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Abstract

Both laboratory and field evidence suggest that people tend to voluntarily
incur costs to punish non-cooperators. While costly punishment typically
reduces the average payoff as well as promotes cooperation. Why does the
costly punishment evolve? We study the role of punishment in cooperation
promotion within a two-level evolution framework of individual strategies and
social norms. In a population with certain social norm, players update their
strategies according to the payoff differences among different strategies. In
a longer horizon, the evolution of social norm may be driven by the average
payoffs of all members of the society. Norms differ in whether they allow or
do not allow for the punishment action as part of strategies, and, for the for-
mer, they further differ in whether they encourage or do not encourage the
punishment action. The strategy dynamics are articulated under different
social norms. It is found that costly punishment does contribute to the evo-
lution toward cooperation. Not only does the attraction basin of cooperative
evolutionary stable state (CESS) become larger, but also the convergence
speed to CESS is faster. These two properties are further enhanced if the
punishment action is encouraged by the social norm. This model can be used
to explain the widespread existence of costly punishment in human society.
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1. Introduction

Cooperation is of utmost importance to human society, and our civiliza-
tion is based upon the cooperation between genetically unrelated individuals
in large groups (Axelrod, 1984). This is obviously true for modern societies
with large organizations and nation states, but it also holds for hunter-gathers
society with sophisticated forms of hunting, warfare, and food sharing (Fehr
and Fischbacher, 2003). While cooperation leads to a tension between what
is best for the individual and what is best for the group. A group does better
if everyone cooperates, but each individual is tempted to defect. Neither
the naive natural selection assumption in biology nor the pure self-interested
individual assumption in economics can lead to cooperation directly (Nowak,
2006; Olson, 1965; Ostrom, 2000; Henrich et al., 2005). There must be some
specific mechanisms for the emergence of cooperation in a population (Taylor
and Nowak, 2007).

Recently, the effect of costly punishment on cooperation has received
considerable attention from various disciplines 1. Costly punishment, which
is also called altruistic punishment (Fehr and Gächter, 2002) or sanctioning
(Falk et al., 2005) in some literature, means that people have the propensity
to incur a cost in order to punish social norm violator (Henrich et al., 2006).
It is also a part of strong reciprocity which is a combination of voluntarily
cooperation to cooperative, norm-abiding behaviors and punishment to non-
cooperative, norm-violating behaviors (Gintis, 2000; Fehr et al., 2002).

In the light of the behavioral experiments (Fehr and Simon, 2000; Fehr
and Gächter, 2002; Gürerk et al., 2006; Rockenbach and Milinski, 2006; Hen-
rich et al., 2010) and ethnographic evidence (Knauft et al., 1991; Boehm,
1993), it is no longer the question whether there is costly punishment (Falk
et al., 2005). And cross-cultural evidence in complex large-scale and small-
scale societies around the globe (Oosterbeek et al., 2004; Henrich et al., 2005,

1There are great amount of literature on this topic, for instance: Fehr and Gächter
(2002), Boyd et al. (2003), Fowler (2005), Rockenbach and Milinski (2006), Henrich et al.
(2006), Henrich (2006), Gürerk et al. (2006) and Ohtsuki et al. (2009) in general journals;
Henrich and Boyd (2001), Gintis (2000) and Bowles and Gintis (2004) in biological jour-
nals; Fehr and Fischbacher (2004) in cognitive science journals; Ostrom et al. (1992), Fehr
and Simon (2000), Andreoni et al. (2003), Falk et al. (2005) and Bochet et al. (2006) in
economic and other social science journals.
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2006; Marlowe et al., 2008) suggests that the punishment to selfish behavior
is a “human universal” (Gächter and Herrmann, 2009).

But the role of costly punishment in promoting cooperation is ambiguous.
In behavioral experiments, costly punishment has been shown to effectively
enforce cooperation (Fehr and Gächter, 2002; Fehr and Fischbacher, 2003;
Gürerk et al., 2006; Rockenbach and Milinski, 2006). While some other
experiments indicate that punishment is less efficient for the pay-off destroyed
through punishment exceeds the gains from increased cooperation (Dreber
et al., 2008; Milinski and Rockenbach, 2008; Egas and Riedl, 2008; Wu et al.,
2009). And a theoretical work of Ohtsuki et al. (2009) argues that costly
punishment can not lead to an efficient equilibrium in most situations, and
efficient strategy is to withhold help for defectors rather than punishing them.

Then another question arises naturally: what does the costly punishment
exist for if it provides little efficiency? Similar questions are proposed by
Dreber et al. (2008) that “costly punishment ... require a mechanism for
its evolution” and Milinski and Rockenbach (2008) that “costly punishment
remains one of the most thorny puzzles in human social dilemmas”.

One possible source of such a puzzle may be that these studies only focus
on a short period of experience and omit the long history of culture evolu-
tion. Obviously, the experimental works can only get the spot performance of
subjects with cultivated culture, but not the process of culture cultivation of
subjects. And the analytical work of Ohtsuki et al. (2009) also only analyzes
the equilibrium (i.e. the Cooperative Evolutionary Stable State, CESS) but
not the route to the equilibrium to give the conclusion that costly punish-
ment is mostly less efficient. If we turn our attention to the states far away
from the equilibrium and study the route of co-evolution of the social norms
and individual strategies, the costly punishment may play a different role in
promoting cooperation.

We try to give a possible explanation within a two-level evolution frame-
work of individual strategies and social norms, by extending the model in
Ohtsuki et al. (2009). And we pay more attention to the evolution route
instead of the stationary state to investigate the role of punishment. Consid-
er a world with many societies competing for resource, territory, dominance
or even the opportunity to survive. Each society has a social norm which
is used to assign reputations to individuals based on their employed action-
s. Norms may allow or do not allow for the punishment action as part of
strategies, and, for the former, they may encourage or do not encourage the
punishment action. Within a society, individuals interact to each other and
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they have three action choices: cooperation, defection or punishment. An
individual can take an action according to the opponent’s reputation. At the
same time, based on the applied social norm, a new reputation is assigned to
this individual. This reputation will determine what action others will take
to him.

Individuals in each society interact to each other under the applied social
norm, and they learn and update their strategies to get higher individual pay-
off. This within-society competition determines how often different strategies
are used in the society.

In a longer horizon, due to the between-society competition, societies
may evolve their social norms by comparing the average payoff of all the
social members that different social norms can provide. Such social norm
evolution may take the form of social transformation, civil war, external war,
colonization, etc. This two-level evolution framework shares the same idea
with the culture group selection of Bergstrom (2002) and Henrich (2004), for
social norm can be regarded as a kind of culture (Young, 2008).

In such a two-level evolution framework, individual strategy is the adap-
tation to the social norm, and ultimately the survived social norm determines
how often the punishment actions are taken. If the fittest social norm is the
one with punishment option or even that encouraging punishment, individu-
als from such culture background will naturally exhibit the tendency of pun-
ishment. This argument is also supported by the cross-culture experiments
which demonstrate that punishment are substantially shaped by the cultur-
al background across a range of diverse societies (Gächter and Herrmann,
2009).

Instead of combining two levels of evolution into one equation as in Hen-
rich (2004), we only model the dynamics of the evolution of individual s-
trategies under several fixed social norms. This is because that there are to-
tally 64 (or 16) types for social norms with (or without) punishment option,
and only a few of them can foster cooperation (Henrich, 2004). We select
three typical social norms including non-punishment, punishment-optional
and punishment-provoking social norm, and explicitly model the evolution-
ary dynamics of individual strategies under these three social norms. By
comparing the cooperation ratio and average payoff in the dynamics under
different social norms, we can get more clear insight of the driving force of
the evolution of the social norm.

It is found that costly punishment does contribute to the evolution toward
cooperation. Once individuals has the choice of punishment, not only does
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the attraction basin of cooperative evolutionary stable state (CESS) become
larger, but also the convergence speed to CESS is faster in the social norms
with punishment option. These two properties are further enhanced if the
punishment action is encouraged in the punishment-provoking social norm.

This result implies that costly punishment is necessary in at least two
situations.The first is that when there are too many defectors in a society, it
will be stuck in a social dilemma that defection is the best choice for each
individual in non-punishment or even punishment-optional social norm and
it can only struggle out of the social dilemma by encouraging punishment
to provide individuals the incentive to punish and cooperate. The second is
that when the society is not patient enough and wishes to reach the highly
cooperative state quickly, a social norm with punishment or even encouraging
punishment can increase the speed approaching to cooperative evolutionary
stable state.

The remainder of the paper is organized as follows. In the next section,
we give the model of evolutionary donor-recipient game, which differs from
the work of Ohtsuki et al. (2009) in that we explicitly model the dynamics of
the strategy evolution. In the third section, we compare the attraction basin
of CESS and the converge speed to the CESS in three social norms. The last
section contains the conclusion and discussions.

2. Model

2.1. Donor recipient game

At each small time interval ∆t, a fraction 2∆t of players is randomly
sampled from an society of large population to form pairs. In each pair, one
player acts as a donor and the other player as a recipient. The donor has
two basic behavioral choices: cooperation (C), defection (D). Cooperation
involves a cost c for the donor and a benefit b for the recipient. Defection
has no cost and yields no benefit. A donor may also have the choice of
punishment (P) in some social norms. Punishment has cost α for the donor
and cost β for the recipient. Here c, b, α and β are all positive real number.
Each individual is endowed with a binary reputation, which is either good
(G) or bad (B). The donor can base his decision on the recipient’s reputation.
After each interaction, the reputation of the donor is updated according to
the ‘social norm’ of the population, while the reputation of the recipient
remains the same. The reputation update process is susceptible to errors.
With probability µ, where 0 ≤ µ ≤ 0.5, an incorrect reputation is assigned.
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With probability 1 − µ the correct reputation is assigned. All individuals
come to the same conclusion; there are no private lists of reputation.

2.1.1. Strategies

Each player has an action rule (or strategy), s, which depends on the
recipient’s reputation. A player with an action rule s takes the action s(G)
toward a good recipient, and the action s(B) toward a bad one. Each of s(G)
and s(B) can be either ‘C’, ‘D’, or ‘P’. For social norms without punishment
option, there are 22 = 4 possible action rules: s(G)s(B) = CC,CD,DC,DD.
For social norms with punishment available, there are 32 = 9 possible action
rules: s(G)s(B) = CC,CD,CP,DC,DD,DP, PC, PD, and PP . In the
present work, we only study four of these strategies, ‘CC’, ‘CD’, ‘CP’ and
‘DD’, but not DC, DP , PC, PD and PP , because they are odd and not
feasible for study the emergence of cooperation.

2.1.2. Social norms

A social norm n is used for updating the reputations of players. A donor
who has taken the action X(X = C,D, P ) toward a recipient whose reputa-
tion is J(J = G,B) is assigned the new reputation n(J,X)(= G,B) by the
social norm n. Social norms of this type are based on ‘second-order assess-
ment’, and they depend on both the action of the donor and the reputation
of the recipient Nowak and Sigmund (2005). Figure 1 gives three typical
social norms we will study in this work with the related ordinary strategies.

In non-punishment social norm ‘GGBG’ as figure 1(a), individuals have no
choice of punishment, and a donor can only cooperate or defect. Cooperators
to both good and bad recipients are assigned a good reputation. Defectors to
bad recipient are also assigned a good reputation. Defectors to good recipient
are assigned a good reputation.

In punishment-optional social norm ‘GGBGBG’ as figure 1(b), individ-
uals have the choice of punishment, and the punishment to a bad recipient
will gain a good reputation. But the punishment is just an optional action
to bad recipient, because donors defect to a bad recipient without any cost
is also assigned a good reputation.

In punishment-provoking social norm ‘GGBBBG’ as figure 1(c), a donor
who defects to a bad recipient is assigned a bad reputation, this encourage
a donor to take either cooperation or defection action to bad recipient. So
this norm is a more punishment-provoking.
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Figure 1: Typical social norms (a. non-punishment, b. punishment-optional and c.
punishment-provoking social norm) with the related ordinary strategies. A social nor-
m is used to update the donor’s reputation taking into account both the donor’s action
(cooperation, C, defection, D, or punishment, P) and the recipient’s reputation (good, G,
or bad, B). A strategy specifies for the donor to cooperate, C, defect, D, or punish, P
against a recipient, whose reputation is either good, G, or bad, B. In non-punishment (a)
norm, individuals have no choice of punishment. In punishment-optional (b) norm, indi-
viduals have the choice of punishment, but punishment is not encouraged because donors
can also get a good reputation by defecting to a bad recipient. In punishment-provoking
(c) norm, defection to a bad recipient leads to a bad reputation, individuals can only
cooperate or punish to bad recipients to get a good reputation, so punishment is more
encouraged.

7



We will explicitly model the dynamics of individual strategies under these
three social norms to study the role of punishment in promoting cooperation.

2.2. Evolutionary dynamics of strategies

In a society with social norm n, individuals interact to each other. Each of
them has his own strategy that specifies what action he will take to recipients
with good or bad reputation. Once a donor takes an action, a new reputation
is assigned to him according to the social norm n. And this reputation will
determines what action others may take to him.

Individuals will learn and update their strategies to get a higher indi-
vidual payoff by imitating the better strategy. Sometimes a player is given
an opportunity to change his strategy. He randomly samples a player and
compares the difference in payoffs. If a sampled player has a greater payoff
then the sampling player imitates the sampled player’s strategy with proba-
bility proportional to the difference in payoffs. Otherwise a sampling player
remains the same strategy. So the expected payoff of a strategy can be in-
terpreted as its fitness and strategies with higher fitness have more chance
to reproduce.

In this model, the payoff of a strategy rely on not only the relative abun-
dance of the strategies but also the fraction of individuals with good repu-
tation in the society. Because the reputation of individuals is ever changing,
so it is hard to give a proper calculation of the payoff of a strategy. In the
similar situation, Ohtsuki and Iwasa (2007) calculate the expected payoff of
a strategy as the discounted total payoff along the infinitely long future of
reputation evolution with the initial reputation of all individuals is good.
But there are two problem for this method: the first is that the calculation
of the payoff along the infinitely long future is based on the fixed strate-
gies frequency, while individual strategy is also evolving although relatively
slowly; the second is that arbitrarily assigning a good initial reputation to
all individuals is not suitable, for individual reputation should be inherited
from one period to the next period.

Fortunately, we find that for a fixed relative abundance of the strategies
in a society, the reputation distribution (the frequencies of individuals with
good and bad reputation) will converge to a stable state quickly, because
that the reputation is the instantaneous result of a donor’s action and the
distribution of the action rules (strategies) are fixed.

Because the pace of agents’ strategy updating is much lower than repu-
tation dynamics, we assume that individuals will update their strategy only
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Figure 2: Reputation dynamics of individuals taking different strategies in punishment-
provoking (GGBBBG) social norm.

after they can actually conceive the payoff of different strategies by a suffi-
ciently long time during which individual reputation distribution converges
to the stable state. So we calculate a strategy’s expected payoff in the sta-
ble reputation distribution as the fitness measurements. The following two
subsections provide the calculation of the stable reputation distribution and
the expected strategy payoff in the fixed strategy distribution.

2.2.1. Stable reputation distribution

A stable reputation distribution can be derived given that the frequency
of strategies taken by all players in the whole society is fixed. In ‘GGBG’
norm, a fraction x1 (0 ≤ x1 ≤ 1) of players take strategy ‘CC’, and x2, x3

(0 ≤ x2, x3 ≤ 1) of players take ‘CD’ and ‘DD’ strategy. Here x1+x2+x3 = 1.
And the ratios of players with good reputation in ‘CC’, ‘CD’ and ‘DD’ players
are denoted by g1, g2 and g3 respectively. Thus the ratio of players with good
reputation in entire population is g = x1g1 + x2g2 + x3g3.

Figure 2 gives the reputation dynamics of ‘CC’, ‘CD’ and ‘DD’ players.
A ‘CC’ player has 1

2
chance to be a donor, and takes cooperation action no

matter what reputation the recipient has, and this tends to make him a good
reputation. Due to the assignment error, he gets a good reputation with a
probability 1−µ and bad reputation with probability µ. The ‘CC’ player also
has 1

2
chance to be a recipient; his reputation does not change and remains

as the current frequency g1. So the new frequency of good reputation ‘CC’
players is g

′

1 =
1
2
g1 +

1
2
(1− µ).

Similarly we get the new frequency of good reputation ‘CD’ and ‘DD’
players are g

′

2 =
1
2
g2 +

1
2
(1− µ) and g

′

3 =
1
2
g1 +

1
2
(1− g)(1− µ) + 1

2
gµ. Since

g = x1g1 + x2g2 + x3g3, we can solve the linear recursion and get the stable
reputation frequency of each strategy g∗1 = g∗2 = 1 − µ, g∗3 = (1 − µ)[1 −
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Figure 3: The calculation of expected payoff of strategies in non-punishment social norm.

1−2µ
1+(1−2µ)x3

]. And the total good reputation frequency is g∗ = 1−µ

1+(1−2µ)x3

.
For ‘GGBGBG’ norm, we can also get the stable reputation frequency

of ‘CC’ ‘CD’ and ‘CP’ players g∗1 = g∗2 = g∗3 = 1 − µ, and stable reputation
frequency of ‘DD’ players is g∗4 = (1 − µ)[1 − 1−2µ

1+(1−2µ)x4

]. The total good

reputation frequency is g∗ = 1−µ

1+(1−2µ)x4

.
For ‘GGBBBG’ norm, the stable reputation frequency of ‘CC’ and ‘CP’

players are g∗1 = g∗3 = 1−µ, and that of ‘CD’ players is g∗2 = µ+(1−sµ)g∗ and

‘DD’ players g∗4 = µ. The total good reputation frequency is g∗ = (1−µ)(x1+x3)
1−(1−2µ)x2

.
Detailed process to get the stable reputation frequency of given strategies

frequency in the three norms is provided in the appendix A.

2.2.2. Fitness measurements of strategies

We calculate a strategy’s expected payoff in the stable reputation distri-
bution as the fitness measurements driving the strategy evolvement.

The calculation expected payoff of ‘CC’, ‘CD’ and ‘DD’ strategy in non-
punishment (GGBG) social norm is illustrated in figure 3.

For a ‘CC’ player, he has 1
2
chance to be a donor and cooperate with a

cost c. With another 1
2
chance being a recipient, he meets a ‘CC’ , ‘CD’

and ‘DD’ player with probability x1, x2 and x3 and is expected to get b,
(1 − µ)b and 0 revenue respectively. So the expected revenue of strategy
‘CC’ is p1 =

1
2
(−c) + 1

2
[bx1 + bx2(1− µ)]. Similarly, the expected revenue of

strategy ‘CD’ and ‘DD’ can also be calculated. The expected revenue of all
three strategies in ‘GGBG’ social norm are







p1 =
1
2
(−c) + 1

2
[bx1 + bx2(1− µ)]

p2 =
1
2
g(−c) + 1

2
[bx1 + bx2(1− µ)]

p3 =
1
2
(0) + 1

2
(bx1 + bx2g3)

(1)

.
For ‘GGBGBG’ norm, we can also get the expected revenue of strategy

‘CC’, ‘CD’, ‘CP’ and ‘DD’ as
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p1 =
1
2
(−c) + 1

2
x3µ(−β) + 1

2
[bx1 + b(x2 + x3)(1− µ)]

p2 =
1
2
g(−c) + 1

2
x3µ(−β) + 1

2
[bx1 + b(x2 + x3)(1− µ)]

p3 =
1
2
g(−c) + 1

2
(1− g)(−α) + 1

2
x3µ(−β) + 1

2
[bx1 + b(x2 + x3)(1− µ)]

p4 =
1
2
[bx1 + b(x2 + x3)g4] +

1
2
x3(1− g4)(−β)

(2)
.

For ‘GGBBBG’ norm, we can also get the expected revenue of strategy
‘CC’, ‘CD’, ‘CP’ and ‘DD’ as















p1 =
1
2
(−c) + 1

2
x3µ(−β) + 1

2
[bx1 + b(x2 + x3)(1− µ)]

p2 =
1
2
g(−c) + 1

2
x3(1− g2)(−β) + 1

2
[bx1 + bg2(x2 + x3)]

p3 =
1
2
g(−c) + 1

2
(1− g)(−α) + 1

2
x3µ(−β) + 1

2
[bx1 + b(x2 + x3)(1− µ)]

p4 =
1
2
[bx1 + b(x2 + x3)µ] +

1
2
x3(1− µ)(−β)

(3)
.

Detailed process to get the expected revenue of strategies in three norms
is provided in the appendix B.

2.2.3. Replicator dynamics of strategies frequency

We model the strategies frequency dynamics as the replicator equation
(Hofbauer and Sigmund, 1998), given by ẋi = xi(pi−p̄), where p̄ is the average
payoff in the entire society, defined as p̄ =

∑

(xipi). Here i = 1, 2, 3 for
‘GGBG’ norm and i = 1, 2, 3, 4 for ‘GGBGBG’ and ‘GGBBBG’ norm. These
differential equations are defined on the simplex S3 = {(x1, x2, x3)|x1 + x2 +
x3 = 1, xi ≥ 0} for ‘GGBG’ norm and S4 = {(x1, x2, x3, x4)|x1+x2+x3+x4 =
1, xi ≥ 0} for ‘GGBGBG’ norm and ‘GGBBBG’ norm. Each corner of the
simplex is an equilibrium of the dynamics corresponding to a monomorphic
population. Because only the relative size of payoff matters in this dynamics,
so we can shift the expected payoff value additively without altering the
dynamics at all.

For non-punishment (GGBG) social norm, we define p
′

1 = p1 − p3, p
′

2 =
p2−p3 = and p̄ = x1p

′

1+x2p
′

2 using the corresponding pi (i = 1, 2) in equation
1.

So the dynamical system of strategies frequency in non-punishment (G-
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GBG) social norm is







































ẋ1 =x1(p
′

1 − p̄) = −cx1 + cx2
1

+
[(1− 2µ)b+ c]x1x2 − (1− 2µ)bx1x2(x1 + x2)

2− 1−2µ
1−µ

(x1 + x2)

ẋ2 =x2(p
′

2 − p̄) = cx1x2

+
−cx2 + [(1− 2µ)b+ c]x2

2 − (1− 2µ)bx2
2(x1 + x2)

2− 1−2µ
1−µ

(x1 + x2)

(4)

.
For punishment-optional (GGBGBG) and punishment-provoking (GG-

BBBG) social norm, we define p
′

1 = p1 − p4, p
′

2 = p2 − p4, p
′

3 = p3 − p4 and
p̄ = x1p

′

1 + x2p
′

2 + x3p
′

3 with the corresponding pi (i = 1, 2, 3) in equation 2
and 3 respectively. The dynamical systems of strategies frequency in both
norms can be derived with the formula 5.







ẋ1 = x1(p
′

1 − p̄)
ẋ2 = x2(p

′

2 − p̄)
ẋ3 = x3(p

′

3 − p̄)
(5)

And the detailed expressions of for both dynamical systems are provided
in Appendix C.

3. Analysis

3.1. Equilibrium analysis in three social norms

Some analytically accessible results about the existence and stability of
equilibriums of the strategy dynamics in three social norms are collected in
the following propositions.

Proposition 1. In all three social norms, the state that all players take ‘DD’
strategy (x1 = 0, x2 = 0 for ‘GGBG’ norm and x1 = 0, x2 = 0, x3 = 0 for
‘GGBGBG’ and ‘GGBBBG’ norm) is the evolutionary stable state.

The economic intuition of proposition 1 is that if all other agents take
‘DD’ strategy, the best choice for one agent is the take ‘DD’ strategy in all
three social norms. Because whatever his reputation is, he will get defection
as recipient for all others take ‘DD’ strategy. Without a incentive to get a
good reputation, his best choice is defection which has no cost at all. So
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in such a evolutionary stable state, there are totally no cooperation in the
society, and this is the so called social dilemma. These states are illustrated
by the points DD in figure 4(a), 4(b), and 4(c) respectively.

Proposition 2. In ‘GGBG’ norm, the state that all players take ‘CD’ strat-
egy (x1 = 0, x2 = 1) is evolutionary stable on the condition that c

(1−2µ)b
< 1.

Rearranging the condition we get c
b
< 1 − 2µ. This implies that if the

social resolution (1− 2µ) exceeds the cost-benefit ratio ( c
b
), cooperation can

prevail in a society with non-punishment social norm. Because we assume
that with probability µ (0 < µ < 1/2), an incorrect reputation is assigned,
1− 2µ represents the social resolution to individual reputation. In the state
that all other players take ‘CD’ strategy, the best choice of one agent is the
take ‘CD’ strategy. To be cooperated as a recipient, an agent must have a
good reputation as all others take ‘CD’ strategy. To get a good reputation,
one have to cooperate good recipients and cooperate or defect bad recipients,
and best choice to bad recipients is to defect because defection has no cost. In
such a equilibrium, most interactions are cooperation, so it is a cooperative
evolutionary stable state (CESS). This state is illustrated by point CD in
figure 4(a).

Proposition 3. In ‘GGBGBG’ norm, the state that all players take ‘CD’
strategy (x1 = 0, x2 = 1, x3 = 0) is an evolutionary stable state on the
condition that c

(1−2µ)b
< 1.

Similar to non-punishment norm, the economic intuition is that if all
other agents take ‘CD’ strategy, the best choice for one agent is the take
‘CD’ strategy. To be cooperated as a recipient, an agent must have a good
reputation as all others take ‘CD’ strategy. The only difference is that an
individuals have another choice of punishment, but it is seldom used. This
state is also a cooperative evolutionary stable state (CESS) as illustrated by
point CD in figure 4(b).

Proposition 4. In ‘GGBBBG’ norm, the state that all players take ‘CP’
strategy (x1 = 0, x2 = 0, x3 = 1) is an evolutionary stable state on the

condition that c < α and (1−µ)c+µα

(1−2µ)(b+β)
< 1.

This state is illustrated by point CP in figure 4(c). The economic intuition
is that if all other agents take ‘CP’ strategy, the best choice for one agent
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(a)

(b) (c)

Figure 4: Phase portrait of three social norms (a. non-punishment, b. punishment-
optional and c. punishment-provoking social norm) with b = 3, c = 2, α = 1, β = 4 and
µ = 0.02. Each vertex represents a state with individuals taking the same corresponding
strategy, such as points DD in all three norms represent the state that all individuals taking
‘DD’ strategy. The arrows indicate the evolution direction. In ‘GGBG’ norm (a), the blue
part is the attraction basin of cooperative evolutionary stable state CD and the yellow part
is the attraction basin of evolutionary stable state DD. The separatrix line is the stable
manifold of saddle point B. State CC is unstable. In ‘GGBGBG’ norm (b), a separatrix
surface which is the stable manifold of saddle point B divides the phase space into to two
parts. The part over the surface is the attraction basin of cooperative evolutionary stable
state CD and the nether part is the attraction basin of stale state DD. State CC and CP
are unstable. In ‘GGBBBG’ norm (c), there is also a separatrix surface dividing the phase
space into to two parts. And the upper and nether regions are the attraction basin of state
CD and CP respectively. State CC and CD are unstable. The line connecting B and C
consists of Lyapunov stable equilibriums denoted by circles. The attraction basin ratio of
cooperative stable state are 15%, 60% and 81% for non-punishment, punishment-optional
and punishment-provoking social norm.
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is the take ‘CP’ strategy. To be cooperated as a recipient, an agent must
have a good reputation as all others take ‘CP’ strategy. To get a good
reputation, one have to cooperate good recipients and cooperate or punish
bad recipients, and best choice to bad recipients is to punish because the cost
of cooperation is larger than punishing (c < α). Most interactions in such a
equilibrium are cooperation, and it is also a cooperative evolutionary stable
state (CESS). Comparing the stability condition of cooperative evolutionary
stable state in three social norms, we can find that ‘CP’ state (the state
that all players take ‘CP’ strategy) in punishment-provoking social norm has
the broader stability condition than ‘CD’ state (the state that all players
take ‘CD’ strategy) in non-punishment and punishment-optional social norm
whenever the cost of cooperation (c) is less than the cost of punishment

(α). If c < α, (1−µ)c+µα

(1−2µ)(b+β)
< c

(1−2µ)b
, because c > (1 − µ)c + µα in the

numerator and (1 − 2µ)b < (1 − 2µ)(b + β) in the denominator. Moreover,

if (1−µ)c+µα

(1−2µ)(b+β)
< 1 < c

(1−2µ)b
, ‘CP’ state in punishment-provoking social norm

is stable, whereas ‘CD’ state in non-punishment and punishment-optional
social norm is unstable.

Proofs to these propositions can be found in Appendix D.

3.2. Attraction basin ratio of CESS in three social norms

The attraction basins of a cooperative evolutionary stable states (all play-
ers taking ‘CD’ strategy in ‘GGBG’ and ‘GGBGBG’ norm or all players
taking ‘CP’ strategy in ‘GGBBBG’ norm) are the sets of all initial strategy
distributions in feasible domain that converge to the CESS. We will inves-
tigate the ratio of the extent of the CESS attraction basin to that of the
entire feasible domain. For the lack of analytical tools, we rely heavily on
the numerical method to calculate the extent of the attraction basin of CESS.
Figure 4 gives the phase portraits of three norms with the same typical pa-
rameter setting b = 3, c = 2, α = 1, β = 4 and µ = 0.02).

In the phase portrait of ‘GGBG’ norm of figure 4(a), the point CD (rep-
resenting the state that all players takes ‘CD’ strategy, x1 = 0, x2 = 1 ) and
the point DD (representing the state that all players takes ‘DD’ strategy,
x1 = 0, x2 = 0 ) are both stable equilibrium as mentioned above. And CD
is the cooperative evolutionary state. Point B (x1 = 0, x2 =

1
1−2µ

c
b
) is a sad-

dle node whose unstable manifold is along the CD-DD line, and the stable
manifold constitutes the separatrix line dividing the plane into two regions.
The blue region is the basin of attraction of cooperative evolutionary state
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CD, points lying in this region converges to CD points. The ratio of CESS
attraction basin is the extent of blue area over that of the entire feasible
domain, i.e. the area of triangle CC-CD-DD. Under this parameter setting,
the ratio of CESS attraction basin is about 0.15.

The phase portrait of ‘GGBGBG’ norm in a simplex-4 is given in figure
4(b). CD (x1 = 0, x2 = 1, x3 = 0) and DD (x1 = 0, x2 = 0, x3 = 0) are
the stable equilibrium and CD is the CESS. Points A (x1 = 0, x2 = 0, x3 =

1
1−2µ

(1−µ)(α+c)
(1−µ)(b+β)+α

) is a saddle node with a one-dimensional stable manifold

and a two-dimensional unstable manifold. Points B (x1 = 0, x2 = 1
1−2µ

c
b
,

x3 = 0) is a saddle node with a one-dimensional unstable manifold along
CD-DD line and a two-dimensional stable manifold which constitutes the
separatrix surface dividing the simplex into two parts. The region over the
surface is the basin of attraction of cooperative evolutionary state CD which
is about 0.60 under this parameter setting. We can easily notice that even
punishment just as an optional action, it can widen the attraction basin of
the cooperative evolutionary stable state.

The phase portrait of ‘GGBBBG’ norm in a simplex-4 is given in figure
4(c). CP (x1 = 0, x2 = 0, x3 = 1 ) and DD (x1 = 0, x2 = 0, x3 = 0 ) are
the asymptotically stable equilibrium and CP is the CESS. In the facet of
CC-CD-DD, the line connecting B (x1 = 0, x2 =

1
1−2µ

c
b
, x3 = 0) and C(x1 =

1
1−2µ

c
b
, x2 = 1

1−2µ
c
b
, x3 = 0) consists of equilibriums which are Lyapunov

stable, but very small disturbance such as mutation will drive the system to
deviate from these equilibrium and head to the asymptotically stable state
CP. Points A (x1 = 0, x2 = 0, x3 = 1

1−2µ
(1−µ)α+µc

α+β+b−c
) is a saddle node with a

one-dimensional unstable manifold along CP-DD line and a two-dimensional
stable manifold which constitutes the separatrix surface dividing the simplex
into two parts. The region over the surface is the basin of attraction of
cooperative evolutionary state CP which is about 0.81 under this parameter
setting.

Putting figure 4(b) and 4(c) together, we get figure 5 in which the simplex-
4 is divided into three regions. The bottom region under the separatrix sur-
face of ‘GGBBBG’ norm is in the attraction basin of non-cooperative evolu-
tionary state DD in both norms. The middle region between the separatrix
surfaces of ‘GGBBBG’ and ‘GGBGBG’ norm is in the attraction basin of
non-cooperative evolutionary state DD in ‘GGBGBG’ norm and attraction
basin of cooperative evolutionary state CP in ‘GGBBBG’ norm. From the
same initial points S1, the trajectory in ‘GGBGBG’ norm converges to DD
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CC

CD

CP

DD

A(GGBGBG)

A(GGBBBG)
B

S1

S2

S3

Figure 5: Typical trajectories under punishment-optional (blue lines and blue separatrix
surface) and punishment-provoking (red lines) norm.

(yellow), and the trajectory in ‘GGBGBG’ norm converges to CP (red). The
top region is in the attraction basin of cooperative evolutionary state CD
in ‘GGBGBG’ norm and attraction basin of cooperative evolutionary state
CP in ‘GGBBBG’ norm. This shows that the CESS in ‘GGBBBG’ norm,
i.e. the state that all players taking ‘CP’ strategy, has the largest attraction
basin ratio.

To get the overview of effect of parameters (α, β, b, c) to CESS attrac-
tion basin, we calculate the ratios of CESS attraction basin under different
parameter settings by plenty of numerical computation and present the re-
sults in figure 6. The red lines are the ratios of CESS attraction basin in
‘GGBBBG’ norm, blue for ‘GGBGBG’ norm and green for ‘GGBG’ norm.
In most normal parameter settings, the ratios of CESS attraction basin in
punishment-provoking ‘GGBBBG’ norm is largest, followed by punishment-
optional ‘GGBGBG’ norm and the non-punishment ‘GGBG’ norm smallest.
Only in some abnormal situation such as that the punishment cost α is
very large (right part of figure 6(a)) or the cooperation cost c is much small
(left part of figure 6(c)), the ratio of CESS attraction basin in punishment-
provoking ‘GGBBBG’ norm is not the largest.
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Figure 6: Ratios of CESS attraction basin of different social norms under different param-
eter settings (b = 3, c = 2, α = 1, β = 4 if not specified, and µ = 0.02).
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This implies that when there are too many defectors in the society, and
it is not in the attraction basin of cooperative evolutionary stable state if
the society takes a non-punishment social norm, it may struggle out of the
social dilemma and converge to the cooperative states by using a punishment-
optional or punishment-provoking social norm.

3.3. Converge speed in three social norms

Even starting from such initial strategy frequencies that societies with
any of the three social norms will approach to cooperative evolutionary sta-
ble states, they may converge to cooperative states with different speed in
different social norms.

Figure 7(a) gives the comparison of converge speed to cooperative evolu-
tionary stable states of societies with non-punishment (green) and punishment-
optional (blue) social norm starting from the very close initial states, x1 =
0.02, x2 = 0.72 for ‘GGBG’ norm and x1 = 0.02, x2 = 0.71, x3 = 0.01 for
‘GGBGBG’ norm. The horizontal axis is time, the vertical axis is the co-
operation ratio, defined as the ratio of individuals who taking ‘CC’, ‘CD’ or
‘CP’ strategy. We can easily notice that a society with punishment-optional
norm converges to the cooperative states more rapidly than a society with
non-punishment norm. Consequently, the average payoff of a society with
punishment-optional norm in each time increases more quickly than that
of a society with non-punishment norm, except in a very short period of
time in the beginning when a punishment-optional society suffers losses from
the punishment larger than the gain from the increased cooperation, as in
7(b). After the society reaches the cooperative evolutionary stable state,
i.e., all individuals taking CD strategy, the average payoff of a society with
punishment-optional norm is exactly equal to that of a society with non-
punishment norm. However, the average accumulative payoff from the start-
ing time of a punishment-optional society will be significantly larger than
that of a non-punishment society for very long time, as in 7(c).

Figure 7(d) gives the comparison of converge speed of societies with
punishment-optional (blue) and punishment-provoking (red) social norm s-
tarting from the exactly same initial states, x1 = 0.05, x2 = 0.15, x3 =
0.3. It is obvious that a society with punishment-provoking social nor-
m converges to the cooperative states more rapidly than a society with
punishment-optional norm. Consequently, the average payoff of a society
with punishment-provoking norm increases more quickly than that of a so-
ciety with punishment-optional norm, except in a very short period of time
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Figure 7: Comparison of converge speed in three social norms

in the beginning. After the society reaches the cooperative evolutionary sta-
ble state, i.e., all individuals taking CD (in ‘GGBGBG’ norm) or CP (in
‘GGBBBG’ norm) strategy, the average payoff of a society with punishment-
provoking norm is slightly smaller than a society with punishment-optional
norm for there are errors in reputation assignment and punishment is execut-
ed to ‘bad’ individuals with cost to both punisher and punished. However,
the average accumulative payoff from the starting time of a punishment-
provoking society will be significantly larger than that of a punishment-
optional society for very long time as in 7(f).

This implies that even the initial state is in the attraction basin of cooper-
ative evolutionary stable state for all social norms, if the society cares about
the social overall benefit in a considerable long period of time, a punishment-
optional or punishment-provoking social norm will be a better choice for it
can increase the convergence speed to cooperative evolutionary stable states.

4. Conclusion and Discussion

Costly punishment is widespread in human society although both theo-
retical analysis and laboratory experiments show that punishment provides
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little efficiency and can hardly increase the total benefit of a population.
We give a possible explanation to this contradiction.We study the role

of costly punishment in the evolution process to cooperation on the social
norm level in a two-level evolution framework. Social norm is a global shared
rule used to update the reputation of agents according to their actions. It
is the collective choice of a population and evolves gradually according to
the total benefit of all members in a society for a considerable long period
of time. Agents are embedded in a certain social norm and they choose
their strategies to maximize their individual benefit according to the current
social environment including the strategies of other agents and the given
social norm.

We explicitly model the strategies frequency dynamics in social norms
with different punishment attitudes, and we find that the attraction basin
ratio of cooperative evolutionary stable state (CESS) of non-punishment so-
cial norm is very small, that of punishment-optional social norm is larger and
that of the punishment-provoking social norm is the largest. From the same
initial state, society with punishment-provoking social norm can converge to
cooperative evolutionary state more rapidly than society with punishment-
optional social norm and society with punishment-optional social norm can
converge to cooperative evolutionary state more rapidly than society with
non-punishment social norm.

So costly punishment is inevitable for the evolution to cooperation in
two situations. The first situation is that there are too many defectors in
the society, i.e. it is not in the attraction basin of cooperative evolutionary
stable state if the society takes a non-punishment social norm, so it can only
struggle out of defection by using a punishment-optional or punishment-
provoking social norm. The second is that even the initial state is in the
attraction basin of cooperative evolutionary stable state for all social norms,
if the society is not patient enough and wishes to reach the cooperative
states more quickly, a punishment-optional or punishment-provoking social
norm can increase the convergence speed.

We emphasize the role of punishment in the route to cooperation from
initial state far away from the equilibrium. In the equilibrium when most
individuals cooperate, the best choice for a society is the non-punishment so-
cial norm and the best choice for individuals under such norm is to withhold
help rather than punish them as Ohtsuki et al. (2009) indicate. However the
society is more likely to start from a state out of equilibrium for at least two
possible reasons. The first possible reason is that human being evolves from
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the primitives most of whom are inherently self-regarding, and competition
between societies favors those with punishment-provoking social norm. An-
other possible reason is that our society has the birth and death mechanism
that old people die and new babies are born continuously. AS the babies
are born self-interested, the society is always out of the stable state with
monomorphic strategy. Because the punishment-provoking social norm has
the larger attraction basin of cooperative evolutionary stable state (CESS)
and can increase the converge speed to CESS, societies may evolve to take
the punishment-provoking social norm for overall benefit of the society in
the long history, and people will adapt to cooperate to good guys and punish
bad ones. The punishment-provoking social norm can pass from generation
to generation as the new born self-interested individuals will learn and ac-
climatize themselves to the social norm and take the appropriate strategies
gradually as they growing up.

The punishment-provoking social norm predominate by the long history
of co-evolution of social norm and individual strategy, and the individuals in
such a social norm have evolved to acclimatize themselves to the social norm
and tend to punish the social norm violator. Such an acclimatization can
be embedded in individuals as a culture or even as a physiological reaction,
such as the neural studies of de Quervain et al. (2004) and Singer et al.
(2006) indicate that people receive pleasure from punishing norm violators.
Once the subjects with such culture or physiological reaction participate
experiments of Fehr and Gächter (2002), Dreber et al. (2008), Henrich et al.
(2006) and etc., they will naturally punish the non-cooperators although
it can not bring any material benefit to them, as the experiment results
show. We argue that the evidence of so-called altruistic punishment can only
indicate that the subjects are from a society with punishment-provoking or
punishment-encouraging social norm but not the other-regarding reference
of subjects. So we use the term ‘costly punishment’ instead of ‘altruistic
punishment’, because the subjects are actually not altruistic, they think they
will be rewarded in the future subconsciously or they will get a physiological
pleasure.

There are much room for further research. We only investigate four out
of nine strategies which are normal and reasonable in this paper. What
will happen if individuals take the ‘abnormal’ strategies? Such as Herrmann
et al. (2008) find that antisocial punishment, the sanctioning of people who
behave cooperatively, exist across the societies. In current paper, individuals
are paired randomly to interact. While in reality, people prefer to interact
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with those familiar and trusted. Is there more cooperation in a society if
individuals have the opportunity select partners in the model? Only three
typical social norms are analyzed in current paper, and the cooperation dy-
namics in more other norms need further exploration. We model the strate-
gies frequency dynamics under fixed social norms and compare the fitness
of different social norms in the evolution route of societies. Although this
method can provide insight of the driving force of the social norm evolution,
we can not capture the evolution process of social norms and many other
interesting topics such as the effect of relative evolution speed of social norm
and individual strategy. To address these issues, more powerful tool such as
agent-based modeling (Tesfatsion, 2001) is needed. Agent-based simulation
can not only provide individual level mechanism of the population level evo-
lutionary dynamics, but also enable us to investigate more properties cannot
be captured by the analytical analysis (Dawid, 2007).
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Appendix A. Stable reputation distribution of given strategies fre-
quency

In the main text, we only give a simple introduction of how to get the
stable reputation distribution of given strategies frequency with the example
of ‘CC’ strategy under non-punishment social norm. The detailed process to
get the stable reputation frequency of all strategies for all three social norms
is provided here.

For non-punishment (GGBG) social norm, there are three strategies ‘CC’,
‘CD’ and ‘DD’, with corresponding frequencies denoted by x1, x2 and x3, and
x1 + x2 + x3 = 1. The ratios of players with good reputation in ‘CC’ , ‘CD’
and ‘DD’ players are denoted by g1, g2 and g3 respectively. Thus the ratio of
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good players in entire population is g = x1g1 + x2g2 + x3g3. The reputation
dynamics of three kinds players is illustrated by figure 2 in main text.

A ‘CC’ player has 1
2
chance to be a donor, and takes cooperation action

no matter what reputation the recipient has, and this tends to make him
a good reputation. Due to the assignment error, he gets a good reputation
with a probability 1 − µ and bad reputation with probability µ. The ‘CC’
player also has 1

2
chance to be a recipient; his reputation does not change and

remains as good with probability g1. So the new ratio of good reputation in
‘CC’ players is g

′

1 =
1
2
(1− µ) + 1

2
g1.

A ‘CD’ player has 1
2
chance to be a donor, and takes cooperation action

to good recipients and defection action to bad recipients, and both should
bring him a good reputation with norm ‘GGBG’. Due to the assignment
error, he gets a good reputation with a probability 1−µ and bad reputation
with probability µ. The ‘CD’ player also has 1

2
chance to be a recipient; his

reputation does not change and remains as good with probability gs. So the
new ratio of good reputation in ‘CD’ players is g

′

2 =
1
2
(1− µ) + 1

2
g2.

A ‘DD’ player has 1
2
chance to be a donor, and takes defection action

no matter what reputation the recipient has. He has a chance of 1 − g to
meet a bad recipient. According to social norm ‘GGBG’, he should get a
good reputation. Considering the reputation assignment error, he will get a
good reputation with probability (1 − µ)(1 − g) and a bad reputation with
probability µ(1 − g). He also has a chance of g to meet a good recipient
and get a bad reputation with probability (1 − µ)g and a good reputation
with probability µg. The ‘DD’ player also has 1

2
chance to be a recipient; his

reputation does not change and remains as good with probability g3. So the
new ratio of good reputation in ‘DD’ players is g

′

3 =
1
2
(1−g)(1−µ)+ 1

2
gµ+ 1

2
g3.







g
′

1 =
1
2
(1− µ) + 1

2
g1

g
′

2 =
1
2
(1− µ) + 1

2
g2

g
′

3 =
1
2
(1− g)(1− µ) + 1

2
gµ+ 1

2
g3

(A.1)

Since g = x1g1 + x2g2 + x3g3, we can solve the linear recursion and get
the stable reputation distribution of each strategy g∗1 = g∗2 = 1 − µ, g∗3 =
(1−µ)[1− 1−2µ

1+(1−2µ)x3

]. And the good reputation ratio in entire population is

g∗ = 1−µ

1+(1−2µ)x3

.

For punishment-optional (GGBGBG) social norm, there are four strate-
gies ‘CC’, ‘CD’, ‘CP’ and ‘DD’, with corresponding frequencies denoted by
x1, x2, x3 and x4, and x1 + x2 + x3 + x4 = 1. The ratios of players with
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Figure A.1: Reputation dynamics of individuals taking different strategies in punishment-
optional (GGBGBG) social norm.

good reputation in ‘CC’ , ‘CD’, ‘CP’ and ‘DD’ players are denoted by g1, g2,
g3 and g4 respectively. Thus the ratio of good players in entire population
is g = x1g1 + x2g2 + x3g3 + x4g4. The reputation dynamics of three kinds
players is illustrated by figure A.1.

A ‘CC’ player has 1
2
chance to be a donor, and takes cooperation action

no matter what reputation the recipient has, and this tends to bring him a
good reputation according to social norm ‘GGBGBG’. Due to the assignment
error, he gets a good reputation with a probability 1−µ and bad reputation
with probability µ. The ‘CC’ player also has 1

2
chance to be a recipient; his

reputation does not change and remains as good with probability g1. So the
new ratio of good reputation in ‘CC’ players is g

′

1 =
1
2
(1− µ) + 1

2
g1.

A ‘CD’ player has 1
2
chance to be a donor, and takes cooperation action

to good recipients and defection action to bad recipients, and both should
bring him a good reputation with norm ‘GGBGBG’. Due to the assignment
error, he gets a good reputation with a probability 1−µ and bad reputation
with probability µ. The ‘CD’ player also has 1

2
chance to be a recipient; his

reputation does not change and remains as as good with probability g2. So
the new ratio of good reputation in ‘CD’ players is g

′

2 =
1
2
(1− µ) + 1

2
g2.

A ‘CP’ player has 1
2
chance to be a donor, and takes cooperation action

to good recipients and punishment action to bad recipients, and both should
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bring him a good reputation with norm ‘GGBGBG’. Due to the assignment
error, he gets a good reputation with a probability 1−µ and bad reputation
with probability µ. The ‘CP’ player also has 1

2
chance to be a recipient; his

reputation does not change and remains as as good with probability g3. So
the new ratio of good reputation in ‘CP’ players is g

′

3 =
1
2
(1− µ) + 1

2
g3.

A ‘DD’ player has 1
2
chance to be a donor, and takes defection action

no matter what reputation the recipient has. He has a chance of 1 − g to
meet a bad recipient. According to social norm ‘GGBGBG’, he should get a
good reputation. Considering the reputation assignment error, he will get a
good reputation with probability (1 − µ)(1 − g) and a bad reputation with
probability µ(1 − g) . He also has a chance of g to meet a good recipient
and get a bad reputation with probability (1 − µ)g and a good reputation
with probability µg. The ‘DD’ player also has 1

2
chance to be a recipient; his

reputation does not change and remains as good with probability g4. So the
new ratio of good reputation in ‘DD’ players is g

′

4 =
1
2
(1−g)(1−µ)+ 1

2
gµ+ 1

2
g4.















g
′

1 =
1
2
(1− µ) + 1

2
g1

g
′

2 =
1
2
(1− µ) + 1

2
g2

g
′

3 =
1
2
(1− µ) + 1

2
g3

g
′

4 =
1
2
(1− g)(1− µ) + 1

2
gµ+ 1

2
g4

(A.2)

Since g = x1g1 + x2g2 + x3g3 + x4g4, we can solve the linear recursion
and get the stable reputation distribution. The ratios of good reputation in
players taking ‘CC’,‘CD’,‘CP’ and ‘DD’ strategy are g∗1 = g∗2 = g∗3 = 1 − µ,
g∗4 = (1− µ)[1− 1−2µ

1+(1−2µ)x4

]. And the good reputation ratio in entire society

is g∗ = 1−µ

1+(1−2µ)x4

.

For punishment-provoking (GGBBBG) social norm, there are four strate-
gies ‘CC’, ‘CD’, ‘CP’ and ‘DD’, with corresponding frequencies denoted by
x1, x2, x3 and x4, and x1 + x2 + x3 + x4 = 1. The ratios of players with
good reputation in ‘CC’ , ‘CD’, ‘CP’ and ‘DD’ players are denoted by g1, g2,
g3 and g4 respectively. Thus the ratio of good players in entire population
is g = x1g1 + x2g2 + x3g3 + x4g4. The reputation dynamics of three kinds
players is illustrated by figure A.2.

A ‘CC’ player has 1
2
chance to be a donor, and takes cooperation action

no matter what reputation the recipient has, and this tends to bring him a
good reputation according to social norm ‘GGBGBG’. Due to the assignment
error, he gets a good reputation with a probability 1−µ and bad reputation
with probability µ. The ‘CC’ player also has 1

2
chance to be a recipient; his
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Figure A.2: Reputation dynamics of individuals taking different strategies in punishment-
provoking (GGBBBG) social norm.

reputation does not change and remains as good with probability g1. So the
new ratio of good reputation in ‘CC’ players is g

′

1 =
1
2
(1− µ) + 1

2
g1.

A ‘CD’ player has 1
2
chance to be a donor and takes cooperation action

to good recipients and defection action to bad recipients. With probability g
he will meet a good recipient, his cooperation action to good recipient should
bring him a good reputation. Due to the assignment error, he gets a good
reputation with a probability 1 − µ and bad reputation with probability µ.
With probability 1−g he will meet a bad recipient, his defection action to bad
recipient should bring him a bad reputation according to ‘GGBBBG’ norm.
Due to the assignment error, he gets a bad reputation with a probability
1 − µ and good reputation with probability µ. The ‘CD’ player also has 1

2

chance to be a recipient; his reputation does not change and remains as as
good with probability g2. So the new ratio of good reputation in ‘CD’ players
is g

′

2 =
1
2
[(1− µ)g + µ(1− g)] + 1

2
g2.

A ‘CP’ player has 1
2
chance to be a donor, and takes cooperation action

to good recipients and punishment action to bad recipients, and both should
bring him a good reputation with norm ‘GGBGBG’. Due to the assignment
error, he gets a good reputation with a probability 1−µ and bad reputation
with probability µ. The ‘CP’ player also has 1

2
chance to be a recipient; his

reputation does not change and remains as as good with probability g3. So
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the new ratio of good reputation in ‘CP’ players is g
′

3 =
1
2
(1− µ) + 1

2
g3.

A ‘DD’ player has 1
2
chance to be a donor, and takes defection action

no matter what reputation the recipient has. Both should bring him a bad
reputation according to social norm ‘GGBBBG’. Considering the reputation
assignment error, he will get a bad reputation with probability 1 − µ and a
good reputation with probability µ. So the new ratio of good reputation in
‘DD’ players is g

′

4 =
1
2
µ+ 1

2
g4.















g
′

1 =
1
2
(1− µ) + 1

2
g1

g
′

2 =
1
2
[(1− µ)g + µ(1− g)] + 1

2
g2

g
′

3 =
1
2
(1− µ) + 1

2
g3

g
′

4 =
1
2
µ+ 1

2
g4

(A.3)

Since g = x1g1 + x2g2 + x3g3 + x4g4, we can solve the linear recursion
and get the stable reputation distribution. The ratios of good reputation
in ‘CC’ and ‘CP’ players are g∗1 = g∗3 = 1 − µ, and that in ‘CD’ players is
g∗2 = µ+ (1− 2µ)g∗ and ‘DD’ players g∗4 = µ. And the good reputation ratio

in entire society is g∗ = (1−µ)(x1+x3)+µ(x2+x4)
1−(1−2µ)x2

.

Appendix B. Expected revenue of strategies in given strategies
frequency

In the main text, we only give a simple introduction of how to calculate
the expected revenue of strategies in given strategies frequency with the
example of ‘CC’ strategy under non-punishment social norm. The detailed
process to calculate the expected revenue of all strategies in given strategies
frequency for all three social norms is provided here.

For non-punishment (GGBG) social norm, the calculation expected payoff
of ‘CC’, ‘CD’ and ‘DD’ strategy is illustrated in figure 3 in main text.

For a ‘CC’ player, he has 1
2
chance to be a donor and cooperates with a

cost c regardless of the reputation of the recipient. With another 1
2
chance,

he will be a recipient. As a recipient, he will meet a ‘CC’ player with proba-
bility x1 and be expected to get b revenue. He will meet a ‘CD’ player with
probability x2 and be expected to get b if his reputation is good and 0 if his
reputation is bad. Because the probability of a ‘CC’ player to have a good
reputation is 1 − µ in stable reputation distribution, he is expected to get
revenue (1−µ)b when meeting a ‘CD’ donor. He will also meet a ‘DD’ donor
with probability x3 and be expected to get nothing. Totally, the expected
revenue of a player with strategy ‘CC’ is p1 =

1
2
(−c) + 1

2
[bx1 + bx2(1− µ)].
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For a ‘CD’ player, he has 1
2
chance to be a donor and cooperates with

a cost c to good recipients with probability g and defects with no cost to
bad recipients with probability 1 − g. With another 1

2
chance, he will be a

recipient. As a recipient, he will meet a ‘CC’ player with probability x1 and
be expected to get b revenue. He will meet a ‘CD’ player with probability x2

and be expected to get b if his reputation is good and 0 if his reputation is
bad. Because the probability of a ‘CD’ player to have a good reputation is
1−µ in stable reputation distribution, he is expected to get revenue (1−µ)b
when meeting a ‘CD’ donor. He will also meet a ‘DD’ donor with probability
x3 and be expected to get nothing. Totally, the expected revenue of a player
with strategy ‘CD’ is p2 =

1
2
g(−c) + 1

2
[bx1 + bx2(1− µ)].

For a ‘DD’ player, he has 1
2
chance to be a donor and defects with no cost

regardless of the reputation of the recipient. With another 1
2
chance, he will

be a recipient. As a recipient, he will meet a ‘CC’ player with probability x1

and be expected to get b revenue. He will meet a ‘CD’ player with probability
x2 and be expected to get b if his reputation is good and 0 if his reputation
is bad. Because the ratio of a ‘DD’ player to have a good reputation is
g3 in stable reputation distribution as defined above, he is expected to get
revenue g3b when meeting a ‘CD’ donor. He will also meet a ‘DD’ donor with
probability x3 and be expected to get nothing. Totally, the expected revenue
of a player with strategy ‘CC’ is p3 =

1
2
(0) + 1

2
[bx1 + bx2g3)].

Summarily, the expected revenues of all three strategies in non-punishment
(GGBG) social norm are







p1 =
1
2
(−c) + 1

2
[bx1 + bx2(1− µ)]

p2 =
1
2
g(−c) + 1

2
[bx1 + bx2(1− µ)]

p3 =
1
2
(0) + 1

2
[bx1 + bx2g3)]

(B.1)

.
For punishment-optional (GGBGBG) social norm, the calculation expect-

ed payoff of ‘CC’, ‘CD’, ‘CP’ and ‘DD’ strategy is illustrated in figure B.1.
For a ‘CC’ player, he has 1

2
chance to be a donor and cooperates with a

cost c regardless of the reputation of the recipient. With another 1
2
chance,

he will be a recipient. As a recipient, he will meet a ‘CC’ player with proba-
bility x1 and be expected to get b revenue. He will meet a ‘CD’ player with
probability x2 and be expected to get b if his reputation is good and 0 if his
reputation is bad. Because the probability of a ‘CC’ player to have a good
reputation is 1−µ in stable reputation distribution, he is expected to get rev-
enue (1−µ)b when meeting a ‘CD’ donor. He will also meet a ‘CP’ donor with
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Figure B.1: Calculate the expected revenue of strategies in punishment-optional (GGBG-
BG) social norm.

probability x3 and be expected to get b if his reputation is good and −β if his
reputation is bad. Because the probability of a ‘CC’ player to have a good
(or bad) reputation is 1−µ (or µ), he is expected to get revenue (1−µ)b−µβ
when meeting a ‘CP’ donor. He will also meet a ‘DD’ donor with probability
x4 and be expected to get nothing. Totally, the expected revenue of a player
with strategy ‘CC’ is p1 =

1
2
(−c) + 1

2
x3µ(−β) + 1

2
[bx1 + b(x2 + x3)(1− µ)].

For a ‘CD’ player, he has 1
2
chance to be a donor and cooperates with

a cost c to good recipients with probability g and defects with no cost to
bad recipients with probability 1 − g. With another 1

2
chance, he will be a

recipient. As a recipient, he will meet a ‘CC’ player with probability x1 and
be expected to get b revenue. He will meet a ‘CD’ player with probability x2

and be expected to get b if his reputation is good and 0 if his reputation is
bad. Because the probability of a ‘CD’ player to have a good reputation is
1−µ in stable reputation distribution, he is expected to get revenue (1−µ)b
when meeting a ‘CD’ donor. He will also meet a ‘CP’ donor with probability
x3 and be expected to get b if his reputation is good and −β if his reputation
is bad. Because the probability of a ‘CD’ player to have a good (or bad)
reputation is 1− µ (or µ), he is expected to get revenue (1− µ)b− µβ when
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meeting a ‘CP’ donor. He will also meet a ‘DD’ donor with probability x4

and be expected to get nothing. Totally, the expected revenue of a player
with strategy ‘CD’ is p2 =

1
2
g(−c) + 1

2
x3µ(−β) + 1

2
[bx1 + b(x2 + x3)(1− µ)].

For a ‘CP’ player, he has 1
2
chance to be a donor and cooperates with

a cost c to good recipients with probability g and punishes with cost α
bad recipients with probability 1 − g. With another 1

2
chance, he will be a

recipient. As a recipient, he will meet a ‘CC’ player with probability x1 and
be expected to get b revenue. He will meet a ‘CD’ player with probability x2

and be expected to get b if his reputation is good and 0 if his reputation is bad.
Because the probability of a ‘CP’ player to have a good reputation is 1 − µ
in stable reputation distribution, he is expected to get revenue (1−µ)b when
meeting a ‘CD’ donor. He will also meet a ‘CP’ donor with probability x3 and
be expected to get b if his reputation is good and −β if his reputation is bad.
Because the probability of a ‘CP’ player to have a good (or bad) reputation is
1−µ (or µ), he is expected to get revenue (1−µ)b−µβ when meeting a ‘CP’
donor. He will also meet a ‘DD’ donor with probability x4 and be expected
to get nothing. Totally, the expected revenue of a player with strategy ‘CP’
is p3 =

1
2
g(−c) + 1

2
(1− g)(−α) + 1

2
x3µ(−β) + 1

2
[bx1 + b(x2 + x3)(1− µ)].

For a ‘DD’ player, he has 1
2
chance to be a donor and defects with no cost

regardless of the reputation of the recipient. With another 1
2
chance, he will

be a recipient. As a recipient, he will meet a ‘CC’ player with probability x1

and be expected to get b revenue. He will meet a ‘CD’ player with probability
x2 and be expected to get b if his reputation is good and 0 if his reputation
is bad. Because the ratio of a ‘DD’ player to have a good reputation is g4 in
stable reputation distribution as defined above, he is expected to get revenue
g4b when meeting a ‘CD’ donor. He will meet a ‘CP’ donor with probability
x3 and be expected to get b if his reputation is good and −β if his reputation
is bad. Because the probability of a ‘DD’ player to have a good (or bad)
reputation is g4 (or 1 − g4), he is expected to get revenue g4b − (1 − g4)β
when meeting a ‘CP’ donor. He will also meet a ‘DD’ donor with probability
x4 and be expected to get nothing. Totally, the expected revenue of a player
with strategy ‘DD’ is p4 =

1
2
[bx1 + b(x2 + x3)g4] +

1
2
x3(1− g4)(−β).

Summarily, the expected revenues of all four strategies in punishment-
optional (GGBGBG) social norm are
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Figure B.2: Calculate the expected revenue of strategies in punishment-provoking (GG-
BBBG) social norm.















p1 =
1
2
(−c) + 1

2
x3µ(−β) + 1

2
[bx1 + b(x2 + x3)(1− µ)]

p2 =
1
2
g(−c) + 1

2
x3µ(−β) + 1

2
[bx1 + b(x2 + x3)(1− µ)]

p3 =
1
2
g(−c) + 1

2
(1− g)(−α) + 1

2
x3µ(−β) + 1

2
[bx1 + b(x2 + x3)(1− µ)]

p4 =
1
2
[bx1 + b(x2 + x3)g4] +

1
2
x3(1− g4)(−β)

(B.2)
.

For punishment-provoking (GGBBBG) social norm, the calculation ex-
pected payoff of ‘CC’, ‘CD’, ‘CP’ and ‘DD’ strategy is illustrated in figure
B.2.

For a ‘CC’ player, he has 1
2
chance to be a donor and cooperates with a

cost c regardless of the reputation of the recipient. With another 1
2
chance,

he will be a recipient. As a recipient, he will meet a ‘CC’ player with proba-
bility x1 and be expected to get b revenue. He will meet a ‘CD’ player with
probability x2 and be expected to get b if his reputation is good and 0 if his
reputation is bad. Because the probability of a ‘CC’ player to have a good
reputation is 1 − µ in stable reputation distribution, he is expected to get
revenue (1−µ)b when meeting a ‘CD’ donor. He will meet a ‘CP’ donor with
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probability x3 and be expected to get b if his reputation is good and −β if his
reputation is bad. Because the probability of a ‘CC’ player to have a good
(or bad) reputation is 1−µ (or µ), he is expected to get revenue (1−µ)b−µβ
when meeting a ‘CP’ donor. He will also meet a ‘DD’ donor with probability
x4 and be expected to get nothing. Totally, the expected revenue of a player
with strategy ‘CC’ is p1 =

1
2
(−c) + 1

2
x3µ(−β) + 1

2
[bx1 + b(x2 + x3)(1− µ)].

For a ‘CD’ player, he has 1
2
chance to be a donor and cooperates with

a cost c to good recipients with probability g and defects with no cost to
bad recipients with probability 1 − g. With another 1

2
chance, he will be a

recipient. As a recipient, he will meet a ‘CC’ player with probability x1 and
be expected to get b revenue. He will meet a ‘CD’ player with probability x2

and be expected to get b if his reputation is good and 0 if his reputation is
bad. Because the probability of a ‘CD’ player to have a good reputation is
g2 in stable reputation distribution, he is expected to get revenue g2b when
meeting a ‘CD’ donor. He will also meet a ‘CP’ donor with probability x3

and be expected to get b if his reputation is good and −β if his reputation
is bad. Because the probability of a ‘CD’ player to have a good (or bad)
reputation is g2 (or 1 − g2), he is expected to get revenue g2b − (1 − g2)β
when meeting a ‘CP’ donor. He will also meet a ‘DD’ donor with probability
x4 and be expected to get nothing. Totally, the expected revenue of a player
with strategy ‘CD’ is p2 =

1
2
g(−c) + 1

2
x3(1− g2)(−β) + 1

2
[bx1 + bg2(x2 + x3)].

For a ‘CP’ player, he has 1
2
chance to be a donor and cooperates with

a cost c to good recipients with probability g and punishes with cost α
bad recipients with probability 1 − g. With another 1

2
chance, he will be a

recipient. As a recipient, he will meet a ‘CC’ player with probability x1 and
be expected to get b revenue. He will meet a ‘CD’ player with probability x2

and be expected to get b if his reputation is good and 0 if his reputation is bad.
Because the probability of a ‘CP’ player to have a good reputation is 1 − µ
in stable reputation distribution, he is expected to get revenue (1−µ)b when
meeting a ‘CD’ donor. He will also meet a ‘CP’ donor with probability x3 and
be expected to get b if his reputation is good and −β if his reputation is bad.
Because the probability of a ‘CP’ player to have a good (or bad) reputation is
1−µ (or µ), he is expected to get revenue (1−µ)b−µβ when meeting a ‘CP’
donor. He will also meet a ‘DD’ donor with probability x4 and be expected
to get nothing. Totally, the expected revenue of a player with strategy ‘CP’
is p3 =

1
2
g(−c) + 1

2
(1− g)(−α) + 1

2
x3µ(−β) + 1

2
[bx1 + b(x2 + x3)(1− µ)].

For a ‘DD’ player, he has 1
2
chance to be a donor and defects with no cost

regardless of the reputation of the recipient. With another 1
2
chance, he will
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be a recipient. As a recipient, he will meet a ‘CC’ player with probability x1

and be expected to get b revenue. He will meet a ‘CD’ player with probability
x2 and be expected to get b if his reputation is good and 0 if his reputation
is bad. Because the ratio of a ‘DD’ player to have a good reputation is µ in
stable reputation distribution as defined above, he is expected to get revenue
µb when meeting a ‘CD’ donor. He will meet a ‘CP’ donor with probability
x3 and be expected to get b if his reputation is good and −β if his reputation
is bad. Because the probability of a ‘DD’ player to have a good (or bad)
reputation is µ (or 1− µ), he is expected to get revenue µb− (1− µ)β when
meeting a ‘CP’ donor. He will also meet a ‘DD’ donor with probability x4

and be expected to get nothing. Totally, the expected revenue of a player
with strategy ‘DD’ is p4 =

1
2
[bx1 + b(x2 + x3)µ] +

1
2
x3(1− µ)(−β).

Summarily, the expected revenues of all four strategies in punishment-
optional (GGBGBG) social norm are















p1 =
1
2
(−c) + 1

2
x3µ(−β) + 1

2
[bx1 + b(x2 + x3)(1− µ)]

p2 =
1
2
g(−c) + 1

2
x3(1− g2)(−β) + 1

2
[bx1 + bg2(x2 + x3)]

p3 =
1
2
g(−c) + 1

2
(1− g)(−α) + 1

2
x3µ(−β) + 1

2
[bx1 + b(x2 + x3)(1− µ)]

p4 =
1
2
[bx1 + b(x2 + x3)µ] +

1
2
x3(1− µ)(−β)

(B.3)
.

Appendix C. Detailed expression of strategies frequency dynam-
ics for punishment-optional and punishment-provoking
norms

The expressions of strategies frequency dynamics for punishment-optional
and punishment-provoking norms are too complicated to be included in
the main text. And we only provide the finished form of dynamical sys-
tem of strategies frequency dynamics for non-punishment social norm as an
demonstration. Here the detailed expression for punishment-optional and
punishment-provoking norms are articulated.

The dynamical system of strategies frequency in punishment-optional (G-
GBGBG) social norm is
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ẋ1 =− cx1 + cx2
1 + αx1x3

+













[(1− 2µ)b+ c]x1x2

+[(1− 2µ)(b+ β) + (c− α)]x1x3

−(1− 2µ)b[x1 + x2]x1x2

+(1− 2µ)(b+ β)[x1 + x3]x1x3

+(1− 2µ)(2b+ β)x1x2x3













/

[2−
1− 2µ

1− µ

3
∑

i=1

xi]

ẋ2 =− cx1x2 + αx2x3

+













−cx2 + [(1− 2µ)b+ c]x2
2

+[(1− 2µ)(b+ β) + (c− α)]x2x3

−(1− 2µ)b[x1 + x2]x
2
2

−(1− 2µ)(b+ β)[x1 + x3]x2x3

−(1− 2µ)(2b+ β)x2
2x3













/

[2−
1− 2µ

1− µ

3
∑

i=1

xi]

ẋ3 =− αx3 + cx1x3 + αx2
3

+













−(c− α)x3 + [(1− 2µ)b+ c]x2x3

+[(1− 2µ)(b+ β) + (c− α)]x2
3

−(1− 2µ)b[x1x2 + x2
2 + x2x3]x3

−(1− 2µ)(b+ β)[x1x3 + x2
3]x3

−(1− 2µ)(2b+ β)x2x
2
3













/

[2−
1− 2µ

1− µ

3
∑

i=1

xi]

(C.1)
.

The dynamical system of strategies frequency in punishment-provoking
(GGBBBG) social norm is
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ẋ1 =− cx1 + cx2
1 + [(1− 2µ)(b+ β) + α]x1x3

+ (1− 2µ)b[1− x1 − x3]x1x2 − (1− 2µ)(b+ β)[x1 + x3]x1x3

−













− µc

1−2µ
x1x2 +

µ(α−c)
1−2µ

x1x3 − cx2
1x2

+µbx1x
2
2 + [µ(b+ β)− c]x1x2x3

+(α− c)[x1 + x3]x1x3

+(1− 2µ)b[x1 + x3]x1x
2
2

+(1− 2µ)(b+ β)[x1 + x3]x1x2x
2
3













/

[
1

1− 2µ
− x2]

ẋ2 =cx2
1 + αx2x3 − (1− 2µ)bx1x

2
2

− (1− 2µ)(b+ β)[x1 + x3]x2x3 − (1− 2µ)bx2
2x3

+



























− µc

1−2µ
x2 − cx1x2 + µ[b+ c

1−2µ
]x2

2

+[(µb+ µβ − c) + µ(c−α)
1−2µ

]x2x3

+[(1− 2µ)b+ c]x1x
2
2 − µbx3

2

+[(1− 2µ)(b+ β) + (c− α)]x1x2x3

+[(1− 2µ)b− µ(b+ β) + c]x2
2x3

+[(1− 2µ)b+ (c− α)]x2x
2
3

−(1− 2µ)b(x1 + x3)x
3
2

−(1− 2µ)(b+ β)(x1 + x3)x
2
2x3



























/

[
1

1− 2µ
− x2]

ẋ3 =− αx3 + cx1x3 + [(1− 2µ)(b+ β) + α)]x2
3

+ (1− 2µ)b[1− x1 − x3]x2x3 − (1− 2µ)(b+ β)[x1 + x3]x
2
3

−













µ(c−α)
1−2µ

x3 −
µc

1−2µ
x2x3 + µbx2

2x3

−(c− α)x1x
2
3 + [µ(b+ β)− c]x2x

2
3

−(c− α)x3
3 + (c− α)(x1 + x3)x3

+(1− 2µ)b(x1 + x3)x
2
2x3 − cx1x2x3

+(1− 2µ)(b+ β)(x1 + x3)x2x
2
3













/

[
1

1− 2µ
− x2]

(C.2)
.

Appendix D. Proofs to the propositions in equilibrium analysis

Proof 1 (Proof of Proposition 1). For non-punishment (GGBG) norm,
inserting x1 = 0, x2 = 0 into dynamical system 4, we can get dotx1 = dotx2 =
0, so x1 = 0, x2 = 0 is a fixed point. To prove the stability of x1 = 0, x2 = 0,
we calculate the Jacobian matrix (J) of dynamical system 4, and evaluate it
at some equilibrium (0, 0). We get,
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J∣
∣
x1=0
x2=0

=
[−c 0
0 c/2

]

(D.1)

It follows that the eigenvalues at the equilibrium (0, 0) are λ1 = −c, λ2 =
−c/2. We have assumed that c > 0, so λ1 < 0, λ2 < 0 and equilibrium (0, 0)
is always stable.

For punishment-optional (GGBGBG) norm, inserting x1 = 0, x2 = 0,
x3 = 0 into dynamical system C.1, we can get dotx1 = dotx2 = dotx3 = 0, so
x1 = 0, x2 = 0, x3 = 0 is a fixed point. To prove the stability, we calculate
the Jacobian matrix (J) of dynamical system C.1, and evaluate it at some
equilibrium (0, 0, 0). We get,

J∣
∣

∣

x1=0
x2=0
x3=0

=

[−c 0 0
0 −c/2 0
0 0 −(c+ α)/2

]

(D.2)

Then the eigenvalues at the equilibrium (0, 0, 0) are λ1 = −c, λ2 = −c/2,
λ3 = −(c + α)/2. We have assumed that c > 0, α > 0, so λ1 < 0, λ2 < 0,
λ33 < 0 and equilibrium (0, 0, 0) is always stable.

For punishment-provoking (GGBBBG) norm, inserting x1 = 0, x2 = 0,
x3 = 0 into dynamical system C.2, we can get dotx1 = dotx2 = dotx3 = 0, so
x1 = 0, x2 = 0, x3 = 0 is a fixed point. To prove the stability, we calculate
the Jacobian matrix (J) of dynamical system C.2, and evaluate it at some
equilibrium (0, 0, 0). We get,

J∣
∣

∣

x1=0
x2=0
x3=0

=

[−c 0 0
0 −µc 0
0 0 −µc− (1− µ)α)

]

(D.3)

Then the eigenvalues at the equilibrium (0, 0, 0) are λ1 = −c, λ2 = −µc,
λ3 = −µc − (1 − µ)α). We have assumed that c > 0, µ > 0, so λ1 < 0,
λ2 < 0, λ33 < 0 and equilibrium (0, 0, 0) is always stable. �

Proof 2 (Proof of Proposition 2). Inserting x1 = 0, x2 = 1 into dynam-
ical system 4, we can get dotx1 = dotx2 = 0, so x1 = 0, x2 = 1 is a fixed
point. To prove the stability of x1 = 0, x2 = 1, we calculate the Jacobian
matrix (J) of dynamical system 4, and evaluate it at some equilibrium (0, 1).
We get,
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J∣
∣
x1=0
x2=1

=
[ −µc 0
c− (1− µ)(1− 2µ)b (1− µ)[c− (1− 2µ)b]

]

(D.4)

It follows that the eigenvalues at the equilibrium (0, 1) are λ1 = −µc,
λ2 = (1− µ)[c− (1− 2µ)b]. We have assumed that c > 0, µ > 0, so λ1 < 0.
The stability condition for equilibrium (0, 1) is λ2 < 0, that is, 1

1−2µ
c
b
< 1. �

Proof 3 (Proof of Proposition 3). Inserting x1 = 0, x2 = 1, x3 = 0
into dynamical system C.1, we can get dotx1 = dotx2 = dotx3 = 0, so
x1 = 0, x2 = 1, x3 = 0 is a fixed point. To prove the stability, we calculate
the Jacobian matrix (J) of dynamical system C.1, and evaluate it at some
equilibrium (0, 1, 0). We get,

J∣
∣

∣

x1=0
x2=1
x3=0

=

[

−µc 0 0
c−(1−µ)(1−2µ)b (1−µ)[c−(1−2µ)b] µα+(1−µ)[c−(1−2µ)b]

0 0 −µα

]

(D.5)

Then the eigenvalues at the equilibrium (0, 1, 0) are λ1 = −µc, λ2 =
(1−µ)[c− (1−2µ)b], λ3 = −µα. We have assumed that c > 0, b > 0, α > 0,
µ > 0, so λ1 < 0, λ3 < 0. The stability condition for equilibrium (0, 1, 0) is
λ2 < 0, that is, 1

1−2µ
c
b
< 1. �

Proof 4 (Proof of Proposition 4). For punishment-provoking (GGBBBG)
norm, inserting x1 = 0, x2 = 0, x3 = 1 into dynamical system C.2, we can
get dotx1 = dotx2 = dotx3 = 0, so x1 = 0, x2 = 0, x3 = 1 is a fixed point. To
prove the stability, we calculate the Jacobian matrix (J) of dynamical system
C.2, and evaluate it at some equilibrium (0, 0, 1). We get,

J∣
∣

∣

x1=0
x2=0
x3=1

=

[

−µ(c−α) 0 0
0 µα−µ(1−2µ)(b+β) 0

c−µ(1−2µ)(b+β) (1−µ)[c−µ(1−2µ)(b+β)] (1−µ)c+µα−(1−2µ)(b+β))

]

(D.6)

Then the eigenvalues at the equilibrium (0, 0, 1) are λ1 = −µ(c − α),
λ2 = µα − µ(1 − 2µ)(b + β), λ3 = (1 − µ)c + µα − (1 − 2µ)(b + β)). To
guarantee stability of equilibrium (0, 0, 1), it is required that λ1 < 0, λ2 < 0,
λ3 < 0. And λ1 < 0 leads to condition c < α. We can validate that λ2 < 0
ifc < α. And λ3 < 0 leads to condition c < α. Therefore, stability condition
for equilibrium (0, 0, 1) is c < α and 1

1−2µ
(1−µ)α+µc

α+β+b−c
< 1. �
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Gürerk, O., Irlenbusch, B., Rockenbach, B., 2006. The competitive advantage
of sanctioning institutions. Science 312 (5770), 108–111.

Henrich, J., 2004. Cultural group selection, coevolutionary processes and
large-scale cooperation. Journal of Economic Behavior and Organization
53 (1), 3–35.

Henrich, J., 2006. Cooperation, punishment, and the evolution of human
institutions. Science 312 (5770), 60–61.

40



Henrich, J., Boyd, R., 2001. Why people punish defectors: Weak con-
formist transmission can stabilize costly enforcement of norms in cooper-
ative dilemmas. Journal of Theoretical Biology 208 (1), 79–89, doi: DOI:
10.1006/jtbi.2000.2202.

Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H., McEl-
reath, R., Alvard, M., Barr, A., Ensminger, J., Henrich, N. S., Hill, K.,
Gil-White, F., Gurven, M., Marlowe, F. W., Patton, J. Q., Tracer, D.,
2005. “Economic man” in cross-cultural perspective: Behavioral experi-
ments in 15 small-scale societies. Behavioral and Brain Sciences 28 (06),
795–815.

Henrich, J., Ensminger, J., McElreath, R., Barr, A., Barrett, C., Bolyanatz,
A., Cardenas, J. C., Gurven, M., Gwako, E., Henrich, N., Lesorogol, C.,
Marlowe, F., Tracer, D., Ziker, J., 2010. Markets, religion, community
size, and the evolution of fairness and punishment. Science 327 (5972),
1480–1484.

Henrich, J., McElreath, R., Barr, A., Ensminger, J., Barrett, C., Bolyanatz,
A., Cardenas, J. C., Gurven, M., Gwako, E., Henrich, N., Lesorogol, C.,
Marlowe, F., Tracer, D., Ziker, J., 2006. Costly punishment across human
societies. Science 312 (5781), 1767–1770.

Herrmann, B., Thoeni, C., Gachter, S., 2008. Antisocial punishment across
societies. Science 319, 1362–1367.

Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population Dy-
namics. Cambridge University Press, Cambridge.

Knauft, B. M., Abler, T. S., Betzig, L., Boehm, C., Dentan, R. K., Kiefer,
T. M., Otterbein, K. F., Paddock, J., Rodseth, L., 1991. Violence and
sociality in human evolution [and comments and replies]. Current Anthro-
pology 32 (4), 391–428.

Marlowe, F. W., Berbesque, J. C., Barr, A., Barrett, C., Bolyanatz, A., Car-
denas, J. C., Ensminger, J., Gurven, M., Gwako, E., Henrich, J., Henrich,
N., Lesorogol, C., McElreath, R., Tracer, D., 2008. More ”ltruistic” pun-
ishment in larger societies. Proceedings of the Royal Society B: Biological
Sciences 275 (1634), 587–592.

41



Milinski, M., Rockenbach, B., 2008. Punisher pays. Nature 452 (7185), 297–
298.

Nowak, M. A., 2006. Five rules for the evolution of cooperation. Science
314 (5805), 1560–1563.

Nowak, M. A., Sigmund, K., 2005. Evolution of indirect reciprocity. Nature
437 (7063), 1291–1298.

Ohtsuki, H., Iwasa, Y., 2007. Global analyses of evolutionary dynamics and
exhaustive search for social norms that maintain cooperation by reputa-
tion. Journal of Theoretical Biology 244 (3), 518–531.

Ohtsuki, H., Iwasa, Y., Nowak, M. A., 2009. Indirect reciprocity provides only
a narrow margin of efficiency for costly punishment. Nature 457 (7225),
79–82.

Olson, M., 1965. The Logic of Collective Action: Public Goods and the
Theory of Groups. Harvard University Press, Cambridge, MA.

Oosterbeek, H., Sloof, R., van de Kuilen, G., 2004. Cultural differences in ul-
timatum game experiments: Evidence from a meta-analysis. Experimental
Economics 7 (2), 171–188.

Ostrom, E., 2000. Collective action and the evolution of social norms. The
Journal of Economic Perspectives 14 (3), 137–158.

Ostrom, E., Walker, J., Gardner, R., 1992. Covenants with and without a
sword: Self-governance is possible. The American Political Science Review
86 (2), 404–417.

Rockenbach, B., Milinski, M., 2006. The efficient interaction of indirect reci-
procity and costly punishment. Nature 444 (7120), 718–723.

Singer, T., Seymour, B., O’Doherty, J. P., Stephan, K. E., Dolan, R. J., Frith,
C. D., 2006. Empathic neural responses are modulated by the perceived
fairness of others. Nature 439 (7075), 466–469.

Taylor, C., Nowak, M. A., 2007. Transforming the dilemma. Evolution
61 (10), 2281–2292.

42



Tesfatsion, L., 2001. Introduction to the special issue on agent-based compu-
tational economics. Journal of Economic Dynamics and Control 25 (3-4),
281–293.

Wu, J.-J., Zhang, B.-Y., Zhou, Z.-X., He, Q.-Q., Zheng, X.-D., Cressman, R.,
Tao, Y., 2009. Costly punishment does not always increase cooperation.
Proceedings of the National Academy of Sciences 106 (41), 17448–17451.

Young, H. P., 2008. Social Norms. Palgrave Macmillan, Basingstoke.

43


