust to the existence of plausible confounders 

for 0% (5%) misclassification errors and therefore we can claim that the presence of 

an effect is not an artifact of our assumptions. Nevertheless, in the case of the 

coexistence of a 10% misclassification error with an unobservable confounder, the 

MCEs indicate a high probability of our results falling flat. 

                                                 
18 Which in turn means that individuals for whom this confounder is equal to 1 are 58%-63% more likely to 
participate in the FSP that the others. 
19 Meaning that individuals for whom this confounder is equal to 1 are 633% more likely to be obese than others. 
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4.  Concluding Remarks 

The Food Stamp Program is one of the few nutritional assistance programs in the 

history of the US that has drawn so much attention. Due to high prevalence of obesity 

among low-income individuals, a number of papers have examined the effect of FSP 

participation on obesity. Most of these studies have suggested a positive effect.  

However, none of these studies has evaluated the potential effect of misclassification 

errors (i.e., misreporting of actual participation status) in the analysis. We feel that 

this is a very important issue since results could be sensitive to these misclassification 

errors up to a point where findings can be considered no longer valid. In this study, 

we examined the complex interrelationship of FSP participation and the likelihood of 

being obese of participants using propensity score matching and data from the 2005-

2006 NHANES. We then tested the robustness of our results under different 

misclassification errors in the treatment variable as well as the extent of the presence 

of additional confounders that would be needed for the Conditional Independence 

Assumption to hold.  

Our results suggest that participation in FSP is linked to a 10.5% higher 

likelihood of being obese for adult participants. This result is consistent with a 

number of previous studies previously discussed (e.g., Baum, 2007; Chen et al., 2005; 

Gibson, 2003; Ver Ploeg et al., 2007). This result is also robust to functional form 

assumptions but only when misclassification errors are 10% or less. Hence, if the 

predictions of Bollinger & David (1997) and Bitler et al. (2003) are accurate that 

about 10% to 15% of the participants are misreporting their FSP participation status, 

then one should be more cautious to conclude about the positive effect of FSP 

participation on obesity. Specifically, our results indicate that if the level of 

misclassification error is above 10%, the ATT becomes extremely sensitive to 
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plausible confounders. This issue is important since it can even be possible that 

misclassification errors are significantly greater than 15% according to Meyer et al. 

(2010). With misclassification errors of 15% or more, our results reveal no 

statistically significant effect even if the assumed functional form is the correct one.  

 Our findings have significant implications for future analyses of FSP 

participation effects since we provide credible evidence that questions the positive 

correlation between FSP and obesity suggested in previous studies that failed to 

address misreporting of participation status and functional form assumptions. Based 

on our findings, failure to account for these potential sources of biases can render 

results inaccurate and misinform policy makers. Similar to the majority of previous 

papers, a weakness of our study is the lack of information in our data about the 

duration of participation in the program.  Nevertheless, an implication of our findings 

is that misreporting of self-reported participation information should also be taken 

into account when analyzing the effect of duration of FSP participation on health 

related outcomes.  This would not be an issue with revealed or measured participation 

data but researchers tend to currently have limited access to these data.   
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     Table 1. Names and descriptions of the variables 

     * These variables were dropped from estimations to avoid perfect multicollinearity 

                  Variables Description 

Obese Dummy, respondent’s BMI≥30 kg/m
& WC≥100 cm 

2 

FS_hh Dummy, household received food stamps last year 
Age Age of respondent 

Alcohol Average glasses (250 ml) of alcohol consumed by 
respondent the last 2 days 

Chronic Dummy, Respondent suffers from coronary heart 
disease, heart attack, stroke or liver condition 

DocDiab Dummy, Respondent has been diagnosed for 
diabetes/prodiabetes or at risk of diabetes 

Educ Dummy, up to 91 
th grade 

Educ Dummy, 92 
th-11th grade/High school grad/GED or 

equivalent 
Educ Dummy, Some College or Associate of Arts degree 3 
Educ4 Dummy, College graduate or above * 

WIC_hh Dummy, household received Women, Infants and 
Children benefits last year 

Hsize Dummy, Household size<2 1 

Hsize Dummy, 22 ≤Household size<5 
Hsize Dummy, 53 ≤Household size<7 
Hsize4 Dummy, Household size*

 ≥ 7 
Inc Dummy, Annual household income < $24,999 1 
Inc Dummy, $25,000<Annual household Income<$54,999 2 
Inc3 Dummy, Annual household income > $55,999 * 
Male Dummy, Respondent male 

MarStat Dummy, Respondent married 1 

MarStat Dummy, Respondent divorced/separated/widowed 2 

MarStat3 Dummy, Respondent unmarried *
 

Pregnant Dummy, Respondent was pregnant at examination 
Race Dummy, Hispanic race 1

 

Race Dummy, Ethnicity is non-Hispanic White Race 2 
Race Dummy, Ethnicity is non-Hispanic Black Race 3 
Race4 Dummy, Other ethnicity * 
Smoker Dummy, Respondent smokes 
PSU Dummies representing the pseudo-primary units 1-2 

Strata Dummies representing the pseudo-strata 1-15 
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Table 2. Results of the propensity score (Probit) estimation 

 
 
 
 
    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             *,**,*** statistically significant at the 10%, 5% and 1% level respectively 
1

 

 Results for these variables are omitted to save space but are available upon 
request. 

 

 

 

 

 

 

 

 

Variables Coefficient % reduction of bias Prob. 

Constant -4.383***   
Age 0.169*** 93.6 0.745 
Age 0.003*** 2 96.7 0.836 
Age 0.000** 3 98.3 0.907 
Alcohol 0.869 92.7 0.945 
Alcohol -1.061 2 82.8 0.912 
Alcohol 0.206 3 61.1 0.857 
Age* Alcohol -0.004 72.5 0.847 
Age2 0.000 * Alcohol -39.5 0.726 
Age* Alcohol2 0.007   66.8 0.841 
Chronic 0.182 86.2 0.839 
DocDiab 0.190* 84.9 0.880 
Educ1 0.376** * 94.4 0.864 
Educ 0.574*** 2 87.8 0.626 
Educ 0.177 3 56.4 0.947 
WIC_hh 0.708*** 91.4 0.632 
Hsize -0.259 1 68.5 0.502 
Hsize -0.150* 2 -154 0.170 
Hsize -0.012 3 58.7 0.400 
Inc 1.112** 1 51.9 0.393 
Inc 0.687 2 23.1 0.404 
Male -0.044 80.3 0.748 
MarStat -0.197 1 60.9 0.216 
MarStat 0.337** 2 65.3 0.681 
Pregnant 0.079 12.2 0.198 
Race 0.012* 1

 70.5 0.430 
Race 0.304 2 87.6 0.774 
Race 0.935*** 3 75.2 0.221 
Smoker 
PSU1-2

Strata

1 

1-15

0.229** 

1 
 
 

87.4 0.745 
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Table 3. Unconfounded Baseline Estimates (UBEs)  

ATT SE 
p-

value 

OFF 

SUPPORT 

TREATED CONTROL TREATED 

OFF 

SUPPORT 

CONTROL 

OFF 

SUPPORT 

Number of observations 

0.105 0.040 0.01 10 335 823 10 0 

 

 
 
Table 4. Misclassified Baseline Estimates (MBEs)  

% 

MISCLAS 
ATT SE 

Off 

support 

MIN 

off 

support 

MAX 

off 

support 

Treated Control Treated off 

support 

Control 

off 

support 

MAX 

treated off 

support
 

MAX 

control off 

support 

Number of observations 

0 0.105* 0.040 10 - - 335 823 10 0 - - 
5 0.084* 0.043 10 2 27 376 781 10 0 27 0 
10 0.075** 0.043 10 2 29 417 740 10 0 29 0 
15 0.068 0.043 11 1 40 458 700 11 0 40 0 
20 0.062 0.043 11 0 42 499 659 11 0 42 0 
25 0.057 0.042 12 0 42 540 618 12 0 42 0 

** (*) Statistically significant at the 5% (10%) level. 
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Table 5. Confounded Baseline Estimates (CBEs)  

CONFOUNDER α ε ATT        

(SE) 
pr pr11 pr10 pr01 Off 

support 
00 

MIN 

off 

support 

MAX 

off 

support 

Treated 

off 

support

Control 

off 

support
   

MAX 

treated 

off 

support
 

MAX 

control 

off 

support 

Number of observations 

Neutral 1.00 1.00 0.101**         
(0.042) 

0.5 0.5 0.5 0.5 10 6 17 10 0 10 0 

Confounder like...               
Male 0.67 0.78 0.106**   

(0.043) 
0.28 0.45 0.37 0.47 17 8 29 17 0 17 0 

Chronic 1.87 0.78 0.123**  
(0.041) 

0.09 0.09 0.16 0.09 17 4 30 17 0 17 0 

Educ 0.97 1 0.56 0.109** 
(0.042) 

0.12 0.15 0.21 0.22 17 7 31 17 0 17 0 

Educ 1.17 2 2.18 0.097** 
(0.044) 

0.31 0.4 0.24 0.21 14 3 34 14 0 14 0 

Educ 1.26 3 0.98 0.120** 
(0.042) 

0.27 0.26 0.3 0.98 17 7 25 17 0 17 0 

MarStat 1.06 1 0.59 0.106** 
(0.043) 

0.3 0.26 0.4 0.38 17 7 30 17 0 17 0 

MarStat 2.07 2 1.27 0.110** 
(0.043) 

0.31 0.21 0.3 0.18 17 4 28 17 0 17 0 

1 

** (*) Statistically significant at the 5% (10%) level. 
These values are rounded averages over the 1,000 estimations 
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Table 6. Misclassified Confounded Estimates (MCEs) for 5% misclassification errors 

α CONFOUNDER ε ATT        

(SE) 
pr11 pr

1 
10 pr

1
 01 pr

1
 00 Off 

support

1
 

MIN 

2 
off 

support 

MAX 

off 

support 

Treated 

off 

support

Control 

off 

support
 2 

MAX 

treated 

off 

support
 2 

MAX 

control 

off 

support 

Number of observations 

Neutral 1.00 1.00 0.084**         
(0.042) 

0.5 0.5 0.5 0.5 10 1 38 10 0 38 0 

Confounder like...               
Male 0.66 0.80 0.079*  

(0.043) 
0.28 0.46 0.38 0.48 10 1 40 10 0 40 0 

Chronic 1.95 0.80 0.087**  
(0.043) 

0.1 0.09 0.16 0.09 10 1 38 10 0 38 0 

Educ 0.98 1 0.60 0.083**  
(0.044) 

0.12 0.16 0.21 0.22 10 0 40 10 0 40 0 

Educ 1.19 2 2.04 0.078*  
(0.044) 

0.3 0.38 0.24 0.21 11 0 49 11 0 49 0 

Educ 1.27 3 0.99 0.084**  
(0.043) 

0.28 0.26 0.3 0.26 10 1 34 10 0 34 0 

MarStat 1.07 1 0.63 0.084*  
(0.044) 

0.31 0.27 0.40 0.39 10 1 43 10 0 43 0 

MarStat 2.12 2 1.24 0.079*  
(0.043) 

0.31 0.2 0.3 0.18 10 1 41 10 0 41 0 

1 These are average percentages over all simulations since the value of the distribution parameters of the demographic variables on the 
treatment/outcome condition were different in each of the 1,000 simulated databases.   
2 

** (*) Statistically significant at the 5% (10%) level.
These values are rounded averages over the 1,000,000 estimations. 
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Table 7. Misclassified Confounded Estimates (MCEs) for 10% misclassification errors 

α CONFOUNDER ε ATT        

(SE) 
pr11 pr

1 
10 pr

1
 01 pr

1
 00 Off 

support

1
 

MIN 

2 
off 

support 

MAX 

off 

support 

Treated 

off 

support

Control 

off 

support
 2 

MAX 

treated 

off 

support
 2 

MAX 

control 

off 

support 

Number of observations 

Neutral 1.00 1.00 0.074*         
(0.043) 

0.50 0.50 0.50 0.50 10 1 36 10 0 36 0 

Confounder like...               
Male 0.66 0.82 0.070         

(0.043) 
0.30 0.46 0.37 0.48 10 0 43 10 0 43 0 

Chronic 0.09 1.94 0.076*        
(0.043) 

0.10 0.09 0.16 0.09 10 0 40 10 0 40 0 

Educ 0.98 1 0.64 0.074*       
(0.043) 

0.13 0.16 0.21 0.22 10 0 46 10 0 46 0 

Educ 1.19 2 1.91 0.069       
(0.044) 

0.30 0.36 0.24 0.21 10 0 51 10 0 51 0 

Educ 1.27 3 0.83 0.072*       
(0.044) 

0.29 0.23 0.30 0.28 10 1 35 10 0 35 0 

MarStat 1.07 1 0.66 0.073*     
(0.043) 

0.31 0.29 0.40 0.39 10 0 56 10 0 56 0 

MarStat 2.13 2 1.22 0.070    
(0.043) 

0.31 0.2 0.3 0.18 10 0 43 10 0 43 0 

1 These are average percentages over all simulations since the value of the distribution parameters of the demographic variables on the 
treatment/outcome condition were different in each of the 1,000 simulated databases.   
2 

* Statistically significant at the 10% level. 
These values are rounded averages over the 1,000,000 estimations. 
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Table 8. Confounded Baseline Estimates (CBEs)

 

1 

s=0.1 

ε= [1.58,1.63] 

s=0.2 

ε= [2.55,2.62] 

s=0.3 

ε= [4.12,4.22] 

s=0.4 

ε= [6.81,6.98] 

d=0.1 

α =[1.73,1.99] 

0.087*                          
(0.045) 

0.070                       
(0 .047) 

0.057                        
(0 .051) 

0.040                 
(0.059) 

d=0.2 

α =[2.86,3.8] 

0.079*                             
(0 .045) 

0.053                       
(0 .048) 

0.026                        
(0.052) 

-0.006                     
(0.059) 

d=0.3 

α= [4.76,7.33] 

0.072*                             
(0 .045) 

0.036                              
(0.049) 

-0.003                   
(0.053) 

-0.052                 
(0.060) 

d=0.4 

α= [8.20,15.58] 

0.065                           
(0.047) 

0.018                         
(0.05) 

-0.033               
(0.054) 

-0.10                  
(0.060) 

1

* Statistically significant at the 10% level 

 For each of these 16 models, similar results such as those in Tables 5-7 are available upon 
request 

 
Table 9. Misclassified Confounded Estimates (MCEs) for 5% misclassification errors

 

1 

s=0.1 

ε= [1.57,1.63] 

s=0.2 

ε= [2.53,2.63] 

s=0.3 

ε= [4.14,4.29] 

s=0.4 

ε= [6.96,7.21] 

d=0.1 

α =[1.73,2.10] 

0.074*                            
(0.044) 

0.060                       
(0.046) 

0.046                        
(0.051) 

0.026                 
(0.058) 

d=0.2 

α =[2.88,4.12] 

0.066                               
(0.045) 

0.042                         
(0.047) 

0.013                        
(0.051) 

-0.025                     
(0.059) 

d=0.3 

α= [4.82,8.35] 

0.058                             
(0.045) 

0.023                              
(0.048) 

-0.019                   
(0.052) 

-0.076                  
(0.059) 

d=0.4 

α= [8.37,19.13] 

0.051                           
(0.046) 

0.006                         
(0.049) 

-0.050               
(0.053) 

-0.12                  
(0.060) 

1 For each of these 16 models, similar results such as those in Tables 5-7 are available upon 
request. 
*  Statistically significant at the 10% level 
 

 
Table10. Misclassified Confounded Estimates (MCEs) for 10% misclassification errors1 

 s=0.1 

ε= [1.61,1.64] 

s=0.2 

ε= [2.49,2.63] 

s=0.3 

ε= [4.12,4.35] 

s=0.4 

ε= [7.12,7.56] 

d=0.1 

α =[1.74,2.20] 

0.064               
(0.043) 

0.051                                
(0 .046) 

0.035                                 
(0 .051) 

0.013              
(0.058) 

d=0.2 

α =[2.93,4.56] 

0.055                       
(0 .044) 

0.031                              
(0 .047) 

0.021                    
(0.048) 

-0.043               
(0.058) 

d=0.3 

α= [4.95,10.02] 

0.046                      
(0 .044) 

0.01                          
(0.048) 

-0.036                       
(0.053) 

-0.099           
(0.059) 

d=0.4 

α= [10.66,20.63] 

0.038                  
(0.045) 

-0.009                      
(0.048) 

-0.070                  
(0.052) 

-0.158              
(0.059) 

1 For each of these 16 models, similar results such as those in Tables 5-7 are available upon 
request.  
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