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HESSIAN AND APPROXIMATED HESSIAN MATRICES IN MAXIMUM

LIKELIHOOD ESTIMATION: A MONTE CARLO STUDY

by Glorgio CALZOLARI and Lorenzo PANATTONI

Centro Scientifico IBM, Pisa

ABSTRACT

Full information maximum likelihood estimation of econcmetric
models, linear and nonlinear in variables, 1s performed by means of
two gradient algorithms, using either the Hessian matrix or a
computationally simpler approximation. In the first part of the
paper, the behavior of the two methods in getting the optimum is
investigated with Monte Carlo experimentation on some models of
small and medium size. In the second part of the paper, the
behavior of the twec matrices in producing estimates of the
asymptotic covariance matrix of coefficients is analyzed and, again,
experimented with Monte Carle on the same models. Some systematic
differences are evidenced.
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1. MCTIVATION ANC INTRODUCTION

The motivation wunderlying this Monte Carlo study on full
informaticn maximum likelihood is twofolde On the vne sides this
work was motivated by the optimization techniques which have been
proposed in the last few years and experimented  on linear and
nonl inear models of increasing size. ahile some techkniques are
search algorithms which do not make wuse of information on firs; and
seccnd derivatives {e.ge Parker 1982)9 it is generally acknowledgec
that gradient methodss and more specifically HNewton-like methoass
which wake use of such informaticns should be superior to the
otherss at least near the optimume The drawback of Newton-like
methodss as well geointed out in Helsley (1980, pa222)+ lies in the
excessive cost required in the ¢a3lculation of the Hessxah mAtrixs
Therefores methoas have oeen proposed ia the literature which

replace the Hessian matrix with some approximrationss like those

adepted in Barndty Halls Hail and HauswTan (1974)s or in Caqgenais
{1978)a
Belsley's findingsy after comparing the computational

optimization perforrances of different approximatlons,'p1aCed the
algorithm which uses the ™exact" Hessian in 3 dominant position for
eptimizaticn of the FIML objective function. 9n the other hand
Dagenais' experiments showed that a gradient method in which the
Hessian is replaced by a suitable approximation 7 can be
computationally more efficient than a Newton-like algorithme at
least as leng as the robustness with respect to the initial quess of
the coefficients is concerneds This motivated the first part cf the
Monte Carlo studys described in sections 3 and & of this paper. The
performances of the HNewton-like mathod are cecmpared a«~ith the

performances of a gradient algoerithm in which a more easity

obtainablte matrix is used: in the linear case this matrix is the
straightforward estimate of matrix R in Rothenberg ang Leenders
{1944,y pabT})r in the nonlinear case it is the matrix proposed in
Amemiya (1977,p-962) and experimented with in Dagenais (1978). In
both casess from naw on it will be referred to as R (or ﬁ] mat rixa

An almost systemadtic indications in agreement ;ith the results
both of Belsley and Dagenaisy ts derived from the Monte C(Carlo
experirentss The convergence with the Hessian iss in facty, usually
faster near the optimumy while the R matrix works better Far‘From
ite However from our'experiments it came out that “near the optimum™
must pe interpreted in s much more restrictive sense than usually
believed. For modelds with annual data (and therefore short sample
pericd)}e ghichever_\"good" startkng point af the iterative process
was adopteds such as the point obtained from single eguation
estimations only when more than 99% of the distance between the
initial point and the optimum has been covereds the convergence
becomes faster wusing the Hessiana This point seemed worthwhile a
comrents since it might be useful for computaticnally efficient FIML
procedurese.

Cn the other hand, the Hessian matrix and its approx}mations are
also used for tests of hypaothesess This study was motivatéd'by some
contraddictory results obtained when testing nhypotheses on
coefficients of scme macroeconcmetric models by means of FIML
estirates. According to which estimate was used for the asymptotic

covariance matrix of coefficientss it was not too rare to

nave a
zero~coefficients hypothesis rejected in one case and not rejected
in anotner. This was particularly evident for the Klein-I model

when wsing the coefficients covartance matrix obtained from the
Hessian {as in Chernoff and Divinskys 1953), or from the R matrix

(as in Hendry, 1971y Rothenbergsy 1973 and Hausmansy 1974)s Qr,



finallyy from the outer oproduct of first derivatives of the
lTog-likelinoods {currently wused with the Hessian in pseudo-maximum
likelihood estirations see Gourierouxs Manfort and Tregncns 19824 of
Whitees 1932).

Differences were also encountered in other srall-medium size
models of the standard typa;i for almest a1l coefficients. the
asymptotic variances obtained from the outer product of first
derivatives were Jlargar than those obtained from the Hessian, and
the lattery in turney were larger than those obtained from éhe &
matrixe

As far as the first two groups of results ares <concerneds the
inequality is of the same sign as that ercountered in Artuss Larogue
and Michel {1982y pe2l) for a quite different type of model (witnh
discontinuities).

These systematic differences among asymptotically equivalent
estimates of variances seemed worthwhile a deeper tnvestigation.,

A difficulty, however, was encountered 4s sgof as the estimation
of the asynptotic variances was undertaken using the outer product
of first derivativess As pointed out by Hatanaka (1978, pp«322 and
345}y consistency ¢f these estimates 13 ensured only if‘derivatives
are related to the “unconcentrated" log-likelihoods but not when the
concentrated likel inhood is considered. Cealing with the
unconcentrated likelihood on the one side involves considerable
increase of computaticnal complexitys, and on the other restricts the
class of models which <¢an be processeds Tnis is due tc the
singularity of +the so estimated information matrix in the case of
undersized samples (see Hatanakas 1978+ p.333).

For these reasons we have temporarily abandoned tre analysis
concerning the estimation of the coefficients variances based cn the

auter product of first order derivativesy, and confined the

comparison to the other twe estimation methodss. Moreovers in the
case of nonlinear modelsy the R matrix would nct produce a
consistent estimate aof the covariance watrix of coeffivients; its
expression should te adjusted oand its cecmputaticn would tbtecome
consideraply mere ccmplicateds For this reasons in the second part
of the papers we have confined comparisens to linear models;
experiments on nonlinear models have been performed on Iinear{zed
versions of the models.

It will e shown in sections 5 and é that the difference betwean
the R matrix and the Hessian matrix (with minus sign)s at the
point which maximizes +the likelihoods is equal to the sum of a
positive semi~definite matrix and a matrix maae up of blccks with
rank zero or one {in particular all diagonal blocks are zero)a
These two last matrices, although vanishing in the limits are

responsitle for tre numericel differences encountered 1in practice.

The positive semi-definite matrixs by itself, woula imply the

Hessian {(with wminus sign) to be always smatler (in wmatrix sense)
- . . .

than R ands thereforesy after inversions the variances obtained from

the Hessitan wouid <&lways be greater than the others. The presence
of the other matrix prevents this inequality .frbm being systematic
and from occurring in 2all Cases. Howevers the Monte C(Carto
experiments 3quést that the numerical magnitude of the SFf diagonal
blecks of this hatrix is wusuatly sma]f enbugh so 3s to leave the
inequality (at least the ineguality of the variances) unaffected in
mosSt Casese In cther wordss 1t is proved thaty even if the

inequality does not always holds it should be expected in a fairly

high percentage cf fases.



2. NOTATIONS

Irn deriving the anmalytic expression of the rHessian matrix and of
the R matrix we follow Amemiya (1977): reference tQ 1Lhe same paper
should also be dune for derail on the wunderlying assumptions. iLet

the nonlinear simultanecus equation model be represented as
(1) Fi{yy exg 23] }7uiy i=19Z2vneermM; t31e2vauand

where vy, is the (mxl) vectcr of endgegencus variables at  time te X,
i-s the vector of exogenous variables at time t and 3 15 the vector
of unkngwn structural coefficients in the i-th equation. -The [mal)
vector of “randam error Terms At LimMe bty U, T{Ug TUpg r=asrlige )Ty i3
2ssumed to De i1ncdependently and i1cdenticelly distributea as N(JsZ)»
with £ complerely unknowns 3part from being symmetric and positive
definites The ccniglete vector of unknown structural coefficientg of
the system ni]l p§_inaﬁiiFed 3§_a={a:-a;'....e;}'.

Unger stangard Jssumptionsy by eguating to zerc Lthe First arder

derivatives of the unconcentrated leoa-likzlihood with respect to Zs

we get the c¢oncentrated leg-likelihood function

T

of
- -1
(2} L =§: lag|— - — log T Z:Q £
E 3)!' z t
t
where fo =(fyy eFg vovarfime)?=ugry  ana, the Jacobian determinant
|3ft/3y:| is taken in absolute wvalue. we define, for the i-th

equations Q9 =gfie /Jai, which is a column  vector with the same
length as a;i. we aefine alsos for any { and .+ the matrix
: - - . . . .
ije = Qf;tfgaigaf. EF iFjr Qe is zeroi it is also always zero if
the mogel is linear 1n tne coefficients (even if nonlirear 1in the
variavles). We notes nowsy thot g ang ¢;;, Tay 0 regarded as

functions of uy+ x, and 3+ wunder the standard assumption of a

one-to-cne correspondence between uy and vy, .
Cifferentioting L with respect to the coefficients of the i-th
. . _ . -
equaticns, and using Bg“ /guh -th XQK .(9& ’QK'M v n2 have
? 29, -1

(3) —_ :EE J— - Ti{>»qg Ff'yr2 f F'y .
?ai t /aujt g"tt §t'—‘

Further differentiation of (3)y with respect to the structural

coefficients of equation j» gives the ivj-th block o>f the Hessjan
matrix
S ) >
C.. 3 79"
. LTS -1 Sk H
(a) = 222 ST, £ 0 - (25 :
Fey Py t au;t e 2 t dujy e

B 4
- T(%:Q Q'hj (z:gh G )’ P Gie R ’*Z.ﬂ L (§ LA {g-ﬁ %)

3 L3

3 vyt . v ot
} T(‘Z_Ttrt J.j (g-lir. i H‘th ) {ng F

where use has  been mece of ?obt/?u¢ :eqatfﬁn-.(ﬁg /Qn‘ﬂ‘: the
inversion sign and a single subscript after 3 closed parentnesis
indicate & <olumn cf the inversz of the matrixs while Ithe cecuble
subscript 1ndicates the i, j-tn element of the inverse of the matrix.

I1f we confine the analysis to models whicﬁ are linear in the
coefficients (even if nenlinear 1n the wvariables), I and  ats
derjvataives are zerosy so that the first twe terms on the raight hgna
side of equatio% {4} vanish. Moreavers gy i3 notning but  the
vector of wvalues, a3t time ts aof the explanatory variabtes c¢f the
i-th egquation. Therefores the numerical evaluation of eouations (3)
anc¢ {(4) requir;s cnly one order of diffarentiations that :1§ the
computation of derivatives of the explanatery endogenous varishles
Jappearing 1n the i-th and j-th equations with respact o the error
terms af the same equations, furtharmores since

-1
?gh_/Quh =git /QK"(QR /?K.h + this differentiat:on could even be



performed analytically without any particular difficuley. The use
of equation (4} iss thereforey a sufficiently manageable matter even
for medium-large wcgels ands as  far as our computational experience
is concerneds  its use with numerical calculation of tne first
derivatives of the gp,'s always ensured quite accurate cesultsy while
the rough $econd order numerical differentiation of L {whichy on its
turns irvolves 3 further di1fferentiation to calculate the J&CO;]aﬂ
determinant}) is weld known to produce ipaccurate  rcesults at higher
computationadl costs (seey for examples Lisenpress and Greenstadty
1966+ p«360 and alsc the discussion in Parkes 1982+ ps94 cn the
difficﬁlpy of obtaining 2 poslt}ve definite matrix from calculating
the Hessiafd with nurerical differentiatian)s

If the model

is alsa VYinear in the variabless equations (3) andy

{4) further simplifyy since 39;g/3u3* is no more time wvarying; if

the model is
{5 Ay, *+ Bxe = ug

than tne vector 93, Fuy + for any te+ is made up af zeros

[corresponding to the exogenous components of 9je } @nd of elements

of &' {corresponding to the éendoqencus components of gpe ).

Introducing the (Twxm) matrix Fs whose teri-th elarant |5

fi (¥y3x¢0ai)=ujp + @and the matrix Gj» wnose t-th row is g + then the

vactor of first derivatives (3) can be.rewritten as

“t ?q‘r - .
{6) [r 2: ‘_‘F' -G F(TIF'Fh‘.

Fa-
Yy

He definés Nows

and build the block diagenal matraices G and Cs whose m diagonal
biocks are G; and @;v respectively. Moreovers evaluating all terms

at 3, we have

- 2

(8) TF'F =%,

Equating (5) toe zeros and combining 411 eqguations for i=1ls2rannsmy
we get

{?) ﬁ'[idollvecF = O

The left hand side of equation (9) 1s a computationally simple
expression of the ¢ragient of the concentrated log-lokel ihood.
In Amemiya {1977)s an iterative procedure to get the maximum

likeliboog estimate of a - is cotained from a Taylor expansian of vecF

‘as a function of the coefficients vectors 3. The iterative method

which resuvlts is
. AL el o oAl
(10) 3= 3™ [EvE e CrEel)veck.

For Yinear models, Hausran (1974} aerives the anazlogous of equation

{10} ang shows that it corresponds to one iteration of Brundy and
Jorgenson's (1971) anstrumental variables method (fuld information

case}.
In batn cases (for linear and nonlinear models} the square matrix

which appsars in Ekrackets on the right hana side of (10) can be

replaced by an asymptotically eguivalent matrix
(1) 3= [EreEend]

which has the advaptage of being symmetric and posSitive definivte.
Howevers a distinction must be made between the linear and the

nonl inear case. In Ccose of linear modelss in Facts we nazve
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1

(123 -plim T —— plim T8 (3% 13,
THo0 aacga' 2, T+oe
whereas the equality does not holg for nonlinear models {the right
hand side should be replaced Dy & more complicated expressiony see
Amemiyas 1977y eqse {3.14) and (4.10}). This must not be forcotten
if we want to compare the behavior ¢f matrix ] {11} and c¢f-the
Hessian. Both matrices can be useds even for nonlinear modelsy in
qradient procedures to maximize the likelikcode On the contrarys
for the test of hypothesiss the Hessian can be used in all cases,
while R, as statea in (11} can be used onty for linear modelss For
this reasons while experimental comparisons of the gradient
algorithms using the two matrices ~il1 te performed eitbher on linsar
or on nonlinear models ({(but linear in the parameters)s comparisons
of the estimated asymptotic variances of coefficientss calculated in
the two wayss will be confined to linear models {or tc the

linearized version ¢f a nonlinear moadelj},

3« TWD GRADIENT PROCEDURES.

The optdimization procedures used in this paper are two
applications of- the well knpown grodient: algorithm« A gradient

iterative procedure can be represented ty the formula:

(13) e o 3N g pix

where 3 1s an estimate of the wvector of the ﬁoefficients- p is the

b—1ike]inood function with respect to the vector

gradient of the 1o
a2 + Q is some matrix and A is a real number.
Gradient methods differ. in tne way in which the matrix Q and the

number A 2are selected at each iteration. The selecticn of the

- 11 -

matrix G determines the choice of the direction along which the
search for the wmaximization of the long-Tikelihood function will be
mades The choice of X determines the step size in this direction to
obtain the new values of the coefficients.

As long as the croice of Q is concerneds twe different apprcaches
have heen tried:

1} the matrix W is given by the inverse of the Hessian of .the
log-likelihood function {with wminus sign}; in this case the
cptimization alcorithm técomes a Newton-like aigorithn;

2) the matrix R is given by the inverse of the matrix R (see aktove) s
whithr can be ccnsidered as an approximation of the Hessian
(asymptdtically exact or not exacty according to the model).

The choice of the step size A has Deen operformed follewing an
optimality critarions 1.+ trying to maximize the log-likelitooa
function 2y means cf an univariate search in the selected direction
[see also Sisenpress and Greenstadte 1966y or Cagenaisy 1973). OF
coursey the procegure is only Dbased on heuristic consi:decations any
there (s no assurance that such a strategy for the selecticr cf the
vatue of A is an optimal one; howevers it appeared in practice to
accelerate the calculations and to assure thé.convergence in Tost
casess ands therefores it gave a good common basis for performing
comparisons of the algorithms using the two Tatrices.

For the unxvs}iate search we used a part of Powell's algorithme
as described in Plierre (1%69y pp.277-280)s which dones not irvolve
the use of derivativesy but is quadratic convergent all the same.
Farticular care.had to be used in the choice of the tolerance for
the convergence in this univariate search Fbecausey glthough the
maximization process improved the computaticnal efficiency of the

wnoie algorithms this implied the evaluation of several values of

the log-likelihood function. These ccrputationss for medium ang



large size medels, are rather time consuming and it ¢an Bappen that
with a too tight tolerance the algorithm reguires a high number of
such ccmputation; Vhithout a corresponding improvement 1n the
efficiency of the whole algorithme For the experimented models we
found that values 0.0L-0.00L of the tolerance on A are usvally good
vatues for the overall computational efficiency of the maximization

algorithme

4e EXPERIMENTAL COMPARISGN

Monte tarlo experiments have been perforged on five mocels of
small and medium sisee« Three wmodels are lineary while two are
nonl inear in variablese.

1) a multiplier-accelerator modely with three linear equations: two
of which stochasticy and & unknown strugtura1 coeFFicients;'che
equations angd empirical data can be foung in Dhryres (1570,
pPpe533-534) .

2} Klein's model-1s that consists of six linear eﬁuations- three of
which stochastics and 12 unknown structufél coefficients; the
equations and empirical data can be found in Rothenoerg (1973,
cheS7e

3) A model for Ehe Italian econaomy proposed in Sitzia and Tivegna
{1975)s consisting of 7 linear equationss 5 of which stochastics
and 19 unknown structural coefficientsa.

4y A mildgly n;nlinear version of Klein-1 models obtained by
replacing the linear eqguation for consumption with a Jcg-lirear
equation (see Gelsleys 1980, model 3B).

5) The ®Klein~-3oldberger model (Kleins 1969)s which is ronlinear in

variables and consists ©f 20 equationss 16 of which stochasticy

_ 13 _

with 54 unkpown structural coefficientsa
Monte Carlo experiments on all models are based on a few Rundred
replicationssy each af which has been performed as followsa Starting
from the godei with a given set of paramecers ("true" coefficients
and covariance matrix of the structural disturbancess held fixed in
311 replications)y random values of <the endogencus variables over
the sample period are generated by means of stochastic simulaéxon
and are used for FIML estimation with the two methodse

To reproduce as much as possible the conditions under which FIML
estimation is pecrformed in practicer we choose a "gooa" starting
point for each estimation by getting a preliminary single eguation
estirate { Meast squares or instrumental variables).

Several convergence criteria {on coefficientss on the likelitood
and on the gradient) have been experimented with. while some
differences have bteen encountered in several casesy the overall
behavior did not crange very much with the aifferent ¢criteria, anart
from the obvious lengthening of convergence "tails" when adopting a .
very tight tolerance. The same can be s$aid about the choice ¢f the
predetermined variakles in the sample periods (the*Ihave been either
kept fixed in all experimentsy or partially randomly generated using
dynamic simulation)s and about the choice of the "true" parareters
of the models on which Monte {arlo generations are Dased.

The results Eisp1ayed in Table 1 are related to a4 convergence
criterion witn relative tolerance 0.0001 on coefficientss Fur each
of tha two metnods the oumber of cases (as percentages) in which
convergence has occurred after a given nurber of iteraticns is
showns The results in the table suygest that the use of the Hessian
usually ensures faster convergence than the use of‘the R matrix. ang

in particular never requires very long tails for the convercence.

Howevers apart from the increasing computational burdens a pradlem



Table 1 . arises whan the Hessian is used for the estimation of rather ccrplex

Number of experiments (percentage) in which convergence modelss In facts in the experiments made with the Kiein-Goloterger
Fas been reached after k iterations using A and Hessian . c
models in 3oout one out five cases it gave a convercence tc & tocal

Multiplier-accelerator Klein-1 Lteg-linear Klein-I raxirur of the log-likelihood functicn (1@« to A value remarkably
madel model nodel . A
sraller then the one reached with tne matrix R
K Matrix B Hessian Matrix R Hessian Matrix R Hessian ) . ) .
These considerations sujaested thet it ceuld be interestinu to
L . . . . . -
2 . . . . . . have a obetter insight in tne convergence processs Far eacn Monte
3 3.5 11.0 1.0 . . - . . . .
4 314.5 772.0 1745 12.0 . .S Carlo replicatian, we mgasure that fraction of the distance bLetween
7.0 5.0 28e1 30.5% 3.5 3. . . . .
z %9.0 11_0 25.0 4647 13.0 28-2 the startiny pcint 2and the optimum covered at each iteration,s with
7 2a5 ) 13.8 Ted 255 38.5
8 1.5 .3 6.5 3.2 1.5 2045 the two matnodse The distance is measured both ¢n the values cf the
9 «0 o1 3.2 .1 11.0 &aC
10 ! & Led . 9.0 2.5 ' log-tikelihood and a2s lencth of the difference wcetween the curreznt
.3 . -2 . 60 .5 f : o .
i; vl R l_a . 3.5 . and the optimal ceefficient vectors. As befores in some c3dses the
13 “ . » iy . 2=5 .
14 . . .1 . 1.8 . two measures give differeant resultsy but the overall vcehavior is
15 . . . . Lal .
16 . . . . .5 . gpractically the sames. In Table & only results related te¢  the
17 . . . . 5 .
13 . . . . .2 . distances measured an the values of the loy-likelihood functian are
15 . . . . ol . ' . ‘
20 . . . . . . displayed on a log-scale. 1f we call Dk} the gistance whichky after
k iterationses stil) must be covered to get the optimums the value
Linear ITtalian Klein-Golcoercer . . .
mode moael T which is calculated is
K Matrix R Hessian Matrix R Hessian
{14) a(k) = - [tog D(K)/D(L‘)]
1-3 . . . .
4-5 245 T84 . 1.1 . . . . .
7-9 32.0 1845 . 27.2 The value of this wvariable is equal to Zero at the starting pcinte
10-12 13.0 15 3.0 31.% ) ) ) )
13-15 14«0 .8 4.0 19.6 increases at any new (k-th) iterations as we move monotonically
16-18 6.0 .5 10.% 11.9 ) . o ) ‘ ‘ ]
15-21 445 .2 203 5.4 Yuphillr, and weuld be infinite at the cetinum (Iin Fractice it
22-24 340 .1 13.2 2.2 ) , )
725-27 2.0 . 13.2 1.0 assures 3 valuve of 3 few wupits. depending on the cheice of the
28-30 1.3 . 7.9 .l )
31-33 .8 . 7.0 . tolerance in the ccnvergence criterion)a
=36 = - 6al . g
g?-gq .3 R 3.5 . For each modely and for each iteration number (k)+ tne value
L0 =42 o1 . ) . . . . - ; :
L3-45 . . 2.6 . whicr is disolayec in Table 2 is the average value of all d(x)y
>45 . - Hal -

~

acress  Monte Carlo repglicationss obtaineg from wusine T or  the

Hess1ane

AN interesting systematic tehavior of the two wmaettods can Le



Table 2

Averege rate of convergence of the two gradient slgorithms

rdultiplier-accelerator

rodel

Klein-1I
rodel

T

L TTIT

Linear Italian
rodel

[l Cen

tog-tinear Kie:n-I
model -

s M X

tlein-Goldoerger
noagel

observed for the wmodels in Table 2. The gradient algorithms which
makes use of the R matrixs is considerably faster in the first
iterations ands on 3verages 1t allows to cover up to 99.99% of the
distances from 3 "good" starting point up to the optaimumy in  a
smaller nunber of iterations than the same algorithm which makes use
of the Hessian matrixs. The dominance of the Hessian matrix becores
effective only in 2 very tight neighborhood of the optimuas wheré it
allows a ceonsiderable reguction of the number of iterations.

This systematlic behavior might be interesting for improving the
computational efficiency of FIML algorithms. The use of wmatrix R
seems recommendadle instead of the Hessian in the first iterstions,
even if the Ccosts to compute the tda  matrices were the same. 1t
becomes even mgre recommenganle when considering that the
computatisn of matrix R is rather simple and fast even for
medium-large size models and issin any <ases considerably simpler
and faster than ccmputation o¢f the Hessian. Obviouslysy how ouch
simpler and faster the computatjon of the matrix Rois depends an the
s5ize of the mogel: for example for the Klein-Goldberger wmodel the
computation of the Hessian tooks on the averages about 2.3 times
more CPU time than the computation of the R matrixe while the time
required by the wunivariate search optimization was about one tenth

of thisa.

Se THWOQ ESTIMATES OF THE ASYMPTOTIC COVARTANCE MATRIX

As anticipated ﬂn section 2y we confine comparison af the two

different estimates of the asymptotic covariance matrix of

coefficients to the case of linear model s.

~

The first estimate is obtained from the inversion of the matrix R



of equation (1l1)s calculated upon conv
preccess {so that the gradient (9} is ze
the asymptoti¢ covariance matrix of the
of ten adgepted in practice [sees for exa
1971+ or Rothenbergs 1973).

In case of the linear system (5), let

(
(15} {
=7

The matrix *G;js which consists of T rows

f

B
h
1

:.f

and 1T = a3 ies FY

X
i}
—

Xy x¢ and M its probabili
¢ Uy with zero probabili

0,08 and X its probabili

=
n
=
| "24 M o

nurber of explanatory -variables in th

octained by properly selecting columns ¢

e of i maximization
o). Tiavs uay of estinating
stidivtural  coefficients 1

oley Hausmany 1974 Hendry,

L estimate
ty Timit
Ly Yamit

ty limita

snd 25 many columns s X
o i-—th copLticngs  can

tne mafr:

¥ X Xy uy

sz X,' x!.' U; -
(1&) . sl= om0 < || [27 5 0]

¥ T Xy ur

and the matrix 5;. of equation (7)y can

selecting columns cf the matrix

(17) AR |

The is)-th dlock of the matrix R can
selecting rows, (CCrresponding to the
equation i) and co]rmns {corresponding

of equation j) of the matrix

THTY L M|
(18) T |z orT g
M M

be obtained Ffrom praperly

4

o T om preper -
iy wvariables

£ . canarary var1a8bioce
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The formulas which follow become simpler if we avoid to represent
matrices Tike (i8) in partitioned form. This can be simply
accomplished by ©properly augrenting the vector of éndogenous
variables of the system with the inclusion of all variables which
muttiply structural coefficients in any stochastic eguation and that
are either predetermined or functions of endogenous variables. Such
a representation c¢f mocdel (5) simply needs the additicn. of
definitional equationse and 3ll  thé unknown structural coefficients
tecame elements of the matrix Ay while no wunknown coefficient
appears any more in the matrix B. Since all explanatory variables
on the right hand side of any stochastic equation ares nows formally
represenféd as endcgenous, we can drop the rightmast part cf the
gartitioned matrices (16} and {17}y while <the whole matrix (18] can

be represented as
(19) T [weir] &,

As aboves we must select rows and columns of matrix {19) 1n ercer tc
build the i,j-th block of the matrix R

The second estimate of the asymptotic covariance matrix of
structural coefficients is obtained by invertgég the Hesslane with
rinus signs upon convergence of the maximization process. The
isj—th block of the Hessian (4) -QILIJa;Qaj. calculated at the FIuL
gstimate of as {an be built starting fraom the last four terms an the
right hand side of equation (%) (the first two terms aGre 2ero in our

case)s As 3boves far any i and j» we must select the same rows and

columns of the matrices which will be given below.

~ 3rd term of equation (4):!

(zoy 1 [&i; i Aet]
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where {; and i are the i-th and j-th columns of the (mxm) unit

matrixe

- ath term of equation ({4):
2ty T [FRE e RRAST . PRR . KER]E
- 5th term of equation (&):

22 - T [ TR&IEFRAT s TRST R+ X5 S PN s BT At
) 1 q I

A

where use has been done of Zo’=i; and &i'Z=i.

- 6th term>of equation (4):
{23y - T [ﬁﬂi:"&-fr- o TRATY o BT o 5‘153"’]3-“.

Several terms cancels when summing the matrices (20)s (21)y (22) and

[23); we get
(24) TRRF@E - TORENeR i - f[ARGIEN Refemaai i AR s A

The first term of (24} is the matrix (15}. The other terms, given
the presence in each of them of the matrix‘ﬁy whose prabability
limit is Zeros asymptotically vanish as expecteds Howevery when
calculating the Hessian of the 1likelinhoodsy they contribute to
oroduce resultts ;hich numerically differ from those obtained Ffrom g.
In particuilar, as far as the second term of (24) is concerneds we
must abserve that its overall contribution is to make the resulting
matrix smaller lin the usual matrix sense); in facty if we puild the
entire matrix whose iyj-th block is obtained from selecting rows and
celurns of  the seccnd term of (24)y we would gety by defining an

appropriate matrix B, a matrix of the farm 3'(240[)39 that is

-
positive semidefinites and this matrix should be subtracted fram R.

The Jast term of (24)s in bracketss hass howevers a3 quite different
behaviore. Etach bleck nass in factsy @ maximum rank equal O oney
since the block is chtained as the product of & column vector with a
roW VeCtor. Morecvers several elements of the matrixs made wup of
these blockss would be zero 1f calculated upon convergence o¢f the
FI#L estimation and in particular all the elements of the diagonal
blocks would be zeroe. This follows from considering that, grom
gquation {(9)s the sunvecctor of the gradients corresponding to the
coefficients of the i-th equations cauld be abtained from prcperly
selecting elerents from the vector ﬁﬁai; since this subvector is
zero at Fhe optimums the matrix in brackets on the right hand side
of equatiﬁn (24) is zero when i=j.

Inversion of & and of —QFL/JaQa" calculated upon converqgence of
the optimization processs produces two estimates of the asymptotic
covariance matrix of structural coefficients. I[f the Hessian were
derived only from the first two terms of (24)y the inverted Hessian
{with minus sign) would be &lways greater than R . Tnis inegqualicy.
howevers is not exacts given the presence of the last ters in (24},
Experimental lys howevery the contribution of such a term seems to be
rather smally and the ineauality bolds in m05£‘case5v at least for

the diagonal terms of the inverted matrices (variances)e.

Ge EXPERIPENTAL COMPARISON

Experiments have been performaed on the same models of secticn 49
but 2 linearized wversion of the two nonlinear wodels has been
adopted. To Le mcre precises 'thne two nonliinear models have bheen
maintained in their original forms but the Jacobian determinent in

the likelihood has been calculateds as Ffor Tinear modelss only in
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Table 3

Estime Staserr- Stcaerre Monte

coeffs. with P Fessian
18,34 2e49 heli2
~e2324 312 581
3857 L2407 302
«8018 +036 04k
27«26 T34 F.53
-a2C10 « 491 +340
1.052 352 W42
-.1481 L0279 JaT
54794 1.580 3.246
2341 . Q49 2095
2947 L0465 363
.2348 «035 LU57

Carlo

Azy
T0%
16%
a3y
ELEA
Ta%
Ta%
5%
9%
0%
92%
9%

Multiplier-accelerator model’

-

Estima. Std.arr. Std.err. Monte

coeff. with K Fessian
«QS2E + 071 076
« 7580 -128 SL17
-1le%59 .86 5.%0
-.1033 253 « 248
L8850 «155S 155
12.5C 11-0 11.1

Carlo

70%
0%
256%
70%
B4
85%

Est

coe ,oowrn

1.4,
Y
.03
« b2
34,0,
.31t 1
«932. -1
-.219. .2

C- m o~ =l

B

24917 L d

« 3371 v
232 ;
«la1r .

loiaear
[cwisu

Sstir. *
coef .

L24
T2 T
whEy )
2087 .
2500 L
+ 154",

107« t
» 560 W

o

L

[

Some ecuations of the Klein-w :lgharger

Estim, Stc-errs Stde.err. Monte

coeff« wilh H  Fessian

Consumption of aurables
« 2637 022 «Cad
-+1354 VY- A 053
~hu Qb -137 Lel3

Stock of invertuories
»2039 -23J9 + D00
JGH2 8 LGS . 137
-33.33 1.9% f.08

Carla

3
99
9%

99%
99%
995

Estia St

coefr. wi:.

Can.

AT
—1 'OI
« 351

1w

[}

M

sl
-

nyn=1{

pbleerre &
masiran

0756

«015 -
-016 i
=024 G
1C.3 99%
245 P
« 203 '

« 048 -
1-36 2
«035 9.
032 ’
«£29 G

1an frode?
invests egs.’

Std.err.
Hesstan (..

T204 Q
- Lo :
124

w224
1604,

4

17.7

- luh a

e el

(M

HE-PY-Y o g
cirgsian

noa=gqueal |

« 250
<078
lets

(B YA
28

«051
264
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one year (middle of 1the sawmple period ands of coursey the other

matrices have been calculated accordingly); this 15 roughly

equivalent to a linearizaticn aof the models,

For eacnh models in Table 3 FIML coefficientss estimated from

nistorical dates are first displayedsfollowed by the twWwo estimates

~
of asymptotic stancdard errors obtained from the R matrix

and from

the Hessian (both calculated at the

same point). Thens for each of

the Monte Carlo replications (the same as in section %)y we have

computed the asymptotic standard errars of coefficients with the two

matricess at the convergence point {the sames of course. for btoth).

Across the replicationsy we check how many timess for each

coefficients the standard error computed with fhe Hessian is greater

o)
than the one computed with matrix R.

The nurber of rtimes that such

inequality holds is displayeds in percentage formy in the last

column cf each mogel.

Te SUMMARY

The results gisplayed in the first part of Eﬁis paper (secticns 3

and &) may be interesting for increasing computational efficiency of

Full informatiaon maxamum likelihood algorithmss It seems reascnable

to eoncluder from the empirical resultss that the dominance c¢f the

Hessian should be confined only to & very tight neighborhood c¢f the

opLrifum.

The results gerived in the second part of the paper (sections 5

and 6) may be interesting when using FIML estinmates for the test of

hypotheses. 8atween the two sets of estimates of asyrptotic

standarg errorse tNase obtained with the Hession ares in pracrice:

almost systematically larger than the cthers, ahich of them is a
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more accurate estimates howevery 15 a problem to be further
investigated.
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