
Munich Personal RePEc Archive

Repeated moral hazard and contracts

with memory: The case of risk-neutrality

Ohlendorf, Susanne and Schmitz, Patrick W.

January 2011

Online at https://mpra.ub.uni-muenchen.de/28823/

MPRA Paper No. 28823, posted 15 Feb 2011 23:46 UTC



Repeated moral hazard and 
ontra
ts withmemory:The 
ase of risk-neutrality∗Susanne Ohlendorf† and Patri
k W. S
hmitz‡
Abstra
tWe 
onsider a repeated moral hazard problem, where both the prin
ipaland the wealth-
onstrained agent are risk-neutral. In ea
h of two periods, theagent 
an exert unobservable e�ort, leading to su

ess or failure. In
entivesprovided in the se
ond period a
t as 
arrot and sti
k for the �rst period,so that the e�ort level indu
ed in the se
ond period is higher after a �rst-period su

ess than after a failure. If renegotiation 
annot be prevented, theprin
ipal may prefer a proje
t with lower returns; i.e., a proje
t may be �toogood� to be �nan
ed or, similarly, an agent 
an be �overquali�ed.�JEL 
lassi�
ation: D86, C73Keywords: Dynami
 moral hazard; hidden a
tions; limited liability.

∗An earlier version of this paper was 
ir
ulated under the title �Repeated moral hazard, limitedliability, and renegotiation�. We would like to thank Patri
k Bolton, Bo Chen, Mathias Dewa-tripont, Oliver Gürtler, Thomas Mariotti, Tymo�y Mylovanov, Andreas Roider, Urs S
hweizer,and Jean Tirole for very helpful dis
ussions. Moreover, we are very grateful to two anonymousreferees and the editor, Jan Ee
khout, for making valuable 
omments and suggestions. Finan
ialsupport by Deuts
he Fors
hungsgemeins
haft, SFB/TR15, is gratefully a
knowledged.
†University of Bonn, Wirts
haftspolitis
he Abteilung, Adenauerallee 24�42, 53113 Bonn, Ger-many. E-mail: susanne.ohlendorf�uni-bonn.de
‡University of Cologne, Department of E
onomi
s, Albertus-Magnus-Platz, 50923 Köln, Ger-many, and CEPR, London, UK. E-mail: patri
k.s
hmitz�uni-koeln.de1



1 Introdu
tionThis paper o�ers a new perspe
tive on dynami
 moral hazard problems. Considera risk-neutral prin
ipal, who 
an hire a risk-neutral but wealth-
onstrained agent.The agent 
an exert unobservable e�ort, whi
h in
reases the likelihood of su

ess.In the one-shot problem, there is a well-known trade-o� between e�ort in
entivesand rent extra
tion, whi
h leads to a downward distorted e�ort level 
ompared tothe �rst-best solution. We extend the standard model by assuming that there isa se
ond period, in whi
h the prin
ipal 
an make an investment to 
ontinue theproje
t and the agent 
an again exert unobservable e�ort. It turns out that thereare several interesting insights that so far have es
aped the literature on repeatedmoral hazard, whi
h was fo
used on the 
ase of risk-averse agents.In parti
ular, if the prin
ipal 
an 
ommit not to renegotiate, the se
ond periodin
entives 
an be used to partially 
ir
umvent the limited liability 
onstraint. In these
ond period, the prin
ipal indu
es the agent to 
hoose a parti
ularly high e�ortlevel following a �rst-period su

ess and a parti
ularly low e�ort level following a�rst-period failure. The prospe
t of a higher se
ond-period rent following a �rst-period su

ess motivates the agent to exert more e�ort in the �rst period; i.e., rentsin the se
ond period a
t as reward and punishment for the �rst period. It shouldbe emphasized that we assume no te
hnologi
al impa
t of a �rst-period su

ess orfailure on the se
ond-period te
hnology. Nevertheless, an optimal dynami
 
ontra
texhibits memory. Hen
e, if an outsider observed today a prin
ipal-agent pair thatwas su

essful and another identi
al pair that was not su

essful, he would be rightto predi
t that the �rst pair also is more likely to su

eed tomorrow. In otherwords, a serial 
orrelation a
ross periods, whi
h we sometimes refer to as a �hothand� e�e
t, is generated endogenously, merely based on in
entive 
onsiderations.1Just as in the one-shot model, e�ort levels are distorted and not every proje
tthat would be installed in a �rst-best world will be pursued under moral hazard. It1The term �having a hot hand� originated in basketball and means having a streak of su

essesthat 
annot be attributed to normal variation in performan
e. It seems to spe
tators that theprobability of a su

ess in
reases after a row of su

esses, even though the trials in question areindependent; see Gilovi
h, Vallone, and Tversky (1985).2



also is still the 
ase that the prin
ipal will always prefer a proje
t (or, equivalently,an agent) that yields a larger return in 
ase of su

ess (among otherwise identi
alproje
ts or agents). Somewhat surprisingly, however, the latter observation is nolonger true if renegotiation 
annot be ruled out.The �hot hand� e�e
t implies that a prin
ipal would sometimes like to 
ommitto terminate a proje
t following a �rst-period failure, even though te
hnologi
allythe su

ess probability of the se
ond period is not a�e
ted by the �rst-periodout
ome. Yet, the threat to terminate may not be 
redible if renegotiation 
annotbe prevented. In this 
ase, a new kind of ine�
ien
y o

urs, that to the best ofour knowledge has not been identi�ed in the repeated moral hazard literature sofar: The prin
ipal might deliberately 
hoose a proje
t that is 
ommonly known toyield smaller potential returns than another (otherwise identi
al) proje
t that isalso available. Similarly, she might deliberately hire an agent that is 
ommonlyknown to be less quali�ed.The reason that a proje
t might be �too good� to be funded or an agent mightbe �overquali�ed� is the fa
t that the prin
ipal 
annot resist the temptation torenegotiate if the potential return is too attra
tive, whi
h is anti
ipated by theagent, whose in
entives to work hard in the �rst period are dulled. In 
ontrast, aless quali�ed agent or an agent working on a less attra
tive proje
t may well bewilling to exert more e�ort in the �rst period, be
ause he knows that in 
ase of afailure he will not get a se
ond 
han
e. Sin
e the 
redible threat to terminate theproje
t after a �rst-period failure improves �rst-period in
entives, there are indeedparameter 
onstellations under whi
h a relatively bad proje
t is funded, while abetter proje
t is not.The literature on repeated moral hazard problems and renegotiation has di�er-ent strands. Most papers 
onsider repeated versions of the traditional moral hazardsetting, where the agent is risk-averse and there is a trade-o� between insuran
eand in
entives.2 In a pioneering paper, Rogerson (1985) 
onsidered a two-periodmoral hazard problem and showed that the optimal se
ond-period in
entives de-pend on the �rst-period out
ome (i.e., the 
ontra
t exhibits memory), even though2For 
omprehensive surveys, see Chiappori, Ma
ho, Rey, and Salanié (1994) and Bolton andDewatripont (2005, 
h. 10). 3



the periods are te
hnologi
ally independent. However, his result is driven by the
onsumption-smoothing motive of the risk-averse agent,3 whi
h is absent in oursetting.In moral hazard models with a risk-averse agent, renegotiation is an issue evenin the one-shot problem, be
ause after the agent has 
hosen an e�ort level, thereis no need to expose him to further risk. Fudenberg and Tirole (1990), Ma (1991,1994) and Matthews (1995, 2001) show that it depends on the details of the rene-gotiation game (spe
i�
ally, who makes the renegotiation o�er) whether or note�ort in
entives are redu
ed.4 In 
ontrast, in our framework there is s
ope forrenegotiation only if the moral hazard problem is repeated, and the details of therenegotiation game are irrelevant for our results.Although we 
onsider a repeated moral hazard problem, it is interesting tonote that our results are also related to the repeated adverse sele
tion literature.5Spe
i�
ally, in a seminal paper Dewatripont and Maskin (1995) 
onsider a two-period model where the agent has private information about the quality of a proje
tthat he submits for funding. Ex ante, the prin
ipal would like to terminate badproje
ts after the �rst period in order to deter the agent from submitting them(�hard budget 
onstraint�). Yet, at the beginning of the se
ond period she istempted to re�nan
e them (�soft budget 
onstraint�). The absen
e of 
ommitmentpower thus enables bad proje
ts to be funded. However, as has been pointed outby Kornai, Maskin, and Roland (2003, p. 1110), the prin
ipal would not �nan
e abad proje
t if she knew the quality ex ante. In 
ontrast, in our model a bad proje
tmay be funded, while a better proje
t may not be funded, even though the qualityis 
ommon knowledge.In re
ent years, there has been a growing interest in repeated moral hazard mod-3Cf. Mal
omson and Spinnewyn (1988), Fudenberg, Holmström, and Milgrom (1990), and Reyand Salanié (1990).4See also Hermalin and Katz (1991) and Dewatripont, Legros, and Matthews (2003), who
onsider observable but unveri�able e�ort.5The fa
t that the one-shot moral hazard model with a risk-neutral but wealth-
onstrainedagent has some similarities to the one-shot adverse sele
tion model has already been noted byLa�ont and Martimort (2002, p. 147). 4



els with limited liability to study long-term lender-borrower relationships. Contem-poraneous work in this area in
ludes Clementi and Hopenhayn (2006), De Marzoand Fishman (2007a, 2007b), and Biais, Mariotti, Ro
het, and Villeneuve (2010).6These arti
les are 
on
erned with the long-run dynami
s of �rm size and survivalrates. It is analyzed how an entrepreneur is best indu
ed to avoid large risks orto reveal private information about the 
ash �ow, and whether the optimal invest-ment and growth pattern 
an be implemented with standard �nan
ial 
ontra
ts.For reasons of tra
tability, these 
omplex dynami
 models usually assume thatthe in
entive problem of the entrepreneur/�rm is a binary 
hoi
e. In 
ontrast, westudy a simple model with only two periods but 
hara
terize the optimal sequen
eof e�ort levels when e�ort levels 
an be adjusted 
ontinuously.The remainder of the paper is organized as follows. In Se
tion 2.1, we intro-du
e the one-shot moral hazard problem with a risk-neutral but wealth-
onstrainedagent, whi
h now is sometimes 
alled �e�
ien
y wage� model.7 This model servesas a ben
hmark for the dynami
 analysis. We then introdu
e the two-period modelin Se
tion 2.2.8 In Se
tion 3, we analyze the 
ommitment s
enario. In Se
tion 4,it is assumed that renegotiation 
annot be ruled out, whi
h may lead to the �toogood to be �nan
ed� (or �overquali�
ation�) e�e
t. Finally, 
on
luding remarksfollow in Se
tion 5. All proofs have been relegated to the appendix.6See also Fong and Li (2009) for a related analysis of relational 
ontra
ts in an employment
ontext.7See Tirole (1999, p. 745) or La�ont andMartimort (2002, p. 174). Moreover, 
f. the traditionale�
ien
y wage literature (Shapiro and Stiglitz, 1984) and the literature on deferred 
ompensation(Lazear, 1981; Akerlof and Katz, 1989), whi
h are related but have a di�erent fo
us. In relatedframeworks, Strausz (2006) studies auditing and Lewis and Sappington (2000) explore the role ofprivate information about limited wealth.8Dynami
 models with risk-neutral agents, hidden a
tions, and wealth 
onstraints in
ludealso Crémer (1995), Baliga and Sjöström (1998), Che and Yoo (2001), and S
hmitz (2005). Yet,they rely on features (private information about produ
tivity, observable yet unveri�able e�ort,
ommon sho
ks, and te
hnologi
al relations between the periods, respe
tively) whi
h are absentin the repeated (pure) moral hazard problem studied here. See also the unknown-quality modelof Hirao (1993) and the binary-e�ort model of Bierbaum (2002), who 
ompare short-term andlong-term 
ontra
ts. In related settings, Winter (2006) and Tamada and Tsai (2007) analyzesequential agen
y problems. 5



2 The model2.1 The one-shot 
ontra
ting problemAs a useful ben
hmark, let us �rst take a brief look at the one-shot moral-hazardproblem that will be repeated twi
e in our full-�edged model. There are twoparties, a prin
ipal and an agent, both of whom are risk-neutral. The agent hasno resour
es of his own, so that all payments to the agent have to be nonnegative.The parties' reservation utilities are assumed to be zero. At some initial date 0,the prin
ipal 
an de
ide whether or not to pursue a proje
t. If she installs theproje
t, she o�ers a 
ontra
t to the agent. Having a

epted the 
ontra
t, the agentexerts unobservable e�ort e ∈ [0, 1] at date 1. His disutility from exerting e�ort isgiven by c(e). Finally, at date 2, either a su

ess (y = 1) or a failure (y = 0) isrealized, where the probability of su

ess is normalized to equal the e�ort level, i.e.
Pr{y = 1|e} = e. The prin
ipal's veri�able return is given by yR.Assumption 1. The e�ort 
ost fun
tion satis�esa) c′ ≥ 0, c′′ ≥ 0, c′′′ ≥ 0, and c′′(e) > 0 for all e > 0,b) c(0) = 0, c′(0) = 0, and c′(1) ≥ R.The �rst-best e�ort level eFB maximizes the expe
ted total surplus

S(e) := eR − c(e) (1)and is thus 
hara
terized by
S ′(eFB) = R− c′(eFB) = 0. (2)The prin
ipal 
ould attain the �rst-best e�ort level, but in order to do so shewould have to leave all of her returns to the agent. Hen
e, the prin
ipal fa
esa trade-o� between in
reasing the pie and getting a larger share for herself. Inthe se
ond-best solution, the prin
ipal will not pay anything when no revenue isgenerated.9 If t denotes the prin
ipal's transfer payment to the agent in 
ase of9This is a standard result. See e.g. Bolton and Dewatripont (2005, Se
tion 4.1.2) for asimple textbook exposition of the one-shot moral hazard model with risk-neutrality and resour
e
onstraints. See also Innes (1990), Pit
hford (1998), or Tirole (2001) for variants of this model.6



su

ess, the agent's expe
ted payo� from exerting e�ort e is et − c(e). If t ≤ R,whi
h will hold in the prin
ipal's optimal 
ontra
t,10 the agent's maximizationproblem has an interior solution 
hara
terized by t = c′(e). Be
ause of this one-to-one relationship between transfers set by the prin
ipal and the resulting e�ortlevels, we 
an pro
eed as if the prin
ipal 
ould dire
tly set the e�ort level, and writethe prin
ipal's problem in terms of e�ort levels. The prin
ipal thus maximizes herexpe
ted pro�t
P (e) := e(R− c′(e)), (3)hen
e the �rst-order 
ondition that 
hara
terizes the se
ond-best e�ort level eSB is

P ′(eSB) = R− c′(eSB)− eSBc′′(eSB) = 0. (4)Our assumptions on the 
ost fun
tion guarantee that the fun
tion P is 
on
ave.We also de�ne
A(e) := ec′(e)− c(e), (5)the agent's rent from a 
ontra
t that leads him to 
hoose e�ort e. By 
al
ulat-ing the derivative A′(e) = ec′′(e) we see that A is a stri
tly in
reasing, 
onvex,and nonnegative fun
tion. Hen
e, a higher implemented e�ort level yields higherrents for the agent. In order to redu
e the agent's rent, the prin
ipal introdu
es adownward distortion of the indu
ed e�ort level, eSB < eFB.In the one-shot problem, the prin
ipal is willing to install the proje
t wheneverthe installment 
ost is lower than P (eSB), whi
h is smaller than S(eFB); i.e., notall proje
ts that would be pursued in a �rst-best world will a
tually be installed.However, given the 
hoi
e between two (otherwise identi
al) proje
ts with possiblereturns Rg and Rb < Rg, the prin
ipal will never prefer the bad proje
t that 
anyield Rb only.2.2 The two-period modelNow we turn to the full-�edged two-period model. For simpli
ity, we negle
t dis-
ounting. At date 0, the prin
ipal de
ides whether or not to install the proje
t. To10Note that o�ering a payment t larger than R would violate the prin
ipal's parti
ipation
onstraint. 7



Figure 1: The sequen
e of events.simplify the exposition, we assume that there are no installment 
osts at this date.11The prin
ipal makes a take-it-or-leave-it 
ontra
t o�er to the agent. Having a
-
epted the o�er, at date 1 the agent 
hooses an unobservable �rst-period e�ort level
e1 ∈ [0, 1], in
urring disutility c(e1). At date 2, the veri�able �rst-period return y1Ris realized, where y1 ∈ {0, 1} denotes failure or su

ess, and Pr{y1 = 1|e1} = e1.The proje
t may then be terminated (x(y1) = 0) or 
ontinued (x(y1) = 1), whi
h isveri�able.12 In order to 
ontinue the proje
t, the prin
ipal must invest an amount
I2 ≤ S(eFB). In this 
ase, at date 3 the agent 
hooses an unobservable se
ond-period e�ort level e2(y1) ∈ [0, 1]. Finally, at date 4 the veri�able se
ond-periodreturn y2R is realized, where y2 ∈ {0, 1} and Pr{y2 = 1|e2(y1)} = e2(y1). Note thatthe two periods are independent; in parti
ular, we do not assume any te
hnologi
alspillovers that would make a se
ond-period su

ess more likely after a �rst-periodsu

ess. The sequen
e of events is illustrated in Figure 1.The �rst-best ben
hmark solution. Assume for a moment that e�ort wereveri�able. The prin
ipal would then 
ontinue the proje
t regardless of the �rst-period out
ome (x(0) = x(1) = 1), and she would implement the e�ort levels11We thank an anonymous referee for suggesting this simpli�
ation. It is straightforward toextend the model to the 
ase in whi
h the prin
ipal in
urs 
osts I1 > 0 when she installs theproje
t.12We assume that it is too 
ostly for the prin
ipal to repla
e the agent at date 2, be
ause atthat point in time the parties are �lo
ked-in� (i.e., the relationship has undergone Williamson's(1985) �fundamental transformation�). For instan
e, hiring a new agent for the ongoing proje
tmight require spe
i�
 training, whi
h makes repla
ement unpro�table. See Spear and Wang(2005), Mylovanov and S
hmitz (2008), and Kräkel and S
höttner (2010) for models in whi
hrepla
ement involves no 
osts. Our model 
ould be extended to the 
ase of 
ostly repla
ement,but this would make the exposition less tra
table without yielding additional e
onomi
 insights.8



e1 = e2(0) = e2(1) = eFB with a straightforward for
ing 
ontra
t, leaving no rentto the agent.Contra
ts when e�ort is unobservable. In the remainder of the paper, weassume again that e�ort levels are unobservable. We do not impose any ad ho
restri
tions on the 
lass of feasible 
ontra
ts; i.e., there is 
omplete 
ontra
ting inthe sense of Tirole (1999).A 
ontra
t spe
i�es a 
ontinuation de
ision (whi
h may be 
onditioned on the�rst period out
ome) and transfer payments from the prin
ipal to the agent (whi
hmay be 
onditioned on the 
ontinuation de
ision and the �rst and se
ond periodout
omes). The transfer payments have to satisfy the limited liability 
onstraint ofthe agent. The prin
ipal 
an also in
lude re
ommended e�ort levels in the 
ontra
t.The 
ontra
tual terms must be su
h that it is in the agent's own self-interest toobey the re
ommendations (
f. Myerson, 1982); i.e., the re
ommendations mustsatisfy suitable in
entive 
ompatibility 
onstraints.Thus, a 
ontra
t spe
i�es for the possible �rst-period out
omes y1 ∈ {0, 1} theprobability of 
ontinuation x(y1), the �rst-period transfer payments t1(y1) to bemade at date 2, and the se
ond-period transfer payments t2(y1, y2) to be made atdate 4 in 
ase of 
ontinuation.13 The limited liability 
onstraints are given by
t1(y1) ≥ 0 (6)for the �rst period and by

t2(y1, y2) ≥ 0 (7)for the se
ond period. Note that the latter 
ondition presupposes that the agent
annot be for
ed to pay ba
k payments that he re
eived in the past.14 Finally,13While it may well be optimal to randomize between 
ontinuation and termination, other kindsof randomization 
annot o

ur. Sto
hasti
 transfer payments 
an always be repla
ed by theirexpe
ted value, be
ause both prin
ipal and agent are risk-neutral. This also in
ludes transferpayments that depend on the randomization devi
e that pins down the 
ontinuation de
ision.Moreover, it is straightforward to show that an optimal 
ontra
t will never indu
e randomizationover e�ort levels.14Otherwise, the limited liability 
onstraint would read t2(y1, y2) ≥ −t1(y1). It turns out thatour results would not 
hange if we relaxed the limited liability 
onstraint in this way. In fa
t, itwould be without loss of generality to assume that all payments are made at date 4 only.9



the 
ontra
t spe
i�es re
ommended e�ort levels e1, e2(0), and e2(1). The in
entive
ompatibility 
onstraints for the se
ond period are
e2(y1) ∈ arg max

e∈[0,1]
et2(y1, 1) + (1− e)t2(y1, 0)− c(e). (8)We denote the 
ontinuation payo� of the agent on
e the �rst period out
ome isrealized by

a(y1) = t1(y1) + x(y1)
[

e2(y1)t2(y1, 1) + (1− e2(y1))t2(y1, 0)− c(e2(y1))
]

. (9)The �rst-period in
entive 
ompatibility 
onstraint is then given by
e1 ∈ arg max

e∈[0,1]
ea(1) + (1− e)a(0)− c(e). (10)We now show that the 
lass of 
ontra
ts that we need to 
onsider 
an be simpli-�ed. In parti
ular, we show that be
ause only the di�eren
e between t2(y2, 1) and

t2(y2, 0) matters for the agent's e�ort 
hoi
e in the se
ond period, 
ontra
ts thatreward a failure in the se
ond period (t2(y1, 0) > 0) 
an be repla
ed by 
ontra
tsthat spe
ify suitably larger payments at date 2. For any given transfer s
heme
(t1, t2) we de�ne

t̃1(y1) = t1(y1) + t2(y1, 0)x(y1),

t̃2(y1, 0) = 0, and
t̃2(y1, 1) = max{t2(y1, 1)− t2(y1, 0), 0}.It is straightforward to 
he
k that the payments (t̃1, t̃2) indu
e the same se
ondperiod e�ort levels as (t1, t2), the same 
ontinuation payo�s a(1) and a(0), andtherefore also the same �rst period e�ort levels. Moreover, they ful�ll the limitedliability requirements, and they lead to the same expe
ted payo�s.15 It is thuswithout loss of generality to restri
t attention to a set C of 
ontra
ts for the prin
i-pal's optimization problem, where elements κ ∈ C are given by κ = (t1, t2, x, e1, e2)with

• x : {0, 1} → [0, 1],15Note that a 
ontra
t that satis�es only the weaker limited liability 
onstraint t2(y1, y2) ≥

−t1(y1) 
an be repla
ed by the s
heme (t̃1, t̃2) that 
onsists of nonnegative payments only.10



• t1 : {0, 1} → R≥0, t2 : {0, 1}
2 → R≥0, t2(y1, 0) = 0,

• e2 : {0, 1} → [0, 1] with e2(y1) ∈ argmaxe∈[0,1] et2(y1, 1)− c(e), and
• e1 ∈ argmaxe∈[0,1] ea(1) + (1− e)a(0)− c(e).Sin
e the agent 
an always 
hoose not to exert any e�ort at all, the limited liability
onstraint together with the in
entive 
ompatibility 
onstraint ensures parti
ipa-tion. Hen
e, all 
ontra
ts in the set C satisfy the in
entive 
ompatibility andlimited liability 
onstraints and are a

epted by the agent. If the prin
ipal o�ers a
ontra
t κ = (t1, t2, x, e1, e2) ∈ C, her expe
ted pro�t is given by

Π(κ) = e1

(

R− t1(1) + x(1)
[

e2(1)(R− t2(1, 1))−I2

]) (11)
+(1− e1)

(

−t1(0) + x(0)
[

e2(0)(R− t2(0, 1))−I2

])

.In the solution of the optimization problem it will turn out that t1(0) = 0; i.e., anagent will never be rewarded for a failure. A �rst-period su

ess may be dire
tlyrewarded with a bonus payment t1(1), while a se
ond-period su

ess may be re-warded with a bonus t2(0, 1) (following a �rst-period failure) or t2(1, 1) (followinga �rst-period su

ess). As we will see, a �rst-period su

ess will also be indire
tlyrewarded by the prospe
t of getting a larger bonus for a se
ond-period su

ess if itfollows a �rst-period su

ess, whi
h will be a driving for
e behind our main results.3 The full 
ommitment 
aseIn this se
tion, we assume that the prin
ipal 
an 
ommit not to renegotiate the
ontra
t that is written at date 0. In order to solve the full-�edged two-period modelwe �rst solve the one-period problem of �nding the optimal 
ontinuation 
ontra
tthat leaves the agent with a 
ertain payo�. While also being of independent interest,this result is then used to �nd the optimal 
ontinuation payo�s in the two-periodproblem. We denote by π(a) the prin
ipal's maximum 
ontinuation payo� whenshe implements the expe
ted se
ond-period payo� a of the agent. Re
all that theprin
ipal 
an implement any se
ond-period e�ort level e2 by setting t2(y1, 1) =

c′(e2), sharing the se
ond-period surplus S(e2)− I2 su
h that the agent gets A(e2)11



and the prin
ipal gets P (e2)− I2. In order to 
hara
terize the fun
tion π, we haveto �nd the 
ontinuation 
ontra
t (t1, x, t2, e2) with t2 = c′(e2) that maximizes theprin
ipal's payo� among those that implement a given expe
ted payo� a of theagent. Before we 
an state the result, we need the following lemma and de�nition:Lemma 1. If I2 > 0, then there is a unique e�ort level ē > 0 with
S(ē)− I2 =

S ′(ē)

A′(ē)
A(ē). (12)If we de�ne ē = 0 in 
ase I2 = 0, then the 
ut-o� level ē is a 
ontinuous andin
reasing fun
tion of I2, with ē = eSB at I2 = P (eSB) and ē = eFB at I2 = S(eFB).Proof. See the appendix.Be
ause the right hand side of (12) is nonnegative, the net present value of aproje
t with e�ort level ē is also never negative. The so de�ned e�ort level ē playsa role in implementing relatively low payo�s of the agent.Lemma 2. The following table shows the 
ontinuation 
ontra
t that optimally im-plements a given 
ontinuation payo� a of the agent, and the resulting 
ontinuationpayo� π(a) of the prin
ipal:

t1 e2 x π(a)if 0 ≤ a ≤ A(ē) 0 ē a
A(ē)

x(P (ē)− I2)if A(ē) < a < A(eFB) 0 A−1(a) 1 P (e2)− I2if A(eFB) ≤ a a− A(eFB) eFB 1 S(eFB)− I2 − aThe fun
tion π(a) is 
on
ave and has the derivative π′(a) = P ′(e2)
A′(e2)

.Proof. See the appendix.It be
omes 
lear from the lemma that only proje
ts with positive net presentvalue and e�ort level equal to or greater than ē will be implemented. Moreover,we see that as the agent's payo� a in
reases, the expe
ted total surplus indu
ed bythe prin
ipal's optimal 
ontinuation 
ontra
t weakly rises.12



If the agent's payo� a is larger than A(eFB) = S(eFB), then the prin
ipal willimplement e2 = eFB and transfer the residuum a−A(eFB) to the agent by making apositive payment t1. Otherwise, there will be no su
h payment, sin
e implementinga proje
t with positive net present value is a better method to reward the agentthan a dire
t transfer.To see why a positive probability of termination is sometimes optimal for theprin
ipal, 
onsider the 
ase that I2 is lower than P (eSB), so that there exist e�ortlevels that lead to a positive 
ontinuation payo�, while the required payo� a is so lowthat a proje
t with e�ort level e2 = A−1(a) would lead to a negative 
ontinuationpayo� P (e2) − I2 < 0. In su
h a 
ase, it is more pro�table for the prin
ipal toimplement a higher e�ort level with a positive payo� for herself and a
hieve therequired a by adjusting the 
ontinuation probability x. The e�ort level ē is theresult of a trade-o� between a larger 
ontinuation payo� P (e)−I2 (whi
h in
reaseswith e up to eSB) and a lower probability of a
hieving this payo� (x = a
A(e)

de
reaseswith e).There is another 
ase in whi
h a positive probability of termination is optimal:Assume that I2 is larger than P (eSB), so that the prin
ipal's 
ontinuation payo�is negative for all e�ort levels, and a is so low that a proje
t with e�ort level
e2 = A−1(a) would have a negative net present value. It is then more pro�tablefor the prin
ipal to implement a higher e�ort level and s
ale the proje
t down toa
hieve the required 
ontinuation payo� a. In this 
ase, the implemented e�ortlevel ē is larger than eSB.The following proposition 
hara
terizes the se
ond-best solution of the two-period model under full 
ommitment.Proposition 1. Assume that the prin
ipal 
an 
ommit not to renegotiate. Inthe prin
ipal's optimal 
ontra
t, the proje
t is either always 
ontinued with someprobability and the indu
ed e�ort levels satisfy

eFB ≥ eC2 (1) > eC1 > eSB > eC2 (0) > 0,or the proje
t is terminated after a failure and the e�ort levels satisfy
eFB ≥ eT2 (1) > eT1 ≥ eSB.13



Proof. See the appendix.This proposition establishes the �hot hand� e�e
t. Even though a su

ess in the�rst period has no te
hnologi
al e�e
t whatsoever on the likelihood of a su

essin the se
ond period, the prin
ipal implements eC2 (1) > eSB > eC2 (0). Givingthe agent in the se
ond period parti
ularly high in
entives following a �rst-periodsu

ess (and parti
ularly low in
entives following a failure) has desirable spillovere�e
ts on the �rst-period in
entives: The agent works hard in the �rst period notonly in order to get the dire
t reward t1(1), but also in order to enjoy a higherse
ond-period rent. In fa
t, the dire
t �rst-period reward t1(1) will be positiveonly if the prin
ipal already indu
es eC2 (1) = eFB, so that implementing an evenhigher e�ort level following a �rst-period su

ess would redu
e the total surplus.Sin
e giving the agent in
entives in the �rst period is now 
heaper than in theone-shot problem, the prin
ipal implements e1 > eSB.In the next proposition, we explore the dependen
e of the optimal 
ontinuationde
isions on the installment 
ost.Proposition 2. There exist 
ut-o� levels IC ,IT , and ITT , where
0 < IC ≤ IT < P (eSB) < ITT ≤ S(eFB),su
h thata) if I2 ≤ IC, then the proje
t is always 
ontinued, x(1) = x(0) = 1.b) if IT ≥ I2 > IC, then x(1) = 1 while x(0) < 1, i.e., the optimal 
ontra
t leadswith positive probability to termination after a failure.
) if I2 > IT , then the proje
t is terminated whenever the �rst period was a failure,

x(0) = 0, and it is 
ontinued with x(1) = 1 after a su

ess for I2 ≤ ITT , and withsome probability x(1) ∈ (0, 1) for I2 > ITT .Proof. See the appendix.While for low installment 
osts it is always bene�
ial for the prin
ipal to 
on-tinue the proje
t un
onditionally, 
ontinuing the proje
t after a �rst-period failuremight not be in the prin
ipal's interest when her 
ontinuation 
osts I2 are su�-
iently large. Clearly, if I2 is so large that P (eC2 (0)) < I2, the prin
ipal is worse14



o� if she 
ontinues the proje
t. Even if this inequality does not hold, it 
an stillbe optimal for the prin
ipal to 
ommit to terminate the proje
t at least with someprobability, be
ause doing so improves the agent's �rst-period in
entives. As I2be
omes large, it may also be
ome optimal to terminate the proje
t with a positiveprobability after a �rst-period su

ess. To see why su
h a randomized de
ision
x(1) < 1 may be bene�
ial for the prin
ipal, 
onsider the 
ase that I2 is 
lose to
S(eFB). Sin
e the prin
ipal never installs a proje
t with negative net present value,she will implement a very large e�ort level e2(1) 
lose to eFB. To implement su
h alarge e�ort level she has to leave almost all of the se
ond-period return to the agentwhile she bears the installment 
osts I2. She will therefore s
ale the proje
t downex
ept in the 
ase that the e�e
t of the agent's large 
ontinuation payo� on the�rst-period e�ort level o�sets the 
ost of setting x(1) = 1. This 
ase o

urs in thefollowing example of a quadrati
 
ost fun
tion, whi
h shows that randomizationdoes not have to o

ur in an optimal 
ontra
t.Lemma 3. If the 
ost fun
tion is quadrati
 (c(e) = αe2), then in the optimal
ontra
t it is always true that x(y1) ∈ {0, 1} for y1 ∈ {0, 1}.Proof. See the appendix.In the one-shot intera
tion, the most severe punishment available to the prin-
ipal is not to pay anything to the agent. If a two-period 
ontra
t 
an be signed,stronger in
entives 
an be provided. The optimal 
ontra
t displays memory; i.e.,it does not 
oin
ide with 
ontra
ts that ignore the information about the �rst pe-riod out
ome. As it is bene�
ial for the prin
ipal to make use of the two-periodstru
ture, she will introdu
e 
ertain �milestones� (y1 = 1) that should be a
hievedby the agent, whenever this is possible.16The ine�
ien
ies exhibited by the se
ond-best solution are of a similar natureas the ine�
ien
ies we en
ountered in the one-shot model. There are downward16See also Gershkov and Perry (2009), who address the value of midterm reviews for a tour-nament designer. A paper that takes this idea to the extreme is Che and Sakovi
z (2004), inwhi
h a hold-up problem 
an be fully over
ome in the limit if the parties monitor ea
h other'sinvestment more and more frequently and 
an base their behavior in the negotiations on theinvestment observed so far. 15



distortions of the e�ort levels 
ompared with the �rst-best solution, and as a resultthere are proje
ts that would be installed (and 
ontinued) in a �rst-best world,but that are not pursued (or at least not 
ontinued after a �rst-period failure) inthe presen
e of moral hazard. However, it is still impossible for an investmentopportunity to be �too good� to be pursued, as is stated in the following 
orollary.Corollary 1. Assume that the prin
ipal 
an 
ommit not to renegotiate. If at date0 the prin
ipal 
an 
hoose between two (otherwise identi
al) proje
ts with possiblereturns Rg and Rb < Rg, she will never prefer the bad proje
t that 
an yield Rbonly.Proof. See the appendix.
4 Renegotiation and the �overquali�
ation� e�e
tAfter the �rst period is over, the prin
ipal might want to modify the 
ontra
tualarrangements, be
ause at that point in time she would be best o� under the optimalone-period 
ontra
t as 
hara
terized in Se
tion 2.1. In the following we assume thatthe prin
ipal 
annot ex ante 
ommit not to renegotiate the 
ontra
t.17 In our 
om-plete 
ontra
ting framework, the prin
ipal 
an mimi
 the out
ome of renegotiationsin her original 
ontra
t; i.e., we 
an 
on�ne our attention to renegotiation-proof
ontra
ts.18Proposition 3. Assume that the prin
ipal 
annot 
ommit not to renegotiate.a) If P (eSB) > I2, then the proje
t is always 
ontinued, x(0) = x(1) = 1. Thee�ort levels satisfy

eFB ≥ ēC2 (1) > ēC1 > ēC2 (0) = eSB.17See Bolton and Dewatripont (2005) for extensive dis
ussions of the assumption that rene-gotiation 
annot be ruled out. See also Wang (2000) and Zhao (2006), who study renegotiationproblems in more general frameworks.18Note that, in parti
ular, this means it is in
onsequential how the renegotiation surplus wouldbe split at date 2. The prin
ipal 
an a
hieve the same out
ome that would be attained if she hadall bargaining power in the renegotiation game by designing the appropriate renegotiation-proof
ontra
t at the outset. 16



b) If P (eSB) ≤ I2 , then the proje
t is terminated whenever the �rst period wasa failure, x(0) = 0, and the 
ontra
t is the same as under full 
ommitment.Proof. See the appendix.As we have seen in the previous se
tion, if the proje
t was 
ontinued under full
ommitment, the prin
ipal implemented a se
ond-period e�ort level smaller than
eSB when the �rst period was a failure. The resulting smaller se
ond-period renta
ted as an indire
t punishment of the wealth-
onstrained agent for the �rst-periodfailure. This is no longer possible if renegotiation 
annot be ruled out, be
auseat date 2 the prin
ipal would prefer to implement eSB in order to maximize herse
ond-period pro�t. While thus the �sti
k� is no longer available, the prin
ipal
an still make use of the �
arrot;� i.e., she 
an indire
tly reward �rst-period e�ortby implementing an e�ort level larger than eSB following a �rst-period su

ess.19As a result, it is still 
heaper for the prin
ipal to motivate the agent to exert �rst-period e�ort in the two-period model than in the one-shot ben
hmark model, sothat ēC1 > eSB.Just as in the full 
ommitment regime, for su�
iently large investment 
osts I2,the prin
ipal would be better o� if she terminated the proje
t whenever the �rst-period was a failure. However, if renegotiation 
annot be ruled out, at date 2 theprin
ipal prefers to 
ontinue the proje
t as long as she 
an make a positive se
ond-period pro�t by doing so. Her threat to terminate the proje
t after a �rst-periodfailure is no longer 
redible, unless her expe
ted se
ond-period pro�t in 
ase of
ontinuation would a
tually be negative.In other words, the prin
ipal would like to 
ommit to termination following a�rst-period failure, but she 
annot do so. This observation has pe
uliar impli
a-tions with regard to the proje
t that the prin
ipal will 
hoose at the outset, as ishighlighted in Corollary 3 below. A new kind of ine�
ien
y o

urs, whi
h we saw19Note that the prin
ipal would like to redu
e her promised payment t2(1, 1) after a �rst-periodsu

ess has o

urred (in order to implement eSB in the se
ond period), but in this 
ase there isno s
ope for mutually bene�
ial renegotiation. The agent would insist on the original 
ontra
t,whi
h gives him a larger rent. 17



Figure 2:This �gure shows the jump in the prin
ipal's maximal payo� at
I2 = P (eSB), where the termination 
ontra
t be
omes feasible. Thedashed line shows the payo� with 
ommitment.neither in the well-known one-shot problem nor in the two-period model with full
ommitment.Corollary 2. Assume that the prin
ipal 
annot 
ommit not to renegotiate. For

I2 < P (eSB) the prin
ipal's expe
ted pro�t, denoted by Π̄C(I2, R), is de
reasing in
I2. For I2 ≥ P (eSB) it is denoted by ΠT (I2, R) and again de
reasing in I2. At
I2 = P (eSB) there is an upward jump, whi
h is bounded from below by eSBA(eSB),as illustrated in Figure 2.Proof. See the appendix.Corollary 2 says that the prin
ipal 
an be better o� if her 
ontinuation 
osts I2are in
reased, whi
h may be surprising at �rst sight. Yet, this result follows imme-diately from the fa
t that the optimal 
ontra
t with 
ommitment is renegotiation-proof for I2 ≥ P (eSB), while for smaller investment 
osts renegotiation-proofness isa binding 
onstraint. Hen
e, the prin
ipal's expe
ted pro�t makes an upward jumpat I2 = P (eSB). This e�e
t 
an be so strong that she would even prefer to havehigher investment 
osts in both periods, or similarly, she would prefer to install aproje
t that 
an only yield a smaller revenue R.18



Corollary 3. Assume that the prin
ipal 
annot 
ommit not to renegotiate. Ifat date 0 the prin
ipal 
an 
hoose between two (otherwise identi
al) proje
ts withpossible returns Rg and Rb < Rg, she may prefer the bad proje
t that 
an yield Rbonly.Proof. See the appendix.For example, let c(e) = 1
2
e2, I2 = 0.12, Rb = 0.68, and Rg = 0.7. It isstraightforward to show that the prin
ipal's expe
ted pro�t is Π ≈ 0. 147 if sheinstalls the �good� proje
t that 
an yield Rg, while it is Π ≈ 0. 157 if she installsthe �bad� proje
t that 
an yield Rb only (and is otherwise identi
al). Note that ifthere is a �rst-period installment 
ost I1 = 0.15, this even means that while theprin
ipal would be willing to install the �bad� proje
t, the �good� proje
t wouldnever be funded.Intuitively, pursuing a bad proje
t that 
an yield a relatively small return (or,similarly, hiring a less quali�ed agent who 
an generate only a small return or whorequires higher investments by the prin
ipal) a
ts as a 
ommitment devi
e. Theprin
ipal knows that if she 
hooses the more attra
tive alternative, then at date 2she 
annot resist the temptation to 
ontinue after a �rst-period failure. For thisreason, a proje
t 
an be just �too good� to be funded or an �overquali�ed� agentmay not be hired.2020Lewis and Sappington (1993) have also pointed out that employers will sometimes not hireappli
ants who are �overquali�ed,� even when their salary expe
tations are modest. However, theirmodel is quite di�erent from ours; they 
onsider an adverse sele
tion problem with 
ountervailingin
entives due to type-dependent reservation utilities. Note that in our model a more produ
tiveagent might not be hired even if his reservation utility is not higher than the one of a less quali�edagent. Similarly, Axelson and Bond (2010) also report a �talent s
orned� e�e
t in a model that issimilar to ours. However, they endogenize the agent's outside option in the model, and the resultthat less quali�ed agents 
an be preferred is due to the fa
t that they have lower outside options.
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5 Con
luding remarksIn this paper, we have extended the literature on repeated moral hazard prob-lems to 
over hidden a
tion models in whi
h the agent is risk-neutral but wealth-
onstrained. We have 
ompared the indu
ed e�ort levels a
ross periods and states.It has turned out that the optimal 
ontra
t exhibits memory, even though the pe-riods are te
hnologi
ally independent. Moreover, we have identi�ed a novel kind ofpotential ine�
ien
y that has es
aped the previous literature.The present 
ontribution seems to be su�
iently simple to be used as a buildingblo
k in more applied work. As has been pointed out in the introdu
tion, ourmodel shares some features with dynami
 adverse sele
tion models. It might thusbe applied in �elds whi
h previously have been studied from the perspe
tive ofthe literature on pre
ontra
tual private information and soft budget 
onstraints.Spe
i�
ally, appli
ations of our model 
ould help to explain the funding of inferiorproje
ts (e.g., in the 
ontext of development aid), even if the proje
t quality is
ommonly known. Our model 
ould also be applied in the �eld of 
orporate �nan
e,where moral hazard problems with risk-neutral but wealth-
onstrained agents areubiquitous (see Tirole, 2005).It is straightforward to relax several assumptions that were made to keep theexposition as 
lear as possible. For example, if it is required by an appli
ation, onemight easily generalize the model by allowing di�erent 
ost fun
tions and di�erentreturns in the two periods. Moreover, one 
an dispense with the assumption thatthe prin
ipal has all bargaining power. Regardless of the bargaining proto
ol, theprin
ipal would only be willing to parti
ipate if her investment 
osts were 
overed.Hen
e, qualitatively our main �ndings would still be relevant. One 
ould also
onsider the 
ase in whi
h the agent's wealth or his reservation utility may bepositive. As long as the agent is not wealthy enough to �buy the �rm,� the e�e
tshighlighted in our model 
ontinue to be relevant.
20



AppendixProof of Lemma 1.We de�ne for e > 0 a fun
tion
F (e) := S(e)− I2 −

S ′(e)A(e)

A′(e)
, (13)whi
h has the derivative

F ′(e) =
A(e)

A′(e)2
(−S ′′(e)A′(e) + S ′(e)A′′(e)). (14)Re
all that for e�ort levels e ≤ eFB, the fun
tion S is in
reasing and 
on
ave, and

A is positive, in
reasing, and stri
tly 
onvex. Hen
e, F is stri
tly in
reasing for 0 <

e ≤ eFB. If I2 > 0, then for su�
iently small e�ort levels e it holds that S(e) < I2,and therefore F (e) < 0, while for e = eFB it holds that F (e) = S(eFB) − I2 ≥ 0.Hen
e, there exists a unique zero ē > 0 of F . It follows immediately that ē = eFBfor I2 = S(eFB). In addition it holds that
F (e) = P (e)− I2 −

S ′(e)A(e)− A′(e)A(e)

A′(e)
= P (e)− I2 −

P ′(e)A(e)

A′(e)
. (15)This equality also implies

P (ē)− I2 =
P ′(ē)A(ē)

A′(ē)
, (16)whi
h shows that ē = eSB if I2 = P (eSB).Taking the derivative with respe
t to I2 on both sides of equation (12) whi
hde�nes ē yields

∂ē

∂I2
= −

A′2(ē)

A(ē)(S ′′(ē)A′(ē)− A′′(ē)S ′(ē))
> 0. (17)Hen
e, ē is in
reasing in I2. For I2 = 0 it holds that lime→0 F (e) = 0, whi
h impliesthat ē approa
hes 0 as I2 → 0.Proof of Lemma 2.The prin
ipal solves

max
t1,e2,x

x(P (e2)− I2)− t1 (18)s.t. t1 ≥ 0,

t1 + xA(e2) = a,

x ∈ [0, 1].21



We transform this problem by repla
ing t1 by a− xA(e2):
max
e2,x

x(S(e2)− I2)− a (19)s.t. a ≥ xA(e2),

x ∈ [0, 1].First, we 
onsider the 
ase a ≥ A(eFB). In this 
ase, the required payo� of theagent is greater than the possible gross surplus S(eFB) = A(eFB) and 
an thereforeonly be a
hieved with a nonnegative transfer t1 = a− A(e2). That is, the limitedliability 
onstraint 
annot be binding, and performing the maximization in (19)without this 
onstraint yields x = 1 and e2 = eFB. Sin
e at these values the limitedliability 
onstraint is equal to a ≥ A(eFB), it follows that the limited liability
onstraint is binding if and only if a ≤ A(eFB).For the 
ase a < A(eFB) it must therefore be true that A(e2)x = a. If a = 0 thenit is easy to see that x = 0 is optimal, with the e�ort level remaining unspe
i�ed.Sin
e for a > 0 it holds that x > 0 and A(e2) > 0, the limited liability 
onstraint
an be transformed to x = a
A(e2)

, and the 
onstraint x ≤ 1 be
omes A(e2) ≥ a.Hen
e, for the 
ase a < A(eFB) we get the optimization problem
max
e2>0

S(e2)− I2
A(e2)

(20)
s.t. A(e2) ≥ a.The Lagrangian for this problem is L(e2, λ) = S(e2)−I2

A(e2)
+ λ(A(e2)− a) with λ ≥ 0.In the optimum it holds that

S ′(e2)A(e2)

A′(e2)
− (S(e2)− I2) = −λA(e2)

2 (21)and we have the 
omplementary sla
kness 
ondition λ > 0 ⇒ A(e2) = a. Theleft-hand side of this equation vanishes at e2 = ē, and it is shown in the proof ofLemma 1 that it is de
reasing in e2. Hen
e we either have that
S ′(e2)A(e2)

A′(e2)
− (S(e2)− I2) < 0 (22)and A(e2) = a, whi
h is true if and only if a > A(ē), or we have that the e�ortlevel e2 = ē is implemented and the payo� is �ne-tuned by adjusting the 
ontin-uation probability x = a

A(ē)
. To summarize, the 
heapest way for the prin
ipal toimplement 
ontinuation payo� a is given by22



• x = 1, t1 = a−A(eFB), e2 = eFB , with π = S(eFB)− I2 − a, if a ≥ A(eFB),

• x = 1, t1 = 0, e2 = A−1(a), with π = P (e2)− I2, if A(eFB) > a > A(ē), and
• x = a/A(ē), t1 = 0, e2 = ē, with π = x(P (e2)− I2), if A(ē) ≥ a ≥ 0.It remains to show that the fun
tion π is 
ontinuously di�erentiable with weaklyde
reasing derivative π′(a) = P ′(e2)

A′(e2)
, whi
h then implies 
on
avity of π. For a >

A(eFB) we have π′(a) = −1 = P ′(eFB)
A′(eFB)

, and for a < A(ē) we have π′(a) = P ′(ē)
A′(ē)

.Be
ause π is 
ontinuous, this in
ludes a = 0 ex
ept for I2 = 0. Both expressionsare independent of a. For the intermediate 
ase, A(eFB) > a > A(ē), the derivativeis π′(a) = P ′(e2)
A′(e2)

with e2 = A−1(a). It has the limits −1 as a → A(eFB) and P ′(ē)
A′(ē)as a → A(ē), whi
h due to 
ontinuity of π is su�
ient for di�erentiability at thepoints A(ē) and A(eFB). Moreover, on this interval we have

π′′(a) =
P ′′(e2)A

′(e2)− P ′(e2)A
′′(e2)

A′(e2)3
=

S ′′(e2)A
′(e2)− S ′(e2)A

′′(e2)

A′(e2)3
< 0. (23)Proof of Proposition 1.As shown in Lemma 2, no e�ort level greater than eFB will be implemented, hen
e

e2(1) ≤ eFB. To show how the e�ort levels 
ompare a
ross periods and states, wehave to solve the prin
ipal's maximization problem. Re
all that a(1) denotes theagent's 
ontinuation payo� in 
ase of a su

ess and a(0) the agent's 
ontinuationpayo� in 
ase of a failure, so that in the �rst period the agent 
hooses an e�ortlevel e1 = argmaxe ea(1) + (1 − e)a(0) − c(e). As des
ribed in Lemma 2, theprin
ipal 
an 
hoose any pair of nonnegative 
ontinuation payo�s a(0), a(1) andget the payo� e1(R+ π(a(1))) + (1− e1)π(a(0)). Be
ause setting a(1) ≤ a(0) with
e1 = 0 is dominated by repeating the optimal one-period 
ontra
t,21 we 
an omitthe 
onstraint a(1) ≥ 0 and use the �rst order 
ondition c′(e1) = a(1) − a(0) to
hara
terize the in
entive 
ompatible �rst-period e�ort level. Hen
e, we 
an statethe prin
ipal's optimization problem in terms of e1 and a(0) as

max
e1,a(0)

e1(R + π(c′(e1) + a(0))) + (1− e1)π(a(0)) (24)
s.t. a(0) ≥ 0.21Un
onditionally repeating the optimal one-period 
ontra
t yields 2P (eSB)− I2, while e1 = 0yields P (eSB)− I2 at best. 23



The Lagrangian for this problem is
L(e1, a(0), λ) = e1(R + π(c′(e1) + a(0))) + (1− e1)π(a(0)) + λa(0),with λ ≥ 0. Re
all that A′(e) = ec′′(e) to see that in the optimum it must holdthat

R + π(a(1))− π(a(0)) + A′(e1)π
′(a(1)) = 0, (25)and

e1π
′(a(1)) + (1− e1)π

′(a(0)) = −λ, (26)with either a(0) = 0, whi
h 
orresponds to the termination 
ase in the proposition,or a(0) > 0 and λ = 0.We start with using the �rst order 
onditions to show that in the optimum
e1 < e2(1). First, in the 
ase a(1) ≤ A(eFB), note that

c′(e1) = a(1)− a(0) ≤ a(1) ≤ e2(1)c
′(e2(1))− c(e2(1)) < c′(e2(1)).Se
ond, for the 
ase a(1) > A(eFB) we have π′(a(1)) = −1 and π(a(1)) < 0 (seeLemma 2), so that the �rst order 
ondition (25) tells us that A′(e1) < R. On theother hand, A′(e1) = e1c

′′(e1) ≥ c′(e1), be
ause c′′ is weakly in
reasing. Sin
e forany e1 ≥ eFB it holds that c′(e1) ≥ R, it must in fa
t be true that e1 < eFB = e2(1).Next, we show that e1 > eSB. Using the equality a(1) − a(0) = c′(e1) we 
anrewrite the �rst order 
ondition (25) as follows:
P ′(e1) = a(0) + π(a(0))− (a(1) + π(a(1)))− A′(e1)(π

′(a(1)) + 1).Note that π′(a(1)) ≥ −1 (see Lemma 2), and be
ause the se
ond period surplusrises in the implemented agent's payo�, we see that P ′(e1) ≤ 0 and hen
e, e1 ≥ eSB.Moreover, e1 = eSB 
an only hold if a(0) = 0, a(1) + π(a(1)) = 0, and π′(a) = −1,whi
h 
an only be true in the boundary 
ase I2 = S(eFB).It remains to be shown that, in 
ase of 
ontinuation, e2(0) < eSB. From Lemma 2we know that π′(a) = P ′(e2)
A′(e2)

is de
reasing in a, hen
e we have that π′(a(1)) ≤

π′(a(0)). In the 
ase that a(0) > 0 and λ = 0 it must be true that π′(a(1)) and
π′(a(0)) have opposite signs for equation (26) to be ful�lled. Hen
e, it holds that
P ′(e2(1)) < 0 < P ′(e2(0)), whi
h implies e2(0) < eSB < e2(1).24



Proof of Proposition 2.First, we show that for installment 
osts smaller than P (eSB) it holds that x(1) = 1in the optimal 
ontra
t, while for installment 
osts larger than P (eSB) it holds that
x(0) = 0. To see this, note that Lemma 2 implies that if x(1) < 1 then e2(1) = ēand that if x(0) > 0 then e2(0) ≥ ē. Moreover, Lemma 1 and Proposition 1 tell usthat for I2 ≤ P (eSB) it holds that ē ≤ eSB < e2(1), whi
h 
ontradi
ts x(1) < 1,while for I2 ≥ P (eSB) it would hold that ē ≥ eSB > e2(0) in 
ase x(0) > 0, whi
his a 
ontradi
tion.Next, we show that there exists a threshold IC > 0 as in the proposition. Tosee what happens for very low installment 
osts I2 → 0, re
all from the proof ofProposition 1 (equation 26), that an optimal 
onta
t must satisfy the 
ondition
e1π

′(a(1)) + (1 − e1)π
′(a(0)) ≤ 0. Lemma 2 and Lemma 1 imply that if in theoptimal 
ontra
t x(0) < 1 then π′(a(0)) = P ′(ē)

A′(ē)
, so that π′(a(0)) → ∞ as I2 → 0while π′(a(1)) ≥ −1. This shows that for su�
iently low levels of I2 a 
ontra
twith un
onditional 
ontinuation (x(0) = x(1) = 1) is optimal.Note that the e�ort levels indu
ed by this un
onditional 
ontinuation 
ontra
tdo not depend on I2, whi
h implies that the derivative of the prin
ipal's maximumpro�t with respe
t to I2 is equal to −1 for low installment 
osts. In general, themaximum pro�t is de
reasing and weakly 
onvex in I2. Consequently, there mustexist an investment level IC > 0 su
h that to always 
ontinue the proje
t is optimalfor all I2 ≤ IC , but not for any I2 > IC .Sin
e we have already shown x(0) = 0 for all I2 ≥ P (eSB), there must existan investment level IT with IC ≤ IT ≤P (eSB) su
h that a termination 
ontra
t(eT1 , eT2 , xT , tT1 , t

T
2 ) with xT (0) = 0 is optimal for all I2 > IT . Next, 
onsider the(possibly empty) range of installment 
osts between IC and IT for whi
h the op-timal 
ontra
t features x(0) ∈ (0, 1). Equation (26) in the proof of Proposition 1tells us that the �rst period e�ort level indu
ed by this 
ontra
t is

e1 =
P ′(ē)

P ′(ē)− π′(a(1))A′(ē)
. (27)Sin
e at I2 = P (eSB) this 
ondition reads e1 = 0, but e1 
lose to zero would
ontradi
t e1 > eSB , it must hold that IT < P (eSB).Finally, we show existen
e of the threshold ITT . If the agent's 
ontinuation25



payo� after a su

ess, whi
h is equal to c′(eT1 ) in the termination 
ontra
t, is smallerthan A(ē), then the proje
t is 
ontinued with probability xT (1) < 1 only, else itis 
ontinued with probability xT (1) = 1 (this is again Lemma 2). As proved inLemma 1, the threshold ē is in
reasing in I2. Moreover, it is straightforward toshow that eT1 , whi
h is impli
itly 
hara
terized by
R + π(c′(eT1 )) + A′(eT1 )π

′(c′(eT1 )) = 0,(see equation 25, with a(0) = 0), is de
reasing in I2. Consequently, there must exista 
ut-o� level P (eSB) < ITT ≤ S(eFB), su
h that for all I2 > ITT it holds that
A(ē) > c′(eT1 ) and xT (1) < 1, and for all I2 ≤ ITT it holds that A(ē) ≤ c′(eT1 ) and
xT (1) = 1.Proof of Lemma 3.First, note that for a quadrati
 
ost fun
tion c(e) = αe2 our assumptions implythat 2α ≥ R. For su
h a 
ost fun
tion, it holds that eFB = R

2α
and S(eFB) = R2

4α
,while eSB = R

4α
and c′(eSB) = R

2
. It is thus the 
ase that A(eFB) ≤ c′(eSB). Sin
ethe prin
ipal's optimal 
ontra
t will always lead to a �rst-period e�ort level thatex
eeds eSB, it must hold that e2(1) = eFB and x(1) = 1 for all possible installment
osts.Next, assume that for some I2 there was an optimal 
ontra
t with x(0) ∈ (0, 1).Going ba
k to equation (27) in the proof of Proposition 2 we see that this 
ontra
twould implement the �rst period e�ort level

e1 =
P ′(ē)

S ′(ē)
=

P (ē)− I2
S(ē)− I2

, (28)where we used π′(a(1)) = −1 (see Lemma 2) for the �rst equality, and the de�nitionof ē in equation (12) together with equation (16) for the se
ond. Taking into a

ountthe in
entive 
onstraint for e1, c′(e1) = a(1)− a(0), we 
an rewrite the prin
ipal'spro�t from su
h a 
ontra
t as
P (e1) + e1(S(e

FB)− I2)− e1x(0)(S(ē)− I2) + x(0)(P (ē)− I2). (29)Plugging in the value for e1, we see that it is equal to
P (e1) + e1(S(e

FB)− I2) ≤ max
e

P (e) + e1(S(e
FB)− I2) = ΠT (I2, R), (30)26



where ΠT (I2, R) denotes the prin
ipal's payo� from a termination 
ontra
t. Hen
e,a 
ontra
t with x(0) ∈ (0, 1) is never optimal.Proof of Corollary 1.Consider the optimal 
ontra
t in the 
ase of the bad proje
t with return Rb. In the
ase of the good proje
t with return Rg > Rb the prin
ipal 
ould simply o�er thesame 
ontra
t. Then the agent's behavior would be the same, but the prin
ipal'sexpe
ted pro�t would be stri
tly larger. By optimally adjusting the 
ontra
t in the
ase of the good proje
t, the prin
ipal's payo� 
an only improve.Proof of Proposition 3.The prin
ipal now has to take into 
onsideration additional renegotiation-proofness
onstraints. First, we present the version of the renegotiation-proofness prin
iplethat applies here (
f. Hart and Tirole, 1988). Renegotiation-proofness is simple inour setting due to 
omplete 
ontra
ting and the fa
t that renegotiation 
an o

uronly between the two periods.22 In parti
ular, we do not need ba
kward indu
tionto de�ne the set of renegotiation-proof 
ontra
ts. Be
ause the arguments are wellknown, we only sket
h them here.If there is a 
ontra
t κ = (e1, e2, x, t1, t2) ∈ C in pla
e, then at date 2, when theout
ome y1 is realized, this 
ontra
t would lead to a 
ontinuation payo�
a(y1) = t1(y1) + x(y1) (e2(y1)c

′(e2(y))− c(e2(y1)))for the agent and a 
ontinuation payo�
p(y1) = −t1(y1) + x(y1) (e2(y1)(R− c′(e2(y))))for the prin
ipal. We 
ould assume any renegotiation pro
ess that is des
ribed bya fun
tion that maps the 
urrent pair of 
ontinuation payo� a(y1), p(y1) to a pairof expe
ted payo�s aRP (y1), p

RP (y1) su
h that aRP (y1) ≥ a(y1), pRP (y1) ≥ p(y1),22The only other points in time when new information arrives are at date 4, when y2 realizes andonly payments remain to be made, and when the 
ontinuation de
ision realizes. Note, however,that if an expe
ted payo� (xa, xp) is Pareto-optimal, then the realized termination payo�s (0, 0)or 
ontinuation payo�s (a, p) are Pareto-optimal as well.27



and the pair aRP (y1), p
RP (y1) is Pareto-optimal in the set of attainable 
ontinua-tion payo�s. As an example for su
h a pro
ess, one 
an imagine that the agent(resp., the prin
ipal) makes a take-it-or-leave-it o�er of a new 
ontinuation 
on-tra
t (e′2, x′, t′1, t

′
2,) with probability α (resp, 1−α), and the other party a

epts orreje
ts. Clearly, the 
ontra
t κ = (e1, e2, t1, t2, x) is renegotiation-proof if and onlyif it already spe
i�es a Pareto-optimal se
ond-period out
ome for both y1 ∈ {0, 1}.If the 
ontra
t κ is not renegotiation-proof, it will not lead to the spe
i�ed e�ortlevels. Instead, se
ond period out
omes are determined by renegotiation, whi
his anti
ipated by the agent when he 
hooses the �rst-period e�ort level su
h that

c′(eRP
1 ) = aRP (1)− aRP (0). The prin
ipal's payo� if the 
ontra
t κ is written andrenegotiated thus is

ΠRP (κ) = eRP
1 (R + pRP (1)) + (1− eRP

1 )pRP (0). (31)Let C denote the set of all possible 
ontra
ts as de�ned in Se
tion 2.2 and let
CRP denote the set of renegotiation-proof 
ontra
ts. Furthermore, Π(κ) denotesthe prin
ipal's payo� if she 
an 
ommit to the 
ontra
t κ, and ΠRP (κ) denotes theprin
ipal's payo� from a 
ontra
t κ if there is renegotiation. The version of therenegotiation-proofness prin
iple that applies in our framework says that

max
κ∈C

ΠRP (κ) = max
κ∈CRP

Π(κ). (32)It follows by de�nition of renegotiation-proof 
ontra
ts that ΠRP (κ) = Π(κ) for all
κ ∈ CRP , and therefore maxκ∈C ΠRP (κ) ≥ maxκ∈CRP Π(κ). The other dire
tion fol-lows be
ause with 
omplete 
ontra
ts any Pareto-optimal allo
ation 
an be rea
hedby a 
ontra
t in C.23 With renegotiation every 
ontra
t κ ∈ C leads to Pareto-optimal 
ontinuation payo�s aRP (y1), p

RP (y1), and a 
ontra
t κ′ that spe
i�es the
ontinuation payo�s a′(y1) = aRP (y1) and p′(y1) = pRP (y1) from the outset is thenrenegotiation-proof with ΠRP (κ) = Π(κ′).23By working dire
tly with the set C, we use the same initial simpli�
ations to the set of
ontra
ts as in the full 
ommitment 
ase. The reason why we 
an do this is that all that mattersfor renegotiation are the 
ontinuation payo�s of the two parties, and the simpli�
ations thatwere made to the set of 
ontra
ts have the property that all possible 
ontinuation payo�s stayattainable with the redu
ed set of 
ontra
ts. 28



Pareto optimal one-period out
omes 
an be found by maximizing the prin
ipal'spayo� under the 
onstraint that the agent gets at least a 
ertain payo�, a problemthat we already partially solved with Lemma 2. The Pareto frontier must 
onsist ofpairs (a, π(a)) of the form des
ribed in the lemma, but not all of these payo�s areindeed Pareto-optimal. The fun
tion π is in
reasing as long as e2 ≤ eSB, and thende
reasing. Consequently, all pairs (a, π(a)) with e2 ≥ eSB are Pareto-optimal,while all pairs with e2 < eSB are Pareto-dominated.Consider �rst the 
ase I2 < P (eSB). In this 
ase, ē ≤ eSB, and therefore ofall 
ontinuation 
ontra
ts des
ribed in Lemma 2 only those with a ≥ A(eSB) arerenegotiation-proof. The prin
ipal solves
max

a(1),a(0)
e1 (R + π(a(1))) + (1− e1)π(a(0)), (33)subje
t to a(0) ≥ A(eSB), and where e1 is given by c′(e1) = a(1)− a(0).This is solved by a(0) = A(eSB) and ēC2 (0) = eSB as well as ēC1 , ēC2 (1) impli
itlyde�ned by c′(ēC1 ) = a(1)− A(eSB) and

R + π(a(1))− π(A(eSB)) + A′(ēC1 )π
′(a(1)) = 0.The 
omparison of e�ort levels follows as before. We denote the prin
ipal's expe
tedpro�t in the 
ase of un
onditional 
ontinuation by

Π̄C(I2, R) = P (ēC1 ) + ēC1
[

S(ēC2 (1))− S(eSB)
]

+ P (eSB)− I2. (34)To get this expression for the pro�t we used that a(1) − c′(ēC1 ) − A(eSB) = 0 andthat with un
onditional 
ontinuation a(y1) + π(a(y1)) = S(e2(y1))− I2.Consider next the 
ase I2 ≥ P (eSB). In this 
ase, ē ≥ eSB, so that all 
ontinu-ation payo�s des
ribed in Lemma 2 are Pareto-optimal.Sin
e then I2 > IT , the termination 
ontra
t 
hara
terized in the proof ofProposition 2 solves the prin
ipal's maximization problem. This 
ontra
t is renegotiation-proof. The prin
ipal's pro�t in 
ase of termination is
ΠT (I2, R) = P (eT1 ) + eT1 x

T (1)(S(eT2 (1))− I2).
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Proof of Corollary 2.Let Π̄C(I2, R) and ΠT (I2, R) be the pro�t from a renegotiation-proof 
ontinuation
ontra
t and from a termination 
ontra
t, resp., as de�ned in the proof of Propo-sition 3. The fun
tions Π̄C(I2, R) and ΠT (I2, R) are 
ontinuous and de
reasing in
I2 (with derivatives −1 and −eT1 , resp.). At I2 = P (eSB) > IT , we know that
ΠT (I2, R) > Π̄C(I2, R). Hen
e, at I2 = P (eSB) the prin
ipal's expe
ted pro�t as
hara
terized in Proposition 3 is dis
ontinuous, and the size of the jump is givenby

ΠT (P (eSB), R)− Π̄C(P (eSB), R)

= P (eT1 ) + eT1
[

S(eT2 (1))− P (eSB)
]

−
(

P (ēC1 ) + ēC1
[

S(ēC2 (1))− S(eSB)
])

> P (ēC1 ) + ēC1
[

S(ēC2 (1))− P (eSB)
]

−
(

P (ēC1 ) + ēC1
[

S(ēC2 (1))− S(eSB)
])

> eSBA(eSB).

Proof of Corollary 3.Fix R and I2 = P (eSB). Be
ause P (eSB) is in
reasing in R, Proposition 3 impliesthat any Rb < R leads to the expe
ted pro�t ΠT (I2, Rb), while any Rg > R leadsto the expe
ted pro�t Π̄C(I2, Rg). Corollary 2 shows that ΠT (I2, R) > Π̄C(I2, R)+

eSBA(eSB). Sin
e ΠT (I2, R) and Π̄C(I2, R) are 
ontinuous in R, one 
an �nd an Rgslightly larger than R and an Rb slightly smaller than R, su
h that ΠT (I2, Rb) >

Π̄C(I2, Rg), i.e., the prin
ipal prefers Rb to Rg.
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