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ABSTRACT

The shortcomings of predictors obtained with the usual deterministic solution
methods in noalinear systems of stochastic cquations have been widcly
investigated i the literature. Most of the proposed therapics are based on
some cstimation of the canditional mean of the codogenous variables in the
farecast pertod. This however provides a solution ta the problemn which does
not respeet Lhe internal coherency of the madel, and in particuiar docs not
satisly nonlingar identitics. At the samc Ume, for analogy with univariate
skewed distributions, the conditional mean may be expected Lo lic on the
wrang side of the deterministic solution, meaning that it moves towards
values of the varables where the probability density is lower, rather than
towards lhe most probable values. In a previous study, Brillet, Calzolari and
Panaltoni (1986) proposed to estimate the mode of the joint distribution of
the endogenous variables as an alternative optimal predictor. The method
proposed in thal paper maximized the joint density of a subset of the
cndogenous  variables, corresponding  to  stachastic  cquations  oaly
{analogously (0 FIML estimation where, at lcast conceptually, identitics are
first substituied into stochasue cquations, and then the likelihood is defined
and maximized). In this paper, a more gencral approach is developed, which
maintains the idenlities. The model with identilics is viewed as a mapping
between the space of the random errors and an hypersurface in the higher
dimensional space of the endogenous variables; maximization is performed
on such 8 hypersurface. Experimental results an these two made prediciors
(and comparisons wilh the mean predictors that arc more vsually proposcd
as allernotives 1o 1the deferministic prediciors) arc provided for a macro
maodel of the lalian economy.

™ A simplified approach (o the problem was proposed at the /986 Furopean Meeting of the
Fegnometre Seclety (Dudapest) jn a joint paper with Jean-) ovis Prtlel, and caperimental
results were given for a large seale macrocconomic nodel of the French ecconomy
developed at INSER.  Afier suggestions and comments received from T 1. Tlenk Don,
Steve (5. Hall, Portunata Vesartn, Uredenc P Sterbene, and Kenneth [ Wallis, in this
paper we tackle the problem from a more general puiot al view. Mirella Damiani supplicd
the data aud the medal expermented with at the end of the paper. We are greally indehted
1o all of them. A pacticular thank is duc o Giorgio Tefia, foc sugpesting vs ihe
mutheimatical fringwaork that ynderlings the new incihod. owever, sesponsibility for the
conlants of this papsr remaing anly with the authars.
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I. INTRODUCTION

Predictors from nonlinear systems of slochastic cquations are usually
produced with deterministic simulation.  The shortcomings of this method
have been widely investigated in the literature.

For example, being deterministic solution uvsvally different from the
conditional mecan of the endogenous variabies, model’s validation should nat
be based dn the comparison between deterministic solution and historical
values of the variables (Howrey and Kelcjian, 1971). Moreover, Wallis
(1982) gives examples where the use of deterministic simulation predictors
from a nonlinear econometric model may be less cfficient than an
extrapniative time-series forecast, in contrast with 2 well known resuit on the
relative efficiency in the case of lincar systems.

Replacing deterministic solution predictors with an estimate of the
conditional means of endogenous variables in the prediction period allows to
overcome this problem, to some extcnt.

Observing that deterministic solution of a nonlinear model with estimated
parameters produces asymptoticaily biased and incfficient estimates of the
conditional means, Mariano and Brown {1983) rccommend to use the sampie
mean of replicated parametric stochastic simulations {using the algorithms
proposcd by Nagar, 1969, or by McCarthy, 1972, i the random crrors are
supposed multivariate normal), or {Brown and Mariano, 1984, 1985) (o use
the sample mean of nonparametric residual-based simulations.  Both
procedures attain, under certain conditions, asymptotic vnbiascdness (and
efficiency to some exlent).

Empirical studics have been pesformed on a variety of real-world
macrocconomic models used in practice by modcl builders Tor forecasting
purposes {c.g. Bianchi et ai, (976, 1980, Calzolari, 1979, Fair, 1980, Hall,
1984, 1986, Fisher and Salmon, 1986). They aimed at cvidencing whether
considering the conditional mean of the endogenous variables in place of the
deterministic soluiion gives or nol significant improvements to the forecaster.

I3 0. Calzerlart and L. Perattoni

The conclusion is clearly model-dependent and not univocal; <ases with
significant diffcrences have been evidenced.

Predictors obtained as conditional means of the endogenous variables are
not, howcver, optimal from all points of view. Thcy are obviously optimal
if the forecaster has in mind seme kind of quadratic loss function for his
forecasts, but have two highly undesirable propertics. The first is that

the means do not necessarily satisfy the equations of the model, given the

values of the predetermined variables and of the model's parameters, it is

generally impossible to find values of the random error terms which

correspond to the mean values of all the endogenous variables.
This is a problem in particular for those variables which appear in nonlinear
identities; if the means are computed with replicated stochastic simulations
{parametric or nonparametric), although all idcntities hold replication by
replication, they do not held anymore (at least the nonlinear ones) in terms
of the means. [n other words, the conditional mean does not provide a
coherent forecast, and this can tead to some sericus misinterpretations of the
results. Suppose for example that an [talian model is designed to predict the
exchange rate in lire per dollar (ERY). Then, in order to compute the
cxchange rate in doilars per lire, the model simply takes the reciprocal: the
identity £R2 = |/ ER1 will thercfore be included among the cquations. 1f
we usc the conditional means as prediciors, the mean of £K2 is not the
reciprocal of the mean of £R1. The naive analyst, who looks at the table of
results supplied by the model, will probably think that these results are
wrong (unless he is so ingenuous to believe that the model also considers the
existence of arbitrage oppertunities in the cxchange market).

Considering the problem of incoherency of predictors obtained from
conditional mcans, Hall (1986) abserves that also the modes of the marginat
distributions of the endogenous variables would nol cscape the problem: the
made of the product of two random variables is gencrally not the product of
the two modes.

A second undesirable property of the mean predictors is also usually
expected from the analysis of simple univariate distributions:
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the mean s uswally expecied (o bo less prohable than the deterministic

predictar: with respect (o the deterministic solution yalue. the mean of an

endogenous variehle is shifted towards the side of marve unlkely values,

rather than towards the side where the probabifity density grows.
in fact in skewed univariate distributions which arc unimodal and of
maoderate asymmetry, an empirical relationship halds between mean, median
and mode (sce Kendall and Stuarct, 1969, scction 2.11), and it is that the three
quantitics ogcur on the distribution in the same order (or in the rovesse
arder) as in the dictionary. This should imply that, if we associate the
median of each cndogenous variable to the deterministic selution of the
model, the most likely values of the variable arc systematically expecied o
lie on the opposite side of the mean.

What we propose in this paper is to reconsider the mode of the joins
distribution of the endogenous variables as an optimal predictor which
prescrves identities. Although it does not coincide with the mode of the
univariate distributions of the endogenous variables considered separately
(i.e. their marginal distributions), in some sensc it might be regarded as an
cstimate of the most likely joint value of all lhe endogenous variables
simultaneousiy. At the same time, since it is obtained as solution of the
systern corresponding to a particular sct of valucs of the random ecror terms,
it implies coherency.

In a previous study, Brillet, Calzolari and Panattoni (1986) propescd to
estimate the mode of the joint distribution, maximizing the joint density of a
subset of the cndogenous variables, corresponding to stochastic cguations
only. This was analogous to the approach that is usually followed for
cstimaling models with full information maximunt likeliteod: in the first step
of (he estimation process, at least conceplually, identilics are substituled inio
stochastic equations, and only afler this the likclihood can be defined (and
maximized) for the model that js, now, withou! idestities.

Ja Lhis paper, a more pencral approach is developed; it is explicily
designed Lo keep the idenlitics. The model with identities is viewed as 2
mapping belween the space of the random errors and an hypersurface in the
higher dimensional space of the endogenous variahles, and maximization is
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performed on such a hypersurface.  This provides the mode of the joint
distribution of a// the endogenous variables.

Some technical difficulties, arising when scarching for the maximum of the
joint density functica of all the endogenous variables in a large scale
raacroeconomelric model, had W be solved. The computational problems,
however, are only slightly more complex than for the method in Britlet et al.
{1986).

Experimental resvlts on the two dilTerent made predictors are provided lor
a macro model of the Italian economy. For the sake of complcteness and to
allow comparisons, we alse summarize in secuion 5 methods for computing
the mean prediciors and provide, alse for (hem, experimenlal results.

2. NOTATIONS AND FIRST ASSUMPTIONS

Let the simultaneous equation model be represented as

(1) o =] = 12T

where y, is the M x 1 vector of endopenous variables at time /, x, is the vector
of predetermined variables at time ¢, a is the veetor of all unknawn structural
coefficients in the moded, and f is the M x | veclor of structural lorm
operators. The model is supposed lo conlain m £ M slochastic cquations
and M - m identities. The m x | vector of random eccor lerms st tme ¢,

Y
2]
(2) =

Yy
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is assumed to be independently and ideatically distributed as & (0, E) with
the m x m covariance matrix L completely unknown, apart fram being
symmetric and positive definite. The vector «, is followed by a vector of
M - m zcroes in the structural form equations (1). We also decompose the
vector y, in two subvectors of lenglh m and A7 - m, respectively

Yia
Y

(] :
¥
(3} ¥ = l(z)J = et
Y Y+ 1y

Yata

There is a certain freedom in ordering the cndogenous variables inside the
subvectors y" and 3f? . A choice that is rather obvious, but not nccessarily
unique, 35 lo pul into v, the variable which is explained by the structural
eguation whose error term is ¥, , put into y,, the variable which is explained
by the structural equation whose error term is w,, , and so on, till ., and
u,.. Wehave filled in this way the subvector yi. The subvector p? is filled
in some way from the remaining Af - m endogenous variables.

[t is usually assumed that a simultancous equations system like (1)
uniquely defines the values of the clements of y, once vaiuves for the
coefficients, the predetermined variables, and the disturbance lerms are
given. This means that the structural form equations (1) implicitly define a
system of reduced form equations

(4) yf:g(xl‘n‘”f)

Since ail predictors are conditional on model’s paramelers and predetermined
variables, we shall often indicate the reduced form simply as

(%) y= g ()

0 (i Caleelur and f.. Panaitom

3. THE MODE PREDICTORS

3.1 A simplified approach

The way the problem is tackled jn this section reminds the full information
maximum fikelihood estimation of simultancous cquations systems (e.g.
Amemiya, 1983). Since the model (1) includes A - m identities, we first
substitute these identities into the m stochastic cquations. ® The resulting
madel may be written as

{6) pY 5, a) = n, (= 1,2,..,T

where the m = 1 vector of functions p is obtained from the vector of
functions f (eq.l) after substitutions.

We assume that, given the coefficients and the predetermined variables,
the functions vector p such that &, = p{(p(" is a continuous and differentiable
one to one mapping from a subset of R™ onto the whole R™ (w, is
multivariate normal, and therefore it spans the whole R~ space, while p
may be restricied 10 a subspace: for example, some of its elements may not
assurne negative values) and that the inverse function is also continuous and
dilferentiable.

The joint density of the elements of " can thus be obtained, as usual,
from the density of v, and the Jacobian determinant. Apart from an additive
constant, the Jog-density of the m - dimensional random vector " is

18 The notations could be made more accurate by dividing the vector fin two subvectors of
functions, and considenng more carefully the mappings implied by them. A more precise
nolalion, however. I8 nol sinctly necestary in whal fallows, and is npal introduced for the
sake of simplicily.
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o) Lo=-Liog/E + 1o o !AL ot
. 2 £ g ﬁy(”’ 2Pr P,

where the verlical bDar indicales gbsolure valve, while Lhe stesh indicates
determinant.

To obtain the mode predictor al Lime h, we must [irst compule Lhe
subvector ¥ that maximizes (7), given the predefermined variables x, |, Lthe
coefTicients @ and the covariance matrix L (Tor a and £, of course, we shall
use Lhe available estimates & and f:). Given Y we must then solve the
subsystern of identities, obtaining 34? , and thus thc complete AF x |
predictar for all the endogenous variables.

It is well known from the theory of maximum likelihood estimation that
the boring operation of substituting the identities can be bypassed (see
Qberhofer, 1971, who extends to the nonlincar case the trcatment of
identities in maximum likelihood estimation given by Rotheaberg and
Leenders, 1964, pp.71-72; sce also Anderson, 1984, theorem A.3.2). In fact,
the same values (and thecefore the same maximum) of L, can be obtaincd if
we partition the M x Af Jacobian corresponding to gll equations into 4
blocks

i [J’ 7 ]
8 F o= - 1.1 1.2
® Ay’ Hi 1z

{the 1,1 block corresponds to stochastic cquations) and instead of /dp,/ayf¥/
we use in (7) the ratio belween the deicrminant of the M x M Jacobian
matrix of the complete system, and the determinast of the
(M - m) = (M -m) submatrix correspondsng to identitics

14

1
(%) Ly 0B/ o |

|
l-;p.Ep,
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To simplify notations, in what (ollows the time subscripts 1 and ki will
sometimes be suppressed, when Lhis does not creaie confusion.

For an easier comparison with the approach of next section, we modify the
expression of the density given in equation {7). Firsy, rather than viewing L
as a function of y , we view it as a function of . To do this, we simply
substitute o 1o p in lhe last term, and consider the Jacobian matrix of first
derivatives of the elements of y" with respect 1o the clements of « (which is
simply the inverse of the matrix 9p/@y!" used above)

gy
(10 -%ioglﬁl—log |/§T/| -%fr’ﬂ'lu

Then we simply substitute to the absoiute valuc of the Jacobian determinant
the sguare root of the determinaat of the product belween Lhe Lranspose of
the Jacobian matrix and the matcix iself

2y ay(n/% l

|
(ty 'TWW-W/M e

Maximizing (11} in the forecast period, A

ay ORE
1 ; T g
(12) iia}zx“ ) log /Lf log/ i EW, / 7 u'T u]

provides a value lor the /m x | veclor of randnm crrers », . Inserting this
veclor into the model (1} and solving the model a1 lime & (that is, at least
conceplually, the same as insceling it into Lhe redueed form equations 4 or
$), we obviously get the same M = | prediclor y, discussed above.

The values of Lhe endogenous variables compuled in this way provide only
a partial answer 1o our problem. In fact, the valuc computed for the first
subvector (34" is the mode of (he joint distribution of the elements of this
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suhvector, but the sccand subvector (4™ is simply calculated 1o preserve the
internal coherency of the model {the whele vector y, is, in fact, a solution of
lhe system). Suppose now that we interpret the mode predictor as the most
likely joint vafue of the endogencus variables in the forecast period. Then
only 34" can be interpreted in this way, but the whole vector y, is nof the most
{ikely joint value of all the endogenous variables.

3.2. A more general approach

In order to maximize the joint density function of aff the endogenous
variables of the model, we must first consider the 1ype of mapping implied
by the model, then some concepts on the measure of a regular (hyper)surface,
and Nnally introduce a suitable definition of the probability density, with
respect to this measure. To clarify the problem, let us consider the simplest
cases.

Suppose that our model consists of two cquations, the former is stochastic
while the latter is an identity. Given coefficicats and predetermined
variables, salving the model we get the value of the rwo endogenous variables
for one value of the errar term. [ the sotufion is unigue and ihe error term
is normally disiributed, this gives a mapping lrom &' inro K* . The reverse
is not. (rue; we can, in fact, enter y, and y,, inlo the first cquation and
compute u,, as a residual (and this will certainly be unique), but we cannot
take two arbitrary values for the endogenous variables, since they are
constrained by the second equation (a point that is well known to the model
builders: coherent historical data suss satisly all the identities). The values
of y,, and y,, must lie on a curve in the two-dimensional plane. Therefore
our modei can be viewed as a mapping from &' enfo a one-dimensional
subset of R?, thatis a curve in the plane.

Suppose that cur model consists of three cquations, two of which are
stochastic. If for any value of the random crrors u,, and u,, (in R?) the
model provides a unique solution for v, ¥,, and y,, , the values of the y's will
neither span the full R3 space, nor any three-dimensionat subsct of K*, but

/4 . Calzolari and [.. Purationi

will lie on a surface. The model, thercfore, can be regarded as a mapping
from R? onto a two-dimensional surface in R .

In the general case of M equations, = of which are stochastic, the model
(in the forecast period, given predetermined variables and parameters) can
be viewed as a mapping from R~ onto an m-dimensional hypersurface in
the RY space (being m < M). We call ¥ this hypersurface. Under the two
assumptions

1) for any w in R~ the solution y is unigue;
2) for any yin ¥ we get a unique vector u ;

then we are dealing with a one fo one mapping between R~ and the
m -dimensional hypersucface ¥ in R . Asin equation (3), we indicate this
mapping as g: &K~ -~ ¥ (thc reduced form) and its inverseas g': ¥ — R~
(practically the first m x 1 subvector of the struclural form functicas vector
I

The first assumption is somewhat restrictive, but widely adopted and
accepted in the treatrnent of nonlingac systems. The second, on the contrary,
is not restrictive at all, given lhe way in which model builders write the
slructurzl form equations of a mode! fike {1). fn fact, if a vector of
cndogenous variables belongs 1o ¥, it certainly satisfics the constraint of the
M - m identities. In such a case, if we plug this vector into the # stochastic
equations, we get a unique vector of residuals. '

Having defined the nawure of this ore fo one mapping, we now assume, as
in the previous section, continuity and differentiability (in both directions),
and finally assume that the M xm Jacobian matrix G{u) = dyfow’

= dg(uw)/dn has {ull rank (= m).

Ina M = m reciangular matrix, a substitute for the notion of determinant
of a squarc matrix is the concept of modufus. [t is defined as the square root
of the sum of all the (.f-\n,!) squarcd determinants of order m obtained by

canceiling # - m rows. A simple way of computing the modulus, even when
41 and m are large, is obtained applying a well known theorem of linear
algehra on the determinant of the product of two rectangular matrices {e.g.
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Hadley, 1961, p.102); it is the square root of the detecminant of the product
between the m x M transpose and Lhe matrix ilself. For our facobian,

Glu), itis
on v

Having assumed full rank (= ) for the Jacobian, the modulus is # 0. The
m - dimensional hypersurface Y defined by the model is, under all these
assumptions, a regular hypersurface.

We need now to define a measure on the regular m- dimensional
hypersurface Y. As well known, the Af -dimensional Lebesgue mcasure of
any m- dimensional hypersurface in RY {m < M) is zero {e.g. Sikorski,
1969, p.299). This is consistent with intuition: the two-dimensional measure
{area) of a curve in the plane is zero; the three-dimensional measure (volume)
of a curve or of a surface in R?is also zero, etc. But we can define a special
onc-dimensional measure on curves, consistent with the intuitive notion of
length; or a special two-dimensional mecasure on suifaces, consistent with the
intuitive notion of arca. Existence and uniquencss of such a mcasure, for a
regular m -dimensional hypersurface ¥ in R¥ (m < M) is stated, for
example, in Sikorski {1969, p.327, theorem [.1), and is given by

(13) G| = ‘Ly| - ‘M

o' d

dp(u)

|- |
4 diy = = | = =
(14) by = 1G(u)] du {au, du= | =2

it

This theorem can be applied to derive a probability density with respect to
the hypersurface measure . If o{w) is the probability density for # in R~
the measure of the probability that p belongs to an element of the
hypersurface YV, resulting (through p = g(ur}) from the clement du of R~ | is
given by

i . Calzolari and [., Panationi

(15) drey = ofu) du

and can easily be developed as [ollows

- LLC Ry

(16) dny = o(u) du Gl [G(u)| du
-1
= —(p{g_lﬂa’uy = vy diy

6{g" 1Y

where
o{g'(¥1}

17 Yy =
Y " Jots )]

is taken as the definition of the probability densily of the vector y on the
regutar m -dimensional hypersurface ¥, [t is rather obvious that w,(y)
respects the usual conditions for density functions, being always =0 and
being equal 1 its integral, over the whole ¥, with respect to the
m -dimensional hypersurface measure Uy .

We now indjcate with L, the log-density

(18) Ly = log[yy (1]

that will obviously be Ly, for the values of y at timc ¢, or Ly, in the forecast
pericd, k. Being g the densily of the m -variate normal N(8, E) , we have,
apart from a constant term
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a9 Ly=-Tiogrer-t0g |6{e' ¥} -5 [’ 0] =[5 )]

Ly in cquation (i9) s conceprually defined as a function of the M x t vector
y, whose domain is the m - dimensional hypersurface ¥in RY ., The M = |
veclor p, that maximizes Ly in ¥ (thalis, y is eonstrained on Y), is the mode
predictor

(20) Max { ~Loog sz |6{e' D} -~ [T ):"[g"(y)]}
ya? 2 2

IT we interpret it as the most likely joint value of the cndogenovs variables in
the forecast period, such an interpretation applies 10 @/ the endogenous
variables, unlike the result derived in the previous section. Numerical values
of Ly can casily be caleulated by replacing g'(y) with 2

(21 -lglog /i - log IG(rr)[-;—n’E"u

Equation {21) provides a function of the m = | vector « , thalt must be
maximized for k without constraints in R”

{22) E‘}a{' [ -% log (/Ef - log |G ()] - %rr’ Z'lu]

in the forecast period, A. Inserting the resulting vector , into the model (1),
then solving the madel in the forecast period, we obtain the M x | mode
predictor ¥, .

From a technical point of vicw, the process is quite similar to what we did
in the previous section (eq.(2). The only difference is that in cquation (12}
we have the modulus of the m x m square matrix dptVau’ , while here we
have the modulus of the M = m rectangular matrix oy’

/8 5. Calzntari ane!l {.. Panatiani

4, MAXIMIZATION ALGORITHM

The two functions to be maximized for the mecthods of sections 3.0 and 3.2
are given in equations (11) and (21), respectively. Maximization is to be
done with respect o the vector #, , while predctermined variables are given,
as welf as coefficients and covariance matrix of Lhe random crror process (sel
at Lheir estimated values & and f). The Mirst term in both equations is a
constani. We must therefore compute the vector », which maximizes the sum
of the second and third term of equations (1) and (21). The third term in
both equations js particularly simple, being a positive definite quadratic
form, whose Hessian is the matrix I+ .

We have used the well known updating formula due to Broyden, Fletcher,
Goldfark and Shanno (BFGS, see for example Dennis and More”, 1977).
The algorithm is based on an iterative updating of an initial (s = m) positive
definite matrix. Since the computational efficiency is greatty improved if the
inittal matrix approximates the Hessian, it was rather obvious in both cases
to use the available estimate of Z-.

The algorithm also requires the evaluation at cach step of the gradient of
the function. This revealed to be a rather serious problem and at this stage
it has been solved by the numerical computation of first derivatives. This
approach however has two main drawbacks. First of all it requires a long
computation time, but nevertheless # came out 1o be computationally more
efficient than rival maximizing algorithms which require only the
compuiation of the Tunction value. To quantify this aspect we can mention
that in the case of the halian model here considered (sce below for
descriplion} the maximization of the quantities defined by equations (11) and
{21), with a tolerance of ten significant digits on the functien’s value, in both
cases required five iterations.  The computation giobally took about 14
minutes of CPU time on an [BM 4341 computer in both cases. However for
the mecthod of scction 3.1 we can maximize the expression of the density
given in cquation (9), rather than (11); in this case the computation is much
faster (only 50 scconds). This is mainly due to (he Fact that the clements of
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the Jacobizn malrices ip cguations (V1) and (21} arc obizined [lrom
diffcrences between two solutions of 1the simultancous cquation system, while
the corresponding clements in cquation (9) are simply computed from the
differences between the residuals of the single equations: obviously the fatter
computation is much faster than the former. Unfortunately, we are unable
to provide a similar computational simplification for the method of scction
32,

A second main drawback lics in a possible lack of accuracy in the
compulation of the derivatives. [n order to assess the robusiness of the
results versus the way in which derivatives are computed, several farmulas
(i.e. two, three and five points formulas with differont sizes of the increment)
were experimented with. The results proved wo be very cobust versus both the
choice of the formula and the choice of Lthe numericat ingrement, provided
1heL a centered formula is vsed.

5. THE MEAN PREDICTORS

We use the reduced form notation given in cquation (4). @ If the vector of
functional operators g is representabic in closed form, and the analytical
computation of the conditional mean is feasible

(2 v(x,a,B) = E(lx,a.L) = E[g(x,,a,u)x,a,L]

then if 4 and & are the available estimates of the structural form paramelers,
the cstimated conditiona) mean in the Torecast periad &, vy {x, a, L) may be

™ tost of this section i5 taken from the wnpublished paper by Brillct, Caizolan and
Panattoni (1986). It is reporied here foc the sake of completeness, to allow 1he tcader an
casicr understanding of the computations underlying the numereal results of (he Jast
section.

20 ¢ Calanlari and 1., Panatigai

used as predictor. Nonlinearity usvally implies Lhis predicior 10 be differeat
from the usually employed deterministic predictor g (x,. 4, 0).

Since, howewver, the vector of functional opcrators g is generally not
representable in closed form in the case of nonlinear models, and the
analytical computation of the mean (the vector y) is usualiy infeasible, some
approximation technigues must be eroployed.

The approximation technique that is most widcly used in the [iterature
(c.g. Bianchi et al., 1976, Fair, 1980, Fisher and Salman, 1984, Hall, 1986)
is the stochastic simutatian procedure with ngrmal errocs. The procedure is
as follows.

) A vector of pseudo-raadom aumbers i, with multivariale normal
distribution, zere mean and the available covariance matnx £ 5
generated. The method of Nagar (1969) can be applied if £ is positive
definite; il £ is not of [ull rank, the method of MeCarthy (1972) can be
used.

2) The vectors @, are inserted into the model, where the structural
coefficients are maintained fixed at their originally estimated values, and
the model is solved in the forecast peried, 4, oblaining for the endogenous
variablés the vector y, .

Stages | and 2 are repeated and sample mcans of the clements of y, are
computed.

If finite momentls exist, a very large number of replications would lead, in
practice, to the ¢xact values of the means y (x,, a, L) , if the parametecs of
the model (the veetor ¢ and the covariance matrix of the siructural
disturbances) were known wilh certziniy.  AS, however, we assuome only
cslimales of Lhese parameters, stochastic simulation will lead to an estimate
of the conditional means of the endogenous variables in Lhe prediction period
¥ (X, 4, .

The experimenial variance of the sample mean decreases in inverse
proportion with the number of replications. This is often insulficient to allow
appreciating significant differences between the mean and the deterministic
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solution value even with a rather Jarge number of replications (Bianchi et 2.,
1976, 1980, Fisher and Salmon, 1936). Huge gaias in the computational
efTiciency are often oblained in macroeconometric models by the use of
aniithetic variates in the stochastic simulation procedure (Calzolari, (979,
Brown and Mariano, 1985). Replications are performed pairwise, once with
pseudo-random error terms u, penerated as discussed above, and once wilh
Lhe same vector of error Lerms with opposite sign, - iy, The resulis of the twa
reglications (which will presumably be negalively correlaled) are averaged,
and the means of the endogenous variables arc compuied as sample means
of the pairwise means.

Whethes or nat aarithetic variates are used, Lhe resulls do not change,
cxeept thal the same atcuracy may be oblained (and has been oblained for
the model we are considering in this paper) with a smaller number of
replications. The results we preseat have been obtained with 50000 couples
of replications, which guaranteed for all the variables displayed in the 1ables
an estimate of the bias (deterministic solulion minus conditional mean) at
least 50 bimes larger than ils experimental stendard deviation: a similar
computational accuracy without ancithetic variates would be abtained only
at the cost of several millions of independent replications. 9

o Alternative mean prediciors could be oblained with Ihe redldual-based procedures
pioposed by Brown and Manano (1984, 1985). These pmwocdurcs olilize complete
enumeralion of the residvals aver the sample period. The basic proceduce consises of
replicating the solution of the modet in the (orecast pedod, A& exactly 7 Limes, using the
T vectors af eximaled residwals &, @, .., iy, and then computing sample means of ihe
¢lements of the T vectors of solutions. The computational sagey ace quite similar 1o ihose
of lhe parametric melthad deseribed abave, In the irst stage, however, we use onc vecloe
of ¢slimated residuals rather than using a generator of pscuda-random numbers; moseover,
atages 1 and 2 are tepeatcd exoctly T (imes (rather than an arbitrary number of times),
using cach time a differcal veetor of residuale. Since this paper is focussed on the mode
predictoss, results on the meda predictors are gven only for comparison purpoxes and are
therefore conlined Lo one methad only,
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6. A MACRO MODEIL OF THE ITALIAN ECONOMY

In 2 recenl paper, Sylos Labini (3987 bas analyzed ihe main
characlerisiics of Lhe (abor market in laly. Somc siructural equations are
aiso presenled in Lhe peper, for unemployment, productivity, wages and
salaries, somelimes disaggrcgaled by scotors.  These equations have then
been plugged inlo 3 macrocconometric moded of the real seclor (Damiani,
1987).

The present version of the model consists of six blocks: demand, supply,
prices. labor market, foreign <rade, income distribution. The totzl number
of zquelions in the madel is M = 62, while m = 25 is the number of
stochastic equations.

Estirnates of the structural coelficients of the model have been oblained
by means of a stralght{orward extension of Brundy and Jorgenson’s (1971)
instrumental variables method (limiled information) ta the case of nonlinear
models. The method was applied ileratively, as proposed in Dutla and
Lyttkens (1974), sa that the final estimates of coelMicienis are not affecied
by the choice of the initial values of coelficients. [n each ileralion, Lhe
instrumental variables are computed with delerministic solution of the
system (which is the slmplest choice, although not the best in the class af
nonlinear limited information ¢stimators. as is caplained in Amemiya, 1983).

The last year of the sample period is 1985, Forecasts are related o the
first year outside the sample estimation period, 1986,

7. RESULTS ON THE ITALIAN VIODEL

For some of the main endoegenous variables of (he model (listed in table
[), table 2 presents in the [irst column, indicaled as mean, the differcnces
between the deterministic prediclor and (he mean predicror compuied as in
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scction 5. For cach variable, this difference is displayed in per thowsand
form

(det) (mean)
i, ¥
(der)
Yih

The last two columns of the table, labelled M-mnde and m-mede, display,
stitl in per thousand form, the differences between the deterministic predictor
and the two mode predictors defined 1n sections 3.2 and 3.1, respectively.

(del) (mode)
25 Yih (j:';';’ — 1000
Yin

As far as the mean predictor is concerned, the difference with respect to the
deterministic predictor can be indicated as bias. The size of the bias is rather
small for almost all variables, although we must consider that we are dealing
only with forecasts one year ahead. For instance, it is -4.6%, for private
consumptions (COFAMK_D), but it is only 0.49 %y, for the growth rate of
GDP {PILK3D).

(t has heen shown (see Kendall and Stuart, 1969, section 2.11) that in most
univariate cases the difference between mean and mode is about three times
the difference between mean and median {which can be assimilated to the
deterministic value). This is equivalent to saying that the second statistic
(median - mode) should be minus two times the first one (median - mean).
This is obviously not truc in our c¢ase, whether we consider the mode
computed with the simplified approach of section 3.1, or the global method
of section 3.2 (fourth and third columas of table 2, respectively). Therefore,
abandening the deterministic forecast in favor of the (more efficient) mean
predictor, we are not nccessarily moving towards a region of less likely
values.

Between the two moede predictors, the global approach of section 3.2
produces values that are considerably more distant rom the deterministic
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solution.  The distance is also considerably larger than for the mean
predictors.

As a final remark we must point out that, on the basis of other
experiments carried out with different non linear models (like the
Klein-Goldberger model), this behaviour resulted 10 be substantially modei
independent.

Table 1
List of the main endogenous variables

PREMINSI = Defator for domestic private consumption (growth

rate).

PREXP$I = Export price index (growth rate).

P23 = Production per hour in the industrial seclor (growth
rate),

537 = Wage per hour in the industrial sector {growth rate).

INVIDK3! = Gross fixed investment in the industrial sector (growth
rate).

PR7 = Profit rate.

PREINGS] = Wholesale price index (growth rate).

VAINDKE! = Value added in the industrial sector at coastant prices
(growth rate).

DISTS! = Unemployment {(growth rate).

OCCDs! = Total dependent employment {growth rate).

QCSROS! = Employment in the sector of services (growth rate).

EXFOBKSI = Exports at constant prices (growth rate).

IMFOBKE! = Imports at constant prices (growth rate).
PILKS? = Gross domestic product at constant prices (growth rate),
COFAMK_I = Domestic private consumptions.
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