MPRA

Munich Personal RePEc Archive

Repeated moral hazard and contracts
with memory: The case of risk-neutrality

Ohlendorf, Susanne and Schmitz, Patrick W.

January 2011

Online at https://mpra.ub.uni-muenchen.de/28823/
MPRA Paper No. 28823, posted 15 Feb 2011 23:46 UTC



Repeated moral hazard and contracts with
Memory:

The case of risk-neutrality™

Susanne Ohlendorft and Patrick W. Schmitz*

Abstract

We consider a repeated moral hazard problem, where both the principal
and the wealth-constrained agent are risk-neutral. In each of two periods, the
agent can exert unobservable effort, leading to success or failure. Incentives
provided in the second period act as carrot and stick for the first period,
so that the effort level induced in the second period is higher after a first-
period success than after a failure. If renegotiation cannot be prevented, the
principal may prefer a project with lower returns; i.e., a project may be “too

good” to be financed or, similarly, an agent can be “overqualified.”
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1 Introduction

This paper offers a new perspective on dynamic moral hazard problems. Consider
a risk-neutral principal, who can hire a risk-neutral but wealth-constrained agent.
The agent can exert unobservable effort, which increases the likelihood of success.
In the one-shot problem, there is a well-known trade-off between effort incentives
and rent extraction, which leads to a downward distorted effort level compared to
the first-best solution. We extend the standard model by assuming that there is
a second period, in which the principal can make an investment to continue the
project and the agent can again exert unobservable effort. It turns out that there
are several interesting insights that so far have escaped the literature on repeated
moral hazard, which was focused on the case of risk-averse agents.

In particular, if the principal can commit not to renegotiate, the second period
incentives can be used to partially circumvent the limited liability constraint. In the
second period, the principal induces the agent to choose a particularly high effort
level following a first-period success and a particularly low effort level following a
first-period failure. The prospect of a higher second-period rent following a first-
period success motivates the agent to exert more effort in the first period; i.e., rents
in the second period act as reward and punishment for the first period. It should
be emphasized that we assume no technological impact of a first-period success or
failure on the second-period technology. Nevertheless, an optimal dynamic contract
exhibits memory. Hence, if an outsider observed today a principal-agent pair that
was successful and another identical pair that was not successful, he would be right
to predict that the first pair also is more likely to succeed tomorrow. In other
words, a serial correlation across periods, which we sometimes refer to as a “hot
hand” effect, is generated endogenously, merely based on incentive considerations.!

Just as in the one-shot model, effort levels are distorted and not every project

that would be installed in a first-best world will be pursued under moral hazard. It

!The term “having a hot hand” originated in basketball and means having a streak of successes
that cannot be attributed to normal variation in performance. It seems to spectators that the
probability of a success increases after a row of successes, even though the trials in question are

independent; see Gilovich, Vallone, and Tversky (1985).



also is still the case that the principal will always prefer a project (or, equivalently,
an agent) that yields a larger return in case of success (among otherwise identical
projects or agents). Somewhat surprisingly, however, the latter observation is no
longer true if renegotiation cannot be ruled out.

The “hot hand” effect implies that a principal would sometimes like to commit
to terminate a project following a first-period failure, even though technologically
the success probability of the second period is not affected by the first-period
outcome. Yet, the threat to terminate may not be credible if renegotiation cannot
be prevented. In this case, a new kind of inefficiency occurs, that to the best of
our knowledge has not been identified in the repeated moral hazard literature so
far: The principal might deliberately choose a project that is commonly known to
yield smaller potential returns than another (otherwise identical) project that is
also available. Similarly, she might deliberately hire an agent that is commonly
known to be less qualified.

The reason that a project might be “too good” to be funded or an agent might
be “overqualified” is the fact that the principal cannot resist the temptation to
renegotiate if the potential return is too attractive, which is anticipated by the
agent, whose incentives to work hard in the first period are dulled. In contrast, a
less qualified agent or an agent working on a less attractive project may well be
willing to exert more effort in the first period, because he knows that in case of a
failure he will not get a second chance. Since the credible threat to terminate the
project after a first-period failure improves first-period incentives, there are indeed
parameter constellations under which a relatively bad project is funded, while a
better project is not.

The literature on repeated moral hazard problems and renegotiation has differ-
ent strands. Most papers consider repeated versions of the traditional moral hazard
setting, where the agent is risk-averse and there is a trade-off between insurance
and incentives.? In a pioneering paper, Rogerson (1985) considered a two-period
moral hazard problem and showed that the optimal second-period incentives de-

pend on the first-period outcome (i.e., the contract exhibits memory), even though

2For comprehensive surveys, see Chiappori, Macho, Rey, and Salanié¢ (1994) and Bolton and

Dewatripont (2005, ch. 10).



the periods are technologically independent. However, his result is driven by the
consumption-smoothing motive of the risk-averse agent,®> which is absent in our
setting.

In moral hazard models with a risk-averse agent, renegotiation is an issue even
in the one-shot problem, because after the agent has chosen an effort level, there
is no need to expose him to further risk. Fudenberg and Tirole (1990), Ma (1991,
1994) and Matthews (1995, 2001) show that it depends on the details of the rene-
gotiation game (specifically, who makes the renegotiation offer) whether or not
effort incentives are reduced.? In contrast, in our framework there is scope for
renegotiation only if the moral hazard problem is repeated, and the details of the
renegotiation game are irrelevant for our results.

Although we consider a repeated moral hazard problem, it is interesting to
note that our results are also related to the repeated adverse selection literature.’
Specifically, in a seminal paper Dewatripont and Maskin (1995) consider a two-
period model where the agent has private information about the quality of a project
that he submits for funding. Ex ante, the principal would like to terminate bad
projects after the first period in order to deter the agent from submitting them
(“hard budget constraint”). Yet, at the beginning of the second period she is
tempted to refinance them (“soft budget constraint”). The absence of commitment
power thus enables bad projects to be funded. However, as has been pointed out
by Kornai, Maskin, and Roland (2003, p. 1110), the principal would not finance a
bad project if she knew the quality ex ante. In contrast, in our model a bad project
may be funded, while a better project may not be funded, even though the quality
is common knowledge.

In recent years, there has been a growing interest in repeated moral hazard mod-

3Cf. Malcomson and Spinnewyn (1988), Fudenberg, Holmstrém, and Milgrom (1990), and Rey
and Salanié (1990).

4See also Hermalin and Katz (1991) and Dewatripont, Legros, and Matthews (2003), who
consider observable but unverifiable effort.

>The fact that the one-shot moral hazard model with a risk-neutral but wealth-constrained
agent has some similarities to the one-shot adverse selection model has already been noted by
Laffont and Martimort (2002, p. 147).



els with limited liability to study long-term lender-borrower relationships. Contem-
poraneous work in this area includes Clementi and Hopenhayn (2006), De Marzo
and Fishman (2007a, 2007b), and Biais, Mariotti, Rochet, and Villeneuve (2010).°
These articles are concerned with the long-run dynamics of firm size and survival
rates. It is analyzed how an entrepreneur is best induced to avoid large risks or
to reveal private information about the cash flow, and whether the optimal invest-
ment and growth pattern can be implemented with standard financial contracts.
For reasons of tractability, these complex dynamic models usually assume that
the incentive problem of the entrepreneur/firm is a binary choice. In contrast, we
study a simple model with only two periods but characterize the optimal sequence
of effort levels when effort levels can be adjusted continuously.

The remainder of the paper is organized as follows. In Section 2.1, we intro-
duce the one-shot moral hazard problem with a risk-neutral but wealth-constrained
agent, which now is sometimes called “efficiency wage” model.” This model serves
as a benchmark for the dynamic analysis. We then introduce the two-period model
in Section 2.2.% In Section 3, we analyze the commitment scenario. In Section 4,
it is assumed that renegotiation cannot be ruled out, which may lead to the “too
good to be financed* (or “overqualification”) effect. Finally, concluding remarks

follow in Section 5. All proofs have been relegated to the appendix.

See also Fong and Li (2009) for a related analysis of relational contracts in an employment
context.

"See Tirole (1999, p. 745) or Laffont and Martimort (2002, p. 174). Moreover, cf. the traditional
efficiency wage literature (Shapiro and Stiglitz, 1984) and the literature on deferred compensation
(Lazear, 1981; Akerlof and Katz, 1989), which are related but have a different focus. In related
frameworks, Strausz (2006) studies auditing and Lewis and Sappington (2000) explore the role of
private information about limited wealth.

8Dynamic models with risk-neutral agents, hidden actions, and wealth constraints include
also Crémer (1995), Baliga and Sjostrom (1998), Che and Yoo (2001), and Schmitz (2005). Yet,
they rely on features (private information about productivity, observable yet unverifiable effort,
common shocks, and technological relations between the periods, respectively) which are absent
in the repeated (pure) moral hazard problem studied here. See also the unknown-quality model
of Hirao (1993) and the binary-effort model of Bierbaum (2002), who compare short-term and
long-term contracts. In related settings, Winter (2006) and Tamada and Tsai (2007) analyze

sequential agency problems.



2 The model

2.1 The one-shot contracting problem

As a useful benchmark, let us first take a brief look at the one-shot moral-hazard
problem that will be repeated twice in our full-fledged model. There are two
parties, a principal and an agent, both of whom are risk-neutral. The agent has
no resources of his own, so that all payments to the agent have to be nonnegative.
The parties’ reservation utilities are assumed to be zero. At some initial date 0,
the principal can decide whether or not to pursue a project. If she installs the
project, she offers a contract to the agent. Having accepted the contract, the agent
exerts unobservable effort e € [0, 1] at date 1. His disutility from exerting effort is
given by c(e). Finally, at date 2, either a success (y = 1) or a failure (y = 0) is
realized, where the probability of success is normalized to equal the effort level, i.e.

Pr{y = 1|e} = e. The principal’s verifiable return is given by yR.
Assumption 1. The effort cost function satisfies
a)d >0, >0, >0,and ¢’(e) > 0 for all e > 0,

b) ¢(0) =0, ¢(0) =0, and (1) > R.
The first-best effort level e”® maximizes the expected total surplus
S(e) :=eR —c(e) (1)
and is thus characterized by
S'(efBy=R—-d("P)=0. (2)

The principal could attain the first-best effort level, but in order to do so she
would have to leave all of her returns to the agent. Hence, the principal faces
a trade-off between increasing the pie and getting a larger share for herself. In
the second-best solution, the principal will not pay anything when no revenue is

generated.” If ¢ denotes the principal’s transfer payment to the agent in case of

9This is a standard result. See e.g. Bolton and Dewatripont (2005, Section 4.1.2) for a
simple textbook exposition of the one-shot moral hazard model with risk-neutrality and resource

constraints. See also Innes (1990), Pitchford (1998), or Tirole (2001) for variants of this model.



success, the agent’s expected payoff from exerting effort e is et — c(e). If t < R,
which will hold in the principal’s optimal contract,'® the agent’s maximization
problem has an interior solution characterized by ¢ = /(e). Because of this one-
to-one relationship between transfers set by the principal and the resulting effort
levels, we can proceed as if the principal could directly set the effort level, and write
the principal’s problem in terms of effort levels. The principal thus maximizes her
expected profit

P(e) :=e(R — d(e)), (3)

hence the first-order condition that characterizes the second-best effort level %% is
P/(eSB) _ R o C/(eSB) . eSBC//(esB) =0. (4)

Our assumptions on the cost function guarantee that the function P is concave.
We also define
Afe) := ec(e) — c(e), (5)

the agent’s rent from a contract that leads him to choose effort e. By calculat-
ing the derivative A’(e) = ec”’(e) we see that A is a strictly increasing, convex,
and nonnegative function. Hence, a higher implemented effort level yields higher
rents for the agent. In order to reduce the agent’s rent, the principal introduces a
downward distortion of the induced effort level, 98 < ef'5.

In the one-shot problem, the principal is willing to install the project whenever
the installment cost is lower than P(e%?), which is smaller than S(ef?); i.e., not
all projects that would be pursued in a first-best world will actually be installed.
However, given the choice between two (otherwise identical) projects with possible
returns R, and R, < Ry, the principal will never prefer the bad project that can

yield Ry only.

2.2 The two-period model

Now we turn to the full-fledged two-period model. For simplicity, we neglect dis-

counting. At date 0, the principal decides whether or not to install the project. To

ONote that offering a payment ¢ larger than R would violate the principal’s participation

constraint.
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Figure 1: The sequence of events.

simplify the exposition, we assume that there are no installment costs at this date.!!
The principal makes a take-it-or-leave-it contract offer to the agent. Having ac-
cepted the offer, at date 1 the agent chooses an unobservable first-period effort level
e; € [0, 1], incurring disutility c(e;). At date 2, the verifiable first-period return y; R
is realized, where y; € {0,1} denotes failure or success, and Pr{y; = 1|e;} = e;.
The project may then be terminated (z(y;) = 0) or continued (z(y;) = 1), which is
verifiable.!? In order to continue the project, the principal must invest an amount
I, < S(efB). In this case, at date 3 the agent chooses an unobservable second-
period effort level ey(y;) € [0,1]. Finally, at date 4 the verifiable second-period
return yo R is realized, where y, € {0, 1} and Pr{ys = 1|e2(y1)} = e2(y1). Note that
the two periods are independent; in particular, we do not assume any technological
spillovers that would make a second-period success more likely after a first-period
success. The sequence of events is illustrated in Figure 1.

The first-best benchmark solution. Assume for a moment that effort were
verifiable. The principal would then continue the project regardless of the first-

period outcome (z(0) = z(1) = 1), and she would implement the effort levels

1UWe thank an anonymous referee for suggesting this simplification. It is straightforward to
extend the model to the case in which the principal incurs costs I; > 0 when she installs the
project.

12We assume that it is too costly for the principal to replace the agent at date 2, because at
that point in time the parties are “locked-in” (i.e., the relationship has undergone Williamson’s
(1985) “fundamental transformation”). For instance, hiring a new agent for the ongoing project
might require specific training, which makes replacement unprofitable. See Spear and Wang
(2005), Mylovanov and Schmitz (2008), and Krikel and Schottner (2010) for models in which
replacement involves no costs. Our model could be extended to the case of costly replacement,

but this would make the exposition less tractable without yielding additional economic insights.



e1 = e3(0) = ey(1) = P with a straightforward forcing contract, leaving no rent
to the agent.

Contracts when effort is unobservable. In the remainder of the paper, we
assume again that effort levels are unobservable. We do not impose any ad hoc
restrictions on the class of feasible contracts; i.e., there is complete contracting in
the sense of Tirole (1999).

A contract specifies a continuation decision (which may be conditioned on the
first period outcome) and transfer payments from the principal to the agent (which
may be conditioned on the continuation decision and the first and second period
outcomes). The transfer payments have to satisfy the limited liability constraint of
the agent. The principal can also include recommended effort levels in the contract.
The contractual terms must be such that it is in the agent’s own self-interest to
obey the recommendations (cf. Myerson, 1982); i.e., the recommendations must
satisfy suitable incentive compatibility constraints.

Thus, a contract specifies for the possible first-period outcomes y; € {0,1} the
probability of continuation x(y;), the first-period transfer payments t;(y;) to be
made at date 2, and the second-period transfer payments t5(y1,y2) to be made at

date 4 in case of continuation.'® The limited liability constraints are given by

ti(y1) >0 (6)
for the first period and by
ta(y1,y2) > 0 (7)

for the second period. Note that the latter condition presupposes that the agent

cannot be forced to pay back payments that he received in the past.'* Finally,

13While it may well be optimal to randomize between continuation and termination, other kinds
of randomization cannot occur. Stochastic transfer payments can always be replaced by their
expected value, because both principal and agent are risk-neutral. This also includes transfer
payments that depend on the randomization device that pins down the continuation decision.
Moreover, it is straightforward to show that an optimal contract will never induce randomization
over effort levels.

14 Otherwise, the limited liability constraint would read t2(y1,y2) > —t1(y1). It turns out that
our results would not change if we relaxed the limited liability constraint in this way. In fact, it

would be without loss of generality to assume that all payments are made at date 4 only.



the contract specifies recommended effort levels e, e5(0), and e5(1). The incentive

compatibility constraints for the second period are
es(y1) € arg Ig{g}lc} eta(yr, 1) + (1 — e)ta(y1,0) — c(e). (8)

We denote the continuation payoff of the agent once the first period outcome is

realized by

a(yr) = ti(y1) + z(y1) |e2(y1)ta(v1, 1) + (1 — ea(y1))t2(y1,0) — 0(62(2/1))]- (9)

The first-period incentive compatibility constraint is then given by
e € arg m[gmlc] ea(l) + (1 —e)a(0) — c(e). (10)
ec|0,

We now show that the class of contracts that we need to consider can be simpli-
fied. In particular, we show that because only the difference between t5(ys, 1) and
t2(y2,0) matters for the agent’s effort choice in the second period, contracts that
reward a failure in the second period (¢2(y1,0) > 0) can be replaced by contracts

that specify suitably larger payments at date 2. For any given transfer scheme

(t1,t2) we define

ti(y) = ti(yr) +ta(y1, 0)x(y1),
t2(y170) = Oa and

to(y1,1) = max{ts(y1,1) — t2(y1,0),0}.

It is straightforward to check that the payments (¢, %) induce the same second
period effort levels as (t1,t2), the same continuation payoffs a(1) and a(0), and
therefore also the same first period effort levels. Moreover, they fulfill the limited
liability requirements, and they lead to the same expected payoffs.!> It is thus
without loss of generality to restrict attention to a set C' of contracts for the princi-
pal’s optimization problem, where elements k € C' are given by k = (t1, s, x, €1, €2)

with

o 2:{0,1} —[0,1],

5Note that a contract that satisfies only the weaker limited liability constraint to(y1,y2) >

—t1(y1) can be replaced by the scheme (1, %) that consists of nonnegative payments only.

10



o i : {0, 1} — Rzo, ty : {O, 1}2 — Rzo, tg(yl,O) = 0,
o ¢ :{0,1} — [0, 1] with e(y1) € argmaxcco1] eta(y1,1) — c(e), and
® ¢ € argmax.cpoqjea(l) + (1 —e)a(0) — c(e).

Since the agent can always choose not to exert any effort at all, the limited liability
constraint together with the incentive compatibility constraint ensures participa-
tion. Hence, all contracts in the set C' satisfy the incentive compatibility and
limited liability constraints and are accepted by the agent. If the principal offers a

contract k = (t1, s, x, e1,e9) € C, her expected profit is given by

(k) = e (R — (1) + 2(1) [62(1)(3 ~ (1, 1))—12]) (11)
T(1—e) (—tl(O) + 2(0) [62(o>(R — 15(0, 1))—12} )

In the solution of the optimization problem it will turn out that ¢,(0) = 0; i.e., an
agent will never be rewarded for a failure. A first-period success may be directly
rewarded with a bonus payment ¢;(1), while a second-period success may be re-
warded with a bonus t2(0,1) (following a first-period failure) or t5(1,1) (following
a first-period success). As we will see, a first-period success will also be indirectly
rewarded by the prospect of getting a larger bonus for a second-period success if it

follows a first-period success, which will be a driving force behind our main results.

3 The full commitment case

In this section, we assume that the principal can commit not to renegotiate the
contract that is written at date 0. In order to solve the full-fledged two-period model
we first solve the one-period problem of finding the optimal continuation contract
that leaves the agent with a certain payoff. While also being of independent interest,
this result is then used to find the optimal continuation payoffs in the two-period
problem. We denote by 7(a) the principal’s maximum continuation payoff when
she implements the expected second-period payoff a of the agent. Recall that the
principal can implement any second-period effort level ey by setting to(yp,1) =

' (es), sharing the second-period surplus S(ey) — I such that the agent gets A(es)

11



and the principal gets P(es) — I5. In order to characterize the function 7, we have
to find the continuation contract (1, x,ts, e3) with to = ’(eg) that maximizes the
principal’s payoff among those that implement a given expected payoff a of the

agent. Before we can state the result, we need the following lemma and definition:

Lemma 1. If I, > 0, then there is a unique effort level € > 0 with
S5'(e)
A'(e)

S(e) — I = Y A(e). (12)

If we define € = 0 in case Iy = 0, then the cut-off level € is a continuous and

increasing function of Iy, with & = e%8 at I, = P(e®B) and & = B at I, = S(ef'P).

Proof. See the appendix. O

Because the right hand side of (12) is nonnegative, the net present value of a
project with effort level € is also never negative. The so defined effort level e plays

a role in implementing relatively low payoffs of the agent.

Lemma 2. The following table shows the continuation contract that optimally im-

plements a given continuation payoff a of the agent, and the resulting continuation

payoff w(a) of the principal:

t1 e x m(a)
if0<a<A(e) 0 é am | *P(e) — D)
if A(e) < a < A(efP) 0 A Na) | 1 P(ey) — I
if A(efP) <a a— A(efB) | efB 1 | SEfP)—1,—a
The function m(a) is concave and has the derivative ©'(a) = ZEZ;
Proof. See the appendix. O

It becomes clear from the lemma that only projects with positive net present
value and effort level equal to or greater than e will be implemented. Moreover,
we see that as the agent’s payoff a increases, the expected total surplus induced by

the principal’s optimal continuation contract weakly rises.

12



If the agent’s payoff a is larger than A(ef?) = S(efP), then the principal will

FB and transfer the residuum a— A(ef?) to the agent by making a

implement e; = €
positive payment ¢;. Otherwise, there will be no such payment, since implementing
a project with positive net present value is a better method to reward the agent
than a direct transfer.

To see why a positive probability of termination is sometimes optimal for the
principal, consider the case that I, is lower than P(e5P), so that there exist effort
levels that lead to a positive continuation payoff, while the required payoff a is so low
that a project with effort level e; = A71(a) would lead to a negative continuation
payoff P(es) — I, < 0. In such a case, it is more profitable for the principal to
implement a higher effort level with a positive payoff for herself and achieve the
required a by adjusting the continuation probability x. The effort level € is the
result of a trade-off between a larger continuation payoff P(e) — Iy (which increases
with e up to e°P) and a lower probability of achieving this payoff (z = (o decreases
with e).

There is another case in which a positive probability of termination is optimal:
Assume that I, is larger than P(e®?), so that the principal’s continuation payoff
is negative for all effort levels, and a is so low that a project with effort level
ea = A7'(a) would have a negative net present value. It is then more profitable
for the principal to implement a higher effort level and scale the project down to
achieve the required continuation payoff a. In this case, the implemented effort
level € is larger than e“%.

The following proposition characterizes the second-best solution of the two-

period model under full commitment.

Proposition 1. Assume that the principal can commit not to renegotiate. In
the principal’s optimal contract, the project is either always continued with some

probability and the induced effort levels satisfy
efB > ef(1) > e > 58 > e§(0) > 0,
or the project is terminated after a failure and the effort levels satisfy
efB > el(1) > e > 98,

13



Proof. See the appendix. O

This proposition establishes the “hot hand” effect. Even though a success in the
first period has no technological effect whatsoever on the likelihood of a success
in the second period, the principal implements €5 (1) > €58 > €$(0). Giving
the agent in the second period particularly high incentives following a first-period
success (and particularly low incentives following a failure) has desirable spillover
effects on the first-period incentives: The agent works hard in the first period not
only in order to get the direct reward ¢;(1), but also in order to enjoy a higher
second-period rent. In fact, the direct first-period reward ¢;(1) will be positive
only if the principal already induces e$(1) = e/?, so that implementing an even
higher effort level following a first-period success would reduce the total surplus.
Since giving the agent incentives in the first period is now cheaper than in the
one-shot problem, the principal implements e; > 5.

In the next proposition, we explore the dependence of the optimal continuation

decisions on the installment cost.

Proposition 2. There exist cut-off levels I 1T, and I™", where
0<I9<IT < P(e®) < T < S(e"P),

such that

a) if I, < I¢, then the project is always continued, x(1) = x(0) = 1.

b) if IT > Iy > I€, then x(1) = 1 while x(0) < 1, i.e., the optimal contract leads
with positive probability to termination after a failure.

c) if I, > IT, then the project is terminated whenever the first period was a failure,
z(0) = 0, and it is continued with x(1) = 1 after a success for Iy < I, and with

some probability x(1) € (0,1) for Iy > I'T,

Proof. See the appendix. O

While for low installment costs it is always beneficial for the principal to con-
tinue the project unconditionally, continuing the project after a first-period failure
might not be in the principal’s interest when her continuation costs I, are suffi-

ciently large. Clearly, if I, is so large that P(e$(0)) < I, the principal is worse

14



off if she continues the project. Even if this inequality does not hold, it can still
be optimal for the principal to commit to terminate the project at least with some
probability, because doing so improves the agent’s first-period incentives. As Iy
becomes large, it may also become optimal to terminate the project with a positive
probability after a first-period success. To see why such a randomized decision
z(1) < 1 may be beneficial for the principal, consider the case that I, is close to
S(ef'B). Since the principal never installs a project with negative net present value,
she will implement a very large effort level e5(1) close to B, To implement such a
large effort level she has to leave almost all of the second-period return to the agent
while she bears the installment costs /5. She will therefore scale the project down
except in the case that the effect of the agent’s large continuation payoff on the
first-period effort level offsets the cost of setting x(1) = 1. This case occurs in the
following example of a quadratic cost function, which shows that randomization

does not have to occur in an optimal contract.

Lemma 3. If the cost function is quadratic (c(e) = ae?), then in the optimal

contract it is always true that x(y;) € {0,1} for y; € {0, 1}.

Proof. See the appendix. O

In the one-shot interaction, the most severe punishment available to the prin-
cipal is not to pay anything to the agent. If a two-period contract can be signed,
stronger incentives can be provided. The optimal contract displays memory; i.e.,
it does not coincide with contracts that ignore the information about the first pe-
riod outcome. As it is beneficial for the principal to make use of the two-period
structure, she will introduce certain “milestones” (y; = 1) that should be achieved
by the agent, whenever this is possible.'®

The inefficiencies exhibited by the second-best solution are of a similar nature

as the inefficiencies we encountered in the one-shot model. There are downward

16See also Gershkov and Perry (2009), who address the value of midterm reviews for a tour-
nament designer. A paper that takes this idea to the extreme is Che and Sakovicz (2004), in
which a hold-up problem can be fully overcome in the limit if the parties monitor each other’s
investment more and more frequently and can base their behavior in the negotiations on the

investment observed so far.
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distortions of the effort levels compared with the first-best solution, and as a result
there are projects that would be installed (and continued) in a first-best world,
but that are not pursued (or at least not continued after a first-period failure) in
the presence of moral hazard. However, it is still impossible for an investment

opportunity to be “too good” to be pursued, as is stated in the following corollary.

Corollary 1. Assume that the principal can commit not to renegotiate. If at date
0 the principal can choose between two (otherwise identical) projects with possible
returns Ry and R, < R,, she will never prefer the bad project that can yield R,
only.

Proof. See the appendix. O

4 Renegotiation and the “overqualification” effect

After the first period is over, the principal might want to modify the contractual
arrangements, because at that point in time she would be best off under the optimal
one-period contract as characterized in Section 2.1. In the following we assume that
the principal cannot ex ante commit not to renegotiate the contract.!” In our com-
plete contracting framework, the principal can mimic the outcome of renegotiations
in her original contract; i.e., we can confine our attention to renegotiation-proof

contracts.'®

Proposition 3. Assume that the principal cannot commit not to renegotiate.
a) If P(e5B) > I, then the project is always continued, x(0) = z(1) = 1. The
effort levels satisfy

efB > el (1) > ev > &5 (0) = .

17See Bolton and Dewatripont (2005) for extensive discussions of the assumption that rene-
gotiation cannot be ruled out. See also Wang (2000) and Zhao (2006), who study renegotiation
problems in more general frameworks.

18Note that, in particular, this means it is inconsequential how the renegotiation surplus would
be split at date 2. The principal can achieve the same outcome that would be attained if she had
all bargaining power in the renegotiation game by designing the appropriate renegotiation-proof

contract at the outset.
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b) If P(e5P) < I, , then the project is terminated whenever the first period was

a failure, x(0) = 0, and the contract is the same as under full commitment.

Proof. See the appendix. O

As we have seen in the previous section, if the project was continued under full
commitment, the principal implemented a second-period effort level smaller than
eB when the first period was a failure. The resulting smaller second-period rent
acted as an indirect punishment of the wealth-constrained agent for the first-period
failure. This is no longer possible if renegotiation cannot be ruled out, because
at date 2 the principal would prefer to implement e°? in order to maximize her
second-period profit. While thus the “stick” is no longer available, the principal
can still make use of the “carrot;” i.e., she can indirectly reward first-period effort
by implementing an effort level larger than P following a first-period success.'?
As a result, it is still cheaper for the principal to motivate the agent to exert first-
period effort in the two-period model than in the one-shot benchmark model, so
that e§ > €58,

Just as in the full commitment regime, for sufficiently large investment costs I,
the principal would be better off if she terminated the project whenever the first-
period was a failure. However, if renegotiation cannot be ruled out, at date 2 the
principal prefers to continue the project as long as she can make a positive second-
period profit by doing so. Her threat to terminate the project after a first-period
failure is no longer credible, unless her expected second-period profit in case of
continuation would actually be negative.

In other words, the principal would like to commit to termination following a
first-period failure, but she cannot do so. This observation has peculiar implica-
tions with regard to the project that the principal will choose at the outset, as is

highlighted in Corollary 3 below. A new kind of inefficiency occurs, which we saw

19Note that the principal would like to reduce her promised payment ¢2(1, 1) after a first-period
success has occurred (in order to implement e°? in the second period), but in this case there is
no scope for mutually beneficial renegotiation. The agent would insist on the original contract,

which gives him a larger rent.
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Figure 2:

This figure shows the jump in the principal’s maximal payoff at
I, = P(e’B), where the termination contract becomes feasible. The

dashed line shows the payoff with commitment.

neither in the well-known one-shot problem nor in the two-period model with full

commitment.

Corollary 2. Assume that the principal cannot commit not to renegotiate. For
I, < P(e%B) the principal’s expected profit, denoted by 11° (I, R), is decreasing in
I,. For I, > P(e°P) it is denoted by 11T (15, R) and again decreasing in I,. At
Iy = P(e5B) there is an upward jump, which is bounded from below by eS8 A(e58),

as tllustrated in Figure 2.

Proof. See the appendix. O

Corollary 2 says that the principal can be better off if her continuation costs I
are increased, which may be surprising at first sight. Yet, this result follows imme-
diately from the fact that the optimal contract with commitment is renegotiation-
proof for I, > P(e%?), while for smaller investment costs renegotiation-proofness is
a binding constraint. Hence, the principal’s expected profit makes an upward jump
at Iy = P(eP). This effect can be so strong that she would even prefer to have
higher investment costs in both periods, or similarly, she would prefer to install a

project that can only yield a smaller revenue R.
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Corollary 3. Assume that the principal cannot commit not to renegotiate. If
at date 0 the principal can choose between two (otherwise identical) projects with
possible returns Ry and Ry < Ry, she may prefer the bad project that can yield Ry
only.

Proof. See the appendix. O

For example, let c(e) = %62, I, = 012, R, = 0.68, and R, = 0.7. It is
straightforward to show that the principal’s expected profit is II ~ 0.147 if she
installs the “good” project that can yield R4, while it is II ~ 0.157 if she installs
the “bad” project that can yield Ry, only (and is otherwise identical). Note that if
there is a first-period installment cost I; = 0.15, this even means that while the
principal would be willing to install the “bad” project, the “good” project would
never be funded.

Intuitively, pursuing a bad project that can yield a relatively small return (or,
similarly, hiring a less qualified agent who can generate only a small return or who
requires higher investments by the principal) acts as a commitment device. The
principal knows that if she chooses the more attractive alternative, then at date 2
she cannot resist the temptation to continue after a first-period failure. For this
reason, a project can be just “too good” to be funded or an “overqualified” agent

may not be hired.?’

20Lewis and Sappington (1993) have also pointed out that employers will sometimes not hire
applicants who are “overqualified,” even when their salary expectations are modest. However, their
model is quite different from ours; they consider an adverse selection problem with countervailing
incentives due to type-dependent reservation utilities. Note that in our model a more productive
agent might not be hired even if his reservation utility is not higher than the one of a less qualified
agent. Similarly, Axelson and Bond (2010) also report a “talent scorned” effect in a model that is
similar to ours. However, they endogenize the agent’s outside option in the model, and the result

that less qualified agents can be preferred is due to the fact that they have lower outside options.
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5 Concluding remarks

In this paper, we have extended the literature on repeated moral hazard prob-
lems to cover hidden action models in which the agent is risk-neutral but wealth-
constrained. We have compared the induced effort levels across periods and states.
It has turned out that the optimal contract exhibits memory, even though the pe-
riods are technologically independent. Moreover, we have identified a novel kind of
potential inefficiency that has escaped the previous literature.

The present contribution seems to be sufficiently simple to be used as a building
block in more applied work. As has been pointed out in the introduction, our
model shares some features with dynamic adverse selection models. It might thus
be applied in fields which previously have been studied from the perspective of
the literature on precontractual private information and soft budget constraints.
Specifically, applications of our model could help to explain the funding of inferior
projects (e.g., in the context of development aid), even if the project quality is
commonly known. Our model could also be applied in the field of corporate finance,
where moral hazard problems with risk-neutral but wealth-constrained agents are
ubiquitous (see Tirole, 2005).

It is straightforward to relax several assumptions that were made to keep the
exposition as clear as possible. For example, if it is required by an application, one
might easily generalize the model by allowing different cost functions and different
returns in the two periods. Moreover, one can dispense with the assumption that
the principal has all bargaining power. Regardless of the bargaining protocol, the
principal would only be willing to participate if her investment costs were covered.
Hence, qualitatively our main findings would still be relevant. One could also
consider the case in which the agent’s wealth or his reservation utility may be
positive. As long as the agent is not wealthy enough to “buy the firm,” the effects

highlighted in our model continue to be relevant.
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Appendix

Proof of Lemma 1.

We define for e > 0 a function

Ple) = 5(e) — 1, - A0, (13)
which has the derivative
Fle) = 2O (L) A(e) + §'(e) A"(¢) (14)
A/(€)2 :

Recall that for effort levels e < ef"B, the function S is increasing and concave, and
A is positive, increasing, and strictly convex. Hence, F is strictly increasing for 0 <
e < ef'B.If I, > 0, then for sufficiently small effort levels e it holds that S(e) < I,
and therefore F'(e) < 0, while for e = P it holds that F(e) = S(ef'®) — I, > 0.
Hence, there exists a unique zero & > 0 of F. It follows immediately that & = ef'?

for I, = S(efP). In addition it holds that

Fe) = P(e) — 1y = ST HOKD iy, POAD )
This equality also implies
P -1 =L /f;)é)(e), (16)

which shows that & = P if I, = P(e%P).
Taking the derivative with respect to Iy on both sides of equation (12) which

defines e yields

o A”(e)
oL~ A A - A5 (17)

Hence, € is increasing in I. For I = 0 it holds that lim, o F'(e) = 0, which implies

that € approaches 0 as I, — 0.
Proof of Lemma 2.

The principal solves

max z(P(eg) — Iy) — t (18)
1,€2,T
S.t. tl 2 0,

t1 + xA(e2) = a,

z € [0,1].
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We transform this problem by replacing ¢; by a — zA(es):

max z(S(ey) — Iz) —a (19)

€2,%

s.t. a>xA(es),

z € [0,1].

First, we consider the case a > A(ef?). In this case, the required payoff of the
agent is greater than the possible gross surplus S(ef?) = A(ef?) and can therefore
only be achieved with a nonnegative transfer t; = a — A(eg). That is, the limited
liability constraint cannot be binding, and performing the maximization in (19)
without this constraint yields z = 1 and e, = 5. Since at these values the limited
liability constraint is equal to a > A(ef®), it follows that the limited liability
constraint is binding if and only if a < A(ef?).

For the case a < A(efP) it must therefore be true that A(es)z = a. If a = 0 then
it is easy to see that x = 0 is optimal, with the effort level remaining unspecified.
Since for @ > 0 it holds that > 0 and A(e2) > 0, the limited liability constraint

a

can be transformed to x = VICE and the constraint < 1 becomes A(ez) > a.

Hence, for the case a < A(ef'P) we get the optimization problem

5(62) — IQ
max ) (20)

st.  Alep) > a.

The Lagrangian for this problem is £(es, A) = SEZZ;f + A(A(e2) — a) with A > 0.

In the optimum it holds that
S'(e2)A(e2)
Al(€2)

and we have the complementary slackness condition A > 0 = A(e2) = a. The

— (S(e2) = I2) = —AA(e2)” (21)

left-hand side of this equation vanishes at e, = €, and it is shown in the proof of

Lemma 1 that it is decreasing in e;. Hence we either have that
S/(QQ)A(€2)

Al(es)
and A(ez) = a, which is true if and only if a > A(é), or we have that the effort

— (S(e2) — ) <0 (22)

level e; = € is implemented and the payoff is fine-tuned by adjusting the contin-

uation probability © = ﬁ. To summarize, the cheapest way for the principal to

implement continuation payoff a is given by

22



e x=1,t =a— AlelB), ey = B | with 7 = S(ef'B) — I, — a, if a > A(elP),
e x=1,t =0, ep = A (a), with m = P(ey) — I, if A(efP) > a > A(€), and
e x =a/A(e), t; =0, e; =€, with m = z(P(ey) — L), if A(é) >a > 0.

It remains to show that the function 7 is continuously differentiable with weakly

decreasing derivative 7'(a) = i:gzg, which then implies concavity of 7. For a >
A(efB) we have 7'(a) = —1 = Z;E%i;, and for a < A(é) we have 7'(a) = i:g

Because 7 is continuous, this includes a = 0 except for /s = 0. Both expressions
are independent of a. For the intermediate case, A(ef?) > a > A(€), the derivative
is m'(a) = Z;Ezg with e; = A71(a). It has the limits —1 as a — A(ef®) and Z;Eg
as a — A(e), which due to continuity of 7 is sufficient for differentiability at the

points A(e) and A(ef?). Moreover, on this interval we have

o) = Ple ) = Ple)A'(en) _ S"(ex)A'(e2) = S'lea) A'(ea)
Ale)’ A'(ez)?

<0. (23)

Proof of Proposition 1.

FB will be implemented, hence

As shown in Lemma 2, no effort level greater than e
ea(1) < ef'B. To show how the effort levels compare across periods and states, we
have to solve the principal’s maximization problem. Recall that a(1) denotes the
agent’s continuation payoff in case of a success and a(0) the agent’s continuation
payoff in case of a failure, so that in the first period the agent chooses an effort
level ey = argmax.ea(l) + (1 — e)a(0) — c(e). As described in Lemma 2, the
principal can choose any pair of nonnegative continuation payoffs a(0),a(1) and
get the payoff e; (R + m(a(1))) + (1 — e1)m(a(0)). Because setting a(1) < a(0) with
e; = 0 is dominated by repeating the optimal one-period contract,? we can omit
the constraint a(1) > 0 and use the first order condition ¢/(e;) = a(1) — a(0) to
characterize the incentive compatible first-period effort level. Hence, we can state
the principal’s optimization problem in terms of e; and a(0) as

nax e1(R +m(c(e1) + a(0))) + (1 — e1)m(a(0)) (24)

s.t. a(0) > 0.

21Unconditionally repeating the optimal one-period contract yields 2P(eB) — I, while e; = 0
yields P(e%B) — I, at best.
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The Lagrangian for this problem is
L(e1,a(0),\) = e (R+ (' (e1) +a(0))) + (1 — e1)m(a(0)) + Aa(0),

with A > 0. Recall that A’(e) = ec”’(e) to see that in the optimum it must hold
that
R+ 7m(a(1)) — m(a(0)) + A'(e1)n'(a(1)) = 0, (25)

and

e1 (a(1)) + (1 —ep)m'(a(0)) = =\, (26)

with either a(0) = 0, which corresponds to the termination case in the proposition,
or a(0) > 0 and A = 0.
We start with using the first order conditions to show that in the optimum

e1 < ey(1). First, in the case a(1) < A(efP), note that
d(er) = a(1) — a(0) < a(1) < ex(1)c(e2(1)) — cle2(1)) < ¢(e2(1)).

Second, for the case a(1) > A(ef?) we have 7'(a(1)) = —1 and 7(a(1)) < 0 (see
Lemma 2), so that the first order condition (25) tells us that A’(e;) < R. On the
other hand, A'(e;) = e’ (e1) > (e1), because ¢” is weakly increasing. Since for
any e; > efP it holds that /(e;) > R, it must in fact be true that e; < ef? = ey(1).

Next, we show that e; > B, Using the equality a(1) — a(0) = c/(e;) we can

rewrite the first order condition (25) as follows:

P'(er) = a(0) + 7(a(0)) — (a(1) + 7(a(1))) = A'(ex)(x"(a(1)) + 1).

Note that 7'(a(1)) > —1 (see Lemma 2), and because the second period surplus
rises in the implemented agent’s payoff, we see that P'(e;) < 0 and hence, e; > 55,

Moreover, e; = €8 can only hold if a(0) = 0, a(1) + w(a(1)) = 0, and 7'(a) = —1,

which can only be true in the boundary case I, = S(ef?).

It remains to be shown that, in case of continuation, e5(0) < e5Z. From Lemma 2
we know that 7'(a) = % is decreasing in a, hence we have that 7'(a(1)) <
7'(a(0)). In the case that a(0) > 0 and A = 0 it must be true that 7'(a(1)) and
7'(a(0)) have opposite signs for equation (26) to be fulfilled. Hence, it holds that

P'(ez(1)) < 0 < P'(e3(0)), which implies e5(0) < €58 < ey(1).
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Proof of Proposition 2.

First, we show that for installment costs smaller than P(e°?) it holds that (1) = 1
in the optimal contract, while for installment costs larger than P(e%?) it holds that
x(0) = 0. To see this, note that Lemma 2 implies that if (1) < 1 then ey(1) = €
and that if (0) > 0 then e5(0) > é. Moreover, Lemma 1 and Proposition 1 tell us
that for I, < P(e5?) it holds that & < €98 < ey(1), which contradicts z(1) < 1,
while for Iy > P(e°P) it would hold that & > €58 > ¢5(0) in case z(0) > 0, which
is a contradiction.

Next, we show that there exists a threshold I¢ > 0 as in the proposition. To
see what happens for very low installment costs Iy — 0, recall from the proof of
Proposition 1 (equation 26), that an optimal contact must satisfy the condition
e1m(a(1)) + (1 — e;)7'(a(0)) < 0. Lemma 2 and Lemma 1 imply that if in the
optimal contract z(0) < 1 then 7'(a(0)) = i:g, so that 7'(a(0)) — oo as Iy — 0
while 7/(a(1)) > —1. This shows that for sufficiently low levels of I a contract

with unconditional continuation (z(0) = z(1) = 1) is optimal.

Note that the effort levels induced by this unconditional continuation contract
do not depend on I5, which implies that the derivative of the principal’s maximum
profit with respect to I is equal to —1 for low installment costs. In general, the
maximum profit is decreasing and weakly convex in . Consequently, there must
exist an investment level /¢ > 0 such that to always continue the project is optimal
for all I, < I, but not for any I, > I¢.

Since we have already shown z(0) = 0 for all I, > P(e°P), there must exist
an investment level I7 with I¢ < IT <P(eP) such that a termination contract
(ef, el 2T T tI') with 27(0) = 0 is optimal for all I > IT. Next, consider the
(possibly empty) range of installment costs between I and IT for which the op-
timal contract features x(0) € (0,1). Equation (26) in the proof of Proposition 1
tells us that the first period effort level induced by this contract is

P'e)
P'(e) — m'(a(1))A'(e)

(27)

€1

Since at I, = P(e%B) this condition reads e; = 0, but e; close to zero would
contradict e; > P | it must hold that I7 < P(eP).

Finally, we show existence of the threshold I77. If the agent’s continuation
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payoff after a success, which is equal to ¢/(el) in the termination contract, is smaller

than A(€), then the project is continued with probability 27 (1) < 1 only, else it
is continued with probability z7(1) = 1 (this is again Lemma 2). As proved in
Lemma 1, the threshold e is increasing in I,. Moreover, it is straightforward to

show that el’, which is implicitly characterized by
R+m(c(ef)) + A'ef )n' (¢ (e1)) = 0,

(see equation 25, with a(0) = 0), is decreasing in I. Consequently, there must exist
a cut-off level P(eB) < ITT < S(ef'B), such that for all I, > IT it holds that
A(e) > () and 27 (1) < 1, and for all I, < ITT it holds that A(e) < (el) and
27(1) = 1.

Proof of Lemma 3.

First, note that for a quadratic cost function c(e) = ae* our assumptions imply
that 2 > R. For such a cost function, it holds that e = £ and S(efP) = B

1o
while €97 = £ and ¢/(e55) = £. It is thus the case that A(ef'?) < ¢/(e%F). Since
the principal’s optimal contract will always lead to a first-period effort level that
exceeds €2 it must hold that e5(1) = ef? and z(1) = 1 for all possible installment
costs.

Next, assume that for some I there was an optimal contract with z(0) € (0, 1).

Going back to equation (27) in the proof of Proposition 2 we see that this contract

would implement the first period effort level

r'(e) _ P(e)

— I
— I,

(28)

€1

e
5 s
where we used 7'(a(1)) = —1 (see Lemma 2) for the first equality, and the definition
of € in equation (12) together with equation (16) for the second. Taking into account
the incentive constraint for ey, ¢(e1) = a(1) — a(0), we can rewrite the principal’s

profit from such a contract as
P(ey) +e1(S(efP) — 1) — e12(0)(S(é) — L) + z(0)(P(e) — ). (29)
Plugging in the value for e, we see that it is equal to
P(ey) +e1(S(efP) — 1) < méle(e) + ey (S(efP) — L) = 11" (I, R), (30)
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where I17 (I, R) denotes the principal’s payoff from a termination contract. Hence,

a contract with z(0) € (0, 1) is never optimal.

Proof of Corollary 1.

Consider the optimal contract in the case of the bad project with return ;. In the
case of the good project with return R, > R, the principal could simply offer the
same contract. Then the agent’s behavior would be the same, but the principal’s
expected profit would be strictly larger. By optimally adjusting the contract in the

case of the good project, the principal’s payoff can only improve.

Proof of Proposition 3.
The principal now has to take into consideration additional renegotiation-proofness
constraints. First, we present the version of the renegotiation-proofness principle
that applies here (cf. Hart and Tirole, 1988). Renegotiation-proofness is simple in
our setting due to complete contracting and the fact that renegotiation can occur
only between the two periods.?? In particular, we do not need backward induction
to define the set of renegotiation-proof contracts. Because the arguments are well
known, we only sketch them here.

If there is a contract k = (eq, ea, x,t1,t2) € C in place, then at date 2, when the

outcome y; is realized, this contract would lead to a continuation payoff

a(yn) = t1(y1) + z(y1) (e2(y1)c (e2(y)) — clealrn)))

for the agent and a continuation payoff

pyr) = —ti(y1) + 2(y1) (e2(y1)(R — ¢ (ea(y))))

for the principal. We could assume any renegotiation process that is described by
a function that maps the current pair of continuation payoff a(y;), p(y1) to a pair

of expected payoffs a®™(y1), pF (y1) such that a®(y1) > a(y1), p™ (1) > p(y1),

22The only other points in time when new information arrives are at date 4, when y» realizes and
only payments remain to be made, and when the continuation decision realizes. Note, however,
that if an expected payoff (za, zp) is Pareto-optimal, then the realized termination payoffs (0, 0)

or continuation payoffs (a,p) are Pareto-optimal as well.
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BP(y1), pRP(y,) is Pareto-optimal in the set of attainable continua-

tion payoffs. As an example for such a process, one can imagine that the agent

and the pair a

(resp., the principal) makes a take-it-or-leave-it offer of a new continuation con-
tract (eh, o', t],t5,) with probability a (resp, 1 — «/), and the other party accepts or
rejects. Clearly, the contract k = (eq, s, t1, t9, ) is renegotiation-proof if and only
if it already specifies a Pareto-optimal second-period outcome for both y; € {0, 1}.
If the contract s is not renegotiation-proof, it will not lead to the specified effort
levels. Instead, second period outcomes are determined by renegotiation, which
is anticipated by the agent when he chooses the first-period effort level such that
d(eff) = a®F(1) — a™P(0). The principal’s payoff if the contract  is written and

renegotiated thus is
(k) = e (R +p"™ (1)) + (1 = ef")p™(0). (31)

Let C denote the set of all possible contracts as defined in Section 2.2 and let
CEP denote the set of renegotiation-proof contracts. Furthermore, I1(k) denotes
the principal’s payoff if she can commit to the contract », and IT%F (k) denotes the
principal’s payoff from a contract x if there is renegotiation. The version of the
renegotiation-proofness principle that applies in our framework says that

max [1%7 (k) = max TI(k). (32)

reC KECRP

It follows by definition of renegotiation-proof contracts that I1#¥ (k) = I1(k) for all

k € CRP and therefore max.cc 1" (k) > max,corre [1(k). The other direction fol-

lows because with complete contracts any Pareto-optimal allocation can be reached

by a contract in C.2*> With renegotiation every contract x € C leads to Pareto-

optimal continuation payoffs a®"(y1), p®¥'(y1), and a contract ' that specifies the
_ RP

continuation payoffs a’(y;) = o' (y;) and p/(y;) = p™ ' (y1) from the outset is then
renegotiation-proof with IT%F (k) = I1(x').

2By working directly with the set C, we use the same initial simplifications to the set of
contracts as in the full commitment case. The reason why we can do this is that all that matters
for renegotiation are the continuation payoffs of the two parties, and the simplifications that
were made to the set of contracts have the property that all possible continuation payoffs stay

attainable with the reduced set of contracts.
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Pareto optimal one-period outcomes can be found by maximizing the principal’s
payoff under the constraint that the agent gets at least a certain payoff, a problem
that we already partially solved with Lemma 2. The Pareto frontier must consist of
pairs (a,m(a)) of the form described in the lemma, but not all of these payoffs are
indeed Pareto-optimal. The function 7 is increasing as long as e; < e, and then
decreasing. Consequently, all pairs (a,7(a)) with e, > €52 are Pareto-optimal,
while all pairs with e, < €7 are Pareto-dominated.

Consider first the case I, < P(e°P). In this case, & < e8, and therefore of
all continuation contracts described in Lemma 2 only those with a > A(e°P) are
renegotiation-proof. The principal solves

a(IB%:Z%) er1 (R+m(a(1))) + (1 — eq)m(a(0)), (33)

subject to a(0) > A(e°P), and where e, is given by ¢(e;) = a(1) — a(0).
This is solved by a(0) = A(e5B) and €5 (0) = €8 as well as ef', &5 (1) implicitly
defined by /(&{) = a(1) — A(e°P) and

R+m(a(1)) — w(A(e*?)) + A'(&)7'(a(1)) = 0.

The comparison of effort levels follows as before. We denote the principal’s expected

profit in the case of unconditional continuation by
(L, R) = P(e]) + & [S(e5 (1)) = S(e”)] + P(e%F) — L. (34)

To get this expression for the profit we used that a(1) — /(&%) — A(eSB) =0 and
that with unconditional continuation a(y;) + 7(a(y1)) = (eg(yl))

Consider next the case I > P(e%P). In this case, € > ¢°P| so that all continu-
ation payoffs described in Lemma 2 are Pareto-optimal.

Since then I, > IT, the termination contract characterized in the proof of
Proposition 2 solves the principal’s maximization problem. This contract is renegotiation-

proof. The principal’s profit in case of termination is

(I3, R) = P(ef) + ey 2’ (1)(S(ey (1)) — I2).
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Proof of Corollary 2.

Let I1€(Iy, R) and T17(I,, R) be the profit from a renegotiation-proof continuation
contract and from a termination contract, resp., as defined in the proof of Propo-
sition 3. The functions I19(Iy, R) and II17(I5, R) are continuous and decreasing in
I, (with derivatives —1 and —e?, resp.). At I, = P(e®P) > IT, we know that
N7(I,, R) > 1I°(I,, R). Hence, at I, = P(e°P) the principal’s expected profit as
characterized in Proposition 3 is discontinuous, and the size of the jump is given

by

Proof of Corollary 3.

Fix R and I, = P(e%B). Because P(e°P) is increasing in R, Proposition 3 implies
that any R, < R leads to the expected profit I17 (15, R), while any R, > R leads
to the expected profit I1¢(I,, R,). Corollary 2 shows that 117 (Iy, R) > I1¢(I5, R) +
eSB A(e5P). Since I (I, R) and I1°(Iy, R) are continuous in R, one can find an R,
slightly larger than R and an R, slightly smaller than R, such that II7(Iy, R;) >
[19(I, R,), i.e., the principal prefers R to R,.
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