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The Particle System Model of Income and Wealth 

More Likely to Imply an Analogue of 

Thermodynamics in Social Science 

 
 

 
 

Abstract 
 

 
 

The Inequality Process (IP) and the Saved Wealth Model (SW) are particle system 
models of income distribution. The IP‟s social science meta-theory requires its stationary 

distribution to fit the distribution of labor income conditioned on education. The Saved 
Wealth Model (SW) is an ad hoc modification of the particle system model of the Kinetic 
Theory of Gases (KTG). The KTG implies the laws of gas thermodynamics. The IP is a 

particle system similar to the SW and KTG, but less closely related to the KTG than the SW. 
This paper shows that the IP passes the key empirical test required of it by its social science 
meta-theory better than the SW. The IP‟s advantage increases as the U.S. labor force 
becomes more educated. The IP is the more likely of the two particle systems to underlie an 

analogue of gas thermodynamics in social science as the  KTG underlies gas 
thermodynamics. 
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The Particle System Model of Income and Wealth 

More Likely to Imply an Analogue of 

Thermodynamics in Social Science 

 
 

1. Introduction 
 The Inequality Process (IP) (Angle, 1983-2009) and the Saved Wealth Model (SW) 

[Chakraborti and Chakrabarti, 2000; Chatterjee and Chakrabarti, 2004; Patriarca, Chakraborti, and 

Kaski, 2004, discussed in Lux, 2005, 2008; Patriarca, Heinsalu, and Chakraborti. 2006; Scalas, 

Gallegati, Guerci, Mas, and Tedeschi, 2006; Yakovenko and Rosser, 2009; Sinha, Chatterjee, 

Chakraborti, and Chakrabarti, 2011] are two interacting particle systems with stationary distributions 

intended to model income and wealth distribution. The two particle systems are isomorphic to each 

other up to their stochastic drivers of exchange between particles and a consequence of that 

difference. The IP, derived from an old verbal theory in economic anthropology, was published in 

1983. The IP has been used to discover stable empirical patterns in income and wealth. See Table 1. 

Table 1 about here 

 The SW, published in 2000, is an ad hoc modification of the stochastic particle system model 

of the Kinetic Theory of Gases (KTG) (Whitney, 1990). The SW is also known in the literature as the 

kinetic wealth exchange model, but sometimes the IP is classified the same way so that name is not 

useful to distinguish the SW from the IP. The KTG is the mechanical basis of gas thermodynamics, 

explaining the macro-level phenomenon of heat in terms of the mechanics of molecules in collision, 

and implying laws of gas thermodynamics like Boyle‟s Law or Charles‟ Law. Boyle‟s Law relates the 

volume of a gas to its pressure; Charles‟ Law relate its volume to its temperature (Fischer-Cripps, 

2004).  The SW and a related model, Dragulescu and Yakovenko (2000), were presaged in the particle 

system modelling of income distribution by a broad survey of particle systems involving the exchange 

of a positive quantity between particles as possible models of economic phenomena (Ispolatov, 

Krapivsky, and Redner, 1998). Ispolatov et al. examine the stationary distributions that follow from 

different types of exchange but with scant attention to what stationary distribution might be 

empirically relevant or specific equations of exchange. Ispolatov et al. discuss general properties of 

the equations of exchange, whether they are “additive”, “multiplicative”, and “greedy”. As the present 

paper shows, details of the exchange, finer grained than those categories, matter. Nevertheless, 

Ispolatov et al. succeeded in introducing the idea of tinkering with a particle system model to the 

statistical physics community interested in econophysics, the application of classes of models used in 

statistical physics, such as the particle system, to economics and sociology.   

 

The IP has a social science meta-theory that assigns empirical referents to its parameters and 

obliges it to pass certain empirical tests. One of these tests is particularly important.  The SW has no 

social science meta-theory. The SW has not been as tested against data as the IP, prompting the 
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questions of whether the SW can pass the key empirical test that the IP‟s meta-theory requires the IP 

to pass, and if so, which particle system performs better on the test. This key empirical test is how 

well the stationary distribution of each model fits the distribution of labor income conditioned on 

education (item #4 in Table 1).  

Verbal description of the difference between the IP and the SW may seem deceptively 

insignificant. The difference between the IP and the SW is their stochastic driver of exchange of a 

positive quantity between particles in particle encounters. The IP‟s stochastic driver is a discrete 0,1 

uniform random variable (r.v.). The SW‟s stochastic driver is a continuous [0,1] uniform random 

variable. This paper addresses the question whether the IP and SW are, if not mathematically 

equivalent, interchangeable for practical purposes in empirical work. Data collected by the U.S. Bureau 

of the Census over four decades are used in this test of two theories (Current Population Surveys, 

1962-2004).  

 
1.1 Is the IP or the SW More Likely to Underlie an Analogue of Thermodynamics in Social 
Science? 

A consequence of the comparison of the IP and SW in terms of the key empirical test that the 

IP must pass and has passed (See item #4 in Table 1) is the likelihood that the better model in this 

comparison is the more likely to imply an analogue of gas thermodynamics in labor income 

distribution and perhaps other areas of economics and sociology. Farfetched to think a model like the 

IP or the SW could imply an analogue of Boyle‟s or Charles‟ Laws in social science? The claim of such a 

discovery would probably encounter verisimilitude issues among social scientists, but empirical 

relevance and parsimony are more important criteria of a model than verisimilitude. For example, 

although the KTG has verisimilitude now, i.e., the model seems obvious, when the KTG was first 

proposed in the 18th century, it didn‟t. Back then, a molecule was not an imaged object but a hard-to-

believe theoretical construct. The KTG contributed to the verisimilitude of the concept of the molecule 

rather than vice versa. Model verisimilitude trails behind the acceptance of a model‟s empirical 

relevance. 

If an algebraic structure in social science analogous to gas thermodynamics seems farfetched, 

consider the following facts. The IP and SW are isomorphic to each other up to their stochastic drivers 

of exchange of a positive quantity (wealth) between particles. Both the IP and SW are particle systems 

isomorphic to that of the KTG (in which the positive quantity exchanged between particles is labeled 

„kinetic energy‟) up to two specific differences in the case of the IP and one specific difference in the 

case of the SW.  Since laws such as Boyle‟s and Charles‟ follow from the KTG, questions prompted by 

the similarity of the IP and the SW to the KTG are 1) whether the IP or the SW imply similar algebraic 

structures in socio-economic phenomena, and, if so,  2) whether the IP or the SW is to be found 

underlying such structures. The hard part of the derivation is identifying the socio-economic analogues 

of temperature, pressure, and volume. Angle (2007a) speculates about the sociological analogue of 

temperature. Table 1 shows there is nothing farfetched about the empirical relevance of the Inequality 

Process. The comparable table for the SW would contain a part of item #2 in Table 1. The possibility  

of thermodynamic analogues in socio-economic phenomean is exciting. Imagine opening a 
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thermodynamics textbook like Bejan (1997) or Gyftopoulos and Beretta (2005), and finding an socio-

economic analogue of one of its laws or equations. The present paper bears on the question of 

whether the IP or the SW is the more likely particle system underlying socio-economic analogues of 

Boyle‟s or Charles‟ Law. The more likely candidate particle system to imply an empirical relevant 

thermodynamic analogue is plausibly the more empirically adequate to pass the critical test that the 

IP‟s meta-theory requires of it. While item #4 of Table 1 cites studies showing that the IP passes the 

test, the present shows whether the SW can pass the same test, and if so, whether the IP or the SW 

has the superior score on this test and why. 

  

1.2 The SW, an Elaboration of the Kinetic Theory of Gases (KTG) 

The stochastic particle system model of the Kinetic Theory of Gases (KTG) randomly pairs particles 

for random exchanges of a positive quantity modeling the exchange of kinetic energy between the 

molecules of a dilute gas in collision. The equations of the exchange are (Whitney, 1990):  
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In the KTG the sum of kinetic energy of particles i and j after a collision equals the sum 

before. Given that the population of particles is isolated in a reflecting container, the sum of kinetic 

energy over all particles does not change. The stationary distribution of particle kinetic energy in the 

KTG is a negative exponential distribution. Dragulescu and Yakovenko (2000) re-label the KTG. Re-

labeled, its particles represent people instead of gas molecules; the positive quantity exchanged by 

particles becomes wealth rather than kinetic energy and the mean of wealth becomes the analogue of 

temperature.  Dragulescu and Yakovenko (2000) have to argue that the stationary distribution of 

kinetic energy in the KTG, the negative exponential, is also that of the empirical distributions of 

income and wealth. They perceive a fit between the negative exponential distribution and the 

distribution of adjusted gross income reported by the U.S. Internal Revenue Service. Dragulescu and 

Yakovenko (2001), however, are not satisfied with the right tail of the negative exponential as a 

model of the right tail of the distribution of adjusted gross income. They propose a model that sutures 

a heavier than exponential right tail to the negative exponential central mass and left tail. The present 

paper shows that a negative exponential distribution is not a good model of the distribution of labor 

income of workers with post-secondary educations. 

 

1.3  An Elaboration of the Kinetic Theory of Gases (KTG), the One Parameter Saved Wealth 
Model (OPSW) 

The Kinetic Theory of Gases (KTG) is historically the first success of statistical physics. It is the 

first model that students of statistical physics are taught. It is perhaps natural for a statistical physicist 
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to view an economy in terms of pairwise transactions between parsimoniously simplified agents, 

particles, and to tinker with the particle system model of the KTG to yield a stationary distribution that 

might have socio-economic relevance. 

 

1.3.1 Chakraborti and Chakrabarti (2000), the One Parameter Saved Wealth Model (OPSW) 

Chakraborti and Chakrabarti (2000) cite Dragulescu and Yakovenko (2000) and use the KTG as 

Dragulescu and Yakovenko re-label it, but Chakraborti and Chakrabarti also modify the mathematics 

of the KTG. They write “...no economic agent trades with the entire money he or she possesses 

without saving a part of it;”, i.e., while the entire kinetic energy of a molecule is available for transfer 

in a collision with another particle, they introduce the fraction of the positive quantity possessed by a 

particle that a particle cannot lose to another particle. Chakraborti and Chakrabarti introduce this 

fraction, λ, the proportion of a particle‟s wealth not at risk of loss in any one encounter with another 

particle, as a parameter of the population of particles. When λ = 0, the Chakraborti and Chakrabarti 

model, (2a,b) is equivalent to the KTG, (1a,b). Chakraborti and Chakrabarti call λ “savings”. The 

justification they give for thinking the model relevant to income distribution is a mental image of 

market transactions between agents in which λ is called an agent‟s “savings”. The label is not apt. λ is 

not the share of a gain from an encounter that is saved, but rather the fraction of a particle‟s wealth 

not at risk of loss in any one encounter with another particle. λ is like the fraction of chips a gambler 

holds in reserve in any one poker hand or spin of a rouletter wheel. Chakraborti and Chakrabarti 

(2000) do not discuss the empirical relevance of their model‟s stationary distribution.  

 The Chakraborti and Chakrabarti (2000) particle system is referred to here as the One 

Parameter Saved Wealth Model (OPSW).  The development of the OPSW is chronicled in Yakovenko 

and Rosser (2009). The equations of the exchange of wealth between two particles in the OPSW, are: 
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Note that if λ= 0, 2(a,b), the OPSW becomes 1(a,b), the KTG.  

Apart from λ, other features of the KTG particle system remain in place, such as random 

binary matching of particles for exchanges, the sum of the wealth of two paired particles before an 

encounter equaling the sum after, and the isolation of the population of particles and their 

immortality. Patriarca, Chakraborti, and Kaski (2004) report that the stationary distribution of the SW 

is a gamma probability density function (pdf):  
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where, x > 0; x is interpreted as income; α is the shape parameter and β  is the scale parameter.  

The RHS of (3) is denoted GAM(α,β). The negative exponential distribution is a member of the gamma 

pdf family where α = 1.0. Patriarca et al. (2004) find the shape parameter, α, of the gamma pdf of the 

stationary distribution of (2a,b) to be: 

 







1

21
                                                                                                            (4) 

Substituting 1.0 for α implies that λ = 0, i.e., the KTG, so the Patriarca et al. formula for α is 

consistent with the OPSW subsuming the KTG.  Since mean particle wealth is pre-determined in the 

OPSW, and the expression for the mean of GAM(α,β) is α/β, (3)'s parameters can be expressed in 

terms of λ and mean particle wealth.  

 
1.4 The Inequality Process (IP) 

The Inequality Process (Angle, 1983-2009) was abstracted from the Surplus Theory of Social 

Stratification, economic anthropology‟s explanation of an invariant: the pairing of the earliest evidence 

of extreme economic inequality in the same archeological strata with the earliest evidence of abundant 

stored food (Angle, 1983, 1986). This verbal theory asserts that: 

 a)  people compete for surplus, storeable food, a form of wealth, 

 b)  competition distributes wealth and concentrates it,  

and, 

c) when wealth in the form of storeable food appears among a hunter/gatherer people, 

usually via the acquisition of agriculture, its concentration among a subset of the 

population overwhelms the apparent egalitarianism of subsisting without much stored 

food.  

The society that emerges out of a hunter/gatherer population when it acquires a storeable food 

surplus is called a “chiefdom” by anthropologists, who view it as the most inegalitarian societal form.  

The chiefdom is otherwise known as the society of the god-king. 

The Surplus Theory has a prominent flaw: no answer to the question of why inequality of 

wealth decreases over the course of techno-cultural evolution beyond the chiefdom when more wealth 

is produced per capita than in the chiefdom. Gerhard Lenski (1966) amends this flaw in the Surplus 

Theory speculatively. His speculation explains why inequality of wealth, defined as concentration of 

wealth, decreased over the course of techno-cultural evolution. The speculation is that the production 

of more wealth per capita requires workers who are more skilled and that a more skilled worker 

retains a larger fraction of the wealth that worker produces. The Inequality Process (IP) 

operationalizes and tests this speculation. Wherever verbal theory offered no help in specifying a 

mathematical model, the principle of parsimony was used in the specification of the IP.   
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1.4.1 The One Parameter Inequality Process (OPIP) 
A two parameter version of the IP appeared in Angle (1983, 1986). This model was later 

simplified where one parameter is adequate to explain income and wealth phenomena (Angle, 1993). 

The one parameter Inequality Process (OPIP) is isomorphic to the SW as defined in (2a,b) up to the 

stochastic driver of wealth exchange and a consequent difference in the intervals on which the 

parameters of the two particle systems are defined. Angle (1990) shows that the IP is a particle 

system similar to the KTG.  

 The IP‟s meta-theory makes (1 – ω), where ω is the fraction of wealth lost by a particle in an 

encounter with another particle, a measure of worker skill, a semi-permanent trait. A particle‟s ω is  

apparent when it loses an encounter. A coin toss determines which of two particles randomly paired 

for competition loses. The share of wealth a loser transfers to a winner, its ω, is pre-determined and 

to some degree permanent (like a worker's skills). ω is the OPIP particle parameter. In the OPIP, all 

particles have equal ω‟s.  

The equations for the exchange of wealth between two particles in the OPIP are: 
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All particles are randomly paired at each time-step. There are no particle deaths, births, or migration 

in or out of the population. As in the OPSW, the sum of two particles‟ wealth before an encounter 

equals the sum after. To see this fact add (5a) to (5b). The number of particles is an even integer.  

(5a,b) can be re-expressed to resemble (2a,b), the transition equations for particle wealth in 

the OPSW: 
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                                                          (5c,d) 

The OPIP maps into the OPSW, (2a,b), if (1-λ) is substituted for ω and the continuous [0,1] uniform 

random variate, εt, of the OPSW is substituted for the discrete 0,1 uniform random variable, dt, of the 

OPIP. This substitution may seem subtle and unimportant, but, as this paper shows, the substitution 

gives the OPIP, defined by (5a,b), properties distinct from those of (2a,b) although the OPSW is 

isomorphic to the IP up to that substitution. The substitution requires a different interval on which the 

model's parameter is defined. The OPSW‟s particle parameter, λ, can be mapped into the complement 

of the parameter of the OPIP, (1-ω), one-to-one, except for λ = 0 (where the OPSW becomes the 

KTG). The IP is not ergodic at ω = 1.0 .  
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1.4.1.1 Implications of the Different Stochastic Drivers of Wealth Exchange in the OPIP and OPSW 

 The difference between the OPIP of (5c,d) and the OPSW of (2a,b) is clear in (5e,f), the OPIP 

expressed in terms of SW notation: 
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                                                                                                                                                                   (5e,f)  

where (εt > .5) equals 1.0 if the condition is true, 0.0 otherwise. (5e,f) shows that the one parameter 

Inequality Process (OPIP), expressed in SW notation, is the OPSW particle system (2a,b) with gains 

and losses maximally exaggerated. The OPIP is the OPSW with εt rounded up to 1.0 or down to 0.0,  

expressed by the logical term (εt > .5), except at λ = 0 (ω = 1.0). 

 The OPIP of (5e,f) reduces to: 
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In (5e,f) and (5g,h), if  (εt > .5) is not true (i.e., equals 0.0), particle i of the OPIP loses a (1-λ) 

fraction of its wealth. However, in the OPSW (2a,b),  εt > .5 merely means a greater than even 

probability of gain for particle i ceteris paribus. Particle i actually gains wealth in the SW (2a,b) when 

εt > .5 if: 
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i.e., the question of whether there is a gain or loss experienced by particle i, a general particle, in the 

OPSW (2a,b) depends on three variables: εt, , xj(t-1), and , xi(t-1), its own wealth. The magnitude of 

particle i's gain in the OPSW, if particle i has a gain, depends on three variables and the parameter: 
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In the OPSW, particle i loses wealth if the inequalities of (6) are reversed. The magnitude of particle i's 

loss in the OPSW, if particle i has a loss, is (7) with the inequalities reversed. 
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  In the OPIP, [ for example in (5e,f) and (5g,h), in the SW notation], particle i experiences a 

gain if εt > .5, a loss otherwise,  i.e., gain or loss depends on a single variable, εt. If particle i gains 

wealth that amount is, in SW notation, (1-λ) xj(t-1); i.e., an OPIP gain depends on the parameter and 

one variable. From particle i's point of view the wealth of its competitors, e.g., xj(t-1), is a random 

variable. If particle i loses wealth that amount is (1-λ) xi(t-1), i.e., dependent on the parameter and one 

variable. From particle i's point of view, however, the loss is just dependent on the parameter since, if 

it is like a person, it knows its own wealth, i.e., the wealth lost in a loss is not a random variable. 

Fewer variables in the OPIP determine whether a particle wins or loses and the amount won or lost 

than in the SW.  Not only is gain and loss dependent on fewer variables in the OPIP, there is an 

asymmetry between gain and loss from the point of view of the general particle, say particle i. Gains 

are random from the point of view of particle i, whereas losses from the point of view of particle i are 

determined by the parameter and its wealth going into the encounter with another particle:  

(1-λ) xi(t-1).  

 

1.4.1.2 Information on the Parameter in the OPIP 

 A vector containing a particle's wealth at each time step, in both the OPSW (2a,b) and the 

OPIP (5a,b), contains information about the parameter of the process. This information is more easily 

estimated from the OPIP wealth vector than the OPSW‟s because of the exaggeration of gain and loss 

in the OPIP. In the OPIP a particle's parameter is so clear that it can be calculated without error from 

the first instance of a decrease in any particle's wealth, if the direction of time is known. If it is not, 

the clarity of the OPIP parameter is such that the direction of time can be inferred from a vector of a 

single particle's wealth amounts: time flows in the direction of the first two equal proportional 

decreases from an adjacent wealth amount in the sequence.  It takes two such decreases, given one 

of the two hypotheses about which way the vector of particle wealth is oriented in time, because the 

first such decrease might be an increase if the hypothesis is wrong. Such an inference from the OPSW 

(2a,b) is not similarly deterministic. It requires many vectors of particle wealth histories with the 

number of such vectors needed for an estimate of a given precision dependent on λ, i.e., the smaller 

λ, the more  information is needed to estimate λ and the more clouded the asymmetry of gain and 

loss in the OPSW is. 

 

1.4.1.3 An Approximation to the Stationary Distribution of the OPIP 

Angle (2002, 2006) uses the run-like (generalized runs) character of the solution of the OPIP 

to specify, via the relationship of the gamma pdf to the negative binomial pf (the probability 

distribution of generalized runs of independent binary events), a shape parameter of a gamma pdf , α, 

(3), approximating the OPIP‟s stationary distribution.  It is: 


 


1

                                                                                                 (8a) 

(4) is the expression for the shape parameter of the gamma pdf  approximating the stationary 

distribution of the OPSW (Patriarca et al., 2004). The Patriarca et al. (2004) expression for the shape 
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parameter of the gamma pdf approximating the stationary distribution of the OPSW is on the RHS of 

(8b) in IP notation, that is, after the substitution λ = 1 – ω is made. The OPIP expression for the 

shape parameter of the gamma pdf approximating its stationary distribution, (8a), is on the LHS of 

(8b): 





 231 




                                                                                                        (8b) 

The LHS and RHS of (8b) are not equal. (8b) implies that equal particle parameters, ω, in the OPSW 

and OPIP yield different stationary distributions. 

 Angle (2002, 2006) makes no claim that the OPIP has an exactly gamma stationary 

distribution. He gives a proof that no conservative particle system scattering a positive quantity via 

binary particle interactions, a class that includes the OPIP and the OPSW, has an exactly gamma 

stationary distribution. Patriarca et al.‟s (2004) finding that the OPSW‟s stationary distribution is a 

gamma pdf is a numerical finding, unable to distinguish among an exactly gamma stationary 

distribution, an asymptotically gamma stationary distribution, or a gammoidal distribution. 

 

1.4.1.4  A Mis-statement of the OPIP 

 The OPIP (or any other published version of the IP) is mis-stated in Patriarca, Heinsalu, and 

Chakraborti (2006) as: 
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where εt is an i.i.d. [0,1] continuous uniform random variable and dt is 1 with probability p if xi > xj, , 

0 otherwise, and 0 < ω < 1 .  

 

2.0 Setting Up the Key Empirical Test of the Inequality Process 

Versus the Saved Wealth Model 
 The Inequality Process (IP) must explain the distribution of wage income conditioned on 

education since it is derived from verbal theory that asserts that more skilled workers lose less in the 

competition for wealth, identifying (1-ω) as a measure of worker skill. This mandatory test for the IP 

requires identifying the stationary distribution of the wealth of particles in the ωψ equivalence class 

with the distribution of wage income at the ψth level of education. The fraction that the particles in the 

ωψ equivalence class of particles forms of the whole population of particles is set equal to the fraction 

workers at the ψth level of education form of the labor force. This version of the Inequality Process 

differs from the OPIP in that there is a distribution of values of the particle parameter ωψ in the 

population of particles. In the OPIP particles with equal values of ω compete for each other‟s wealth. 

In the version of the IP that must pass the test of fitting the distribution of labor income conditioned 

on education, particles compete with others with different ωψ„s. This version of the IP is the Inequality 

Process with distributed omega (IPDO) (Angle, 2002, 2006). It has the following equations for the 
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exchange of wealth between particles i and j:            
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The IPDO is isomorphic to (5a,b) except that particle i is in the ψth ω equivalence class (all 

particles whose parameter is ωψ), while particle j is in the θth ω equivalence class. Particles i and j are 

distinct although they may be drawn from the same equivalence class, i.e. it is possible that ωψ = ωθ. 

The stationary distribution of wealth in each IPDO ωψ equivalence class is not in general equal to that 

of the OPIP with equal ωψ unless the ωψ equivalence class includes the entire particle population, in 

which case the IPDO is identical to the OPIP.  Another difference between the OPIP and IPDO is that in 

the OPIP mean wealth in its sole ωψ equivalence class is exactly 1.0, whereas in the IPDO, only the 

unconditional mean of wealth, μ, is exactly 1.0 . In the IPDO, mean wealth in the ωψ equivalence 

class, μψ, is not constrained except that the weighted mean of the μψ must add to the unconditional 

mean, μ. 

 

2.1 The SW Analogue of the IPDO, the SWDO 
While the Inequality Process (IP) must explain the distribution of wage income conditioned on 

education since its verbal social science meta-theory asserts that more skilled workers lose less in the 

competition for wealth, the meta-theory of the Saved Wealth Model (SW) imposes no such constraint 

on it. That is because there is none. This paper raises the question of whether the SW can pass the 

mandatory empirical test that the IP must and has (item #4, Table 1) passed: fitting the distribution 

of labor income conditioned on level of worker education. But no publication has appeared in the 

literature with the Saved Wealth Model (SW) analogue of the IPDO. To compare the IPDO to its SW 

analogue, a Saved Wealth Model with distributed omega (SWDO) has to be specified. Since the 

difference between the IP and SW is well defined, the way to specify the SW analogue of the IPDO is 

also well defined.  The equations for the exchange of wealth between particles of the SW analogue of 

the IPDO, the Saved Wealth Model with Distributed Omega (SWDO), expressed in the IPDO‟s notation, 

are:  
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                                                           (11a,b)                            

where ε t is an i.i.d. [0,1] continuous uniform random variate and 0 < ωψ ≤ 1.  

The SWDO should not be confused with the model in Chatterjee, Chakrabarti, and Manna 

(2004) whose equations for the exchange of wealth between two particles are: 
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                                                          (12a,b) 

where εt is an i.i.d. [0,1] continuous uniform random variate, and ωψt is an i.i.d. (0,1] continuous 

uniform random variate, as is ωθt. This SW model violates the Inequality Process‟ (IP‟s) meta-theory, 

which asserts that a particle‟s ω is semi-permanent in the same way that a person‟s education or  a 
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worker's skill level is semi-permanent, i.e., in (10a,b) the particle‟s parameter, ωψ, is constant and not 

a random variate at each time step as in (12a,b). As with all SW models (12a,b) is the result of 

numerical tinkering. It is intended to yield a stationary distribution that has a gammoidal left tail and 

central mass as well as a heavier than exponential right tail. 

 

 Making ωψ a random variable to thicken the tail of the unconditional distribution of wealth, 

which is what (12a,b) does, is not necessary in the IPDO. Angle (1996, 2003a) shows that the 

unconditional distribution of wealth in the IPDO, with ωψ's estimated from the distribution of labor 

income conditioned on education and ωψ equivalence classes forming the same fraction of the 

population of IPDO particles as groups of workers with the corresponding level of education, has a 

heavier than exponential right tail, one heavy enough to account for aggregate labor income in the 

U.S.' National Income and Product Accounts. 

 

3. Does the Saved Wealth Model with Distributed Omega (SWDO) 

Pass The Key Test Set by The IP's Meta-Theory? 

 With the specification of the Saved Wealth Model with Distributed Omega (SWDO) there is an 

SW analogue of the Inequality Process with Distributed Omega (IPDO) and the comparison of how well 

the Saved Wealth Model (SW) does on the empirical test required by the Inequality Process‟s (IP‟s) 

meta-theory can proceed. The IP‟s meta-theory  designates the empirical referent of (1-ωψ) as worker 

productivity, operationalized as worker education. Consequently, the stationary distribution of wealth 

of the IPDO, the IP in which particles  have possibly differing values of ω (as workers have possibly 

differing educations) is obliged to fit the distribution of labor income conditioned on education. This 

key test of the IP specifies that when a) the stationary distribution of wealth in the ψth equivalence 

class of particles is fitted to the distribution of labor income of workers at the ψth level of education, 

and b) the fraction of particles in the ψth equivalence class equals the fraction of workers at the ψth 

level of education, then c) the model's stationary distributions fit the corresponding empirical 

distributions of labor income of workers at each level of education distinguished, and d) estimated (1-

ωψ) increases with level of education. This is a sharp test of the Inequality Process since the IP 

predicts that the ωψ„s be ordered in a particular way: inversely by level of employment, i.e., smaller  

ωψ associated with more education. This paper distinguishes six levels of education. See Table 2. 

Thus, the IP predicts that the ωψ„s be ordered, when estimated from a year‟s labor income by six 

levels of worker education, in one way out of 6! ways. 6! = 720.  

Table 2 about here. 

3.1 The Data for the Key Empirical Test of the IPDO and SWDO 
 The present paper performs the empirical test of the IPDO, required by its meta-theory, on 

both the IPDO and the SWDO in identical ways and then compares the performance of the IPDO and 

SWDO on this test. The test fits the stationary distribution of each model to 43 years of data on labor 

income (annual wage and salary income) in the U.S. from 1961 through 2003. These data are from 

the March Current Population Survey (CPS) conducted by the U.S. Bureau of the Census. A large 

number of households in the U.S. civilian, non-institutionalized population are sampled. The March 
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CPS is also called the Annual Social and Economic Survey. The March CPS asks for the annual wage 

and salary income of members of each household sampled in the previous calendar year.  For 

example, data on calendar 1986 labor income were collected in the March 1987 CPS. March CPS data 

from the 1962 through 2004 surveys supply data on annual labor income in calendar 1961 through 

2003. The data were acquired from the Unicon Research Corporation (Current Population Surveys, 

March 1962-2004). Unicon Research formats the data in a readily accessed database, cleans the data, 

and documents the consistency of variable definitions from year to year and other aspects of the 

procedural history of the March CPS. Figure 1 displays the empirical target to which the stationary 

distributions of the IPDO and SWDO will be fitted for 1986. Figure 1 displays histograms of labor 

income in nine bins $10,000 wide from {$1 to $10,000} through {$80,001 to $90,000} for each of six 

levels of worker education. Figure 1 leaves out the tenth relative frequency fitted, {$90,001 to 

$100,000}.  Dollar values have been adjusted to constant 2003 dollars using the Council of Economic 

Advisers‟ PCE (personal consumption expenditure) price index numbers from Table B-7 Chain-type 

price indexes for gross domestic product 1959-2004, Economic Report of the President, February 

2005 (Council of Economic Advisers, 2005). The population studied is people with at least $1 in annual 

wage and salary income and who are 25+ in age. 

Figure 1 about here 

3.1.1 Ordering Categories of Education 

 Comparing how well the IPDO and the SWDO fit the distribution of labor income conditioned 

on education requires an ordered set of education categories. The order of a set of education 

categories is clear if education is coarsely categorized. The U.S. Bureau of the Census changed its 

education categories in 1990. A single set of education categories for the period 1962-2004 has to be 

sufficiently coarse to be insensitive to the change of Census Bureau education categories in 1990. 

Another consideration is the amount of information in a set of ordered categories. The amount of 

information is at a maximum if, subject to the coarseness requirement to assure order and 

insensitivity to the change in Census Bureau categories in 1990, the number of categories is as large 

as possible, the distribution of observations falling into the categories uniform, and the number of 

observations falling into all categories sufficient to estimate the category‟s relative frequency with a 

small standard error of estimate. The highest level of education in 1962 had a small relative frequency 

while the lowest level of education had a small relative frequency in 2004. The top and bottom 

categories are "open end".  The minimum age of 25 of workers in the study allows them to complete 

advanced educations. Table 2 categorizes the education of U.S. workers 1962-2004 in a way that 

takes these constraints into account. 

Table 2 about here 

 

4.0 Estimating the Vector of IPDO ωψ’s and SWDO ωψ’s that 
Minimizes the Sum of Weighted Squared Errors 
 The IPDO‟s stationary distribution and the SWDO‟s are fitted to the distribution of wage 

income in 1986 conditioned on education (the six categories of table 2 ) by searching over the 

parameter vector of six ωψ‟s, one for each of the ωψ equivalence classes of particle matched to a 
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category of education. The number of particles in each ωψ equivalence class is proportional to the 

fraction workers with the corresponding level of education in the labor force in a particular year. The 

fits are done year by year separately for the IPDO and the SWDO. The vector of ωψ‟s providing the 

best fit for a model becomes the final estimate for that model for a particular year. The stochastic 

search algorithm is a modified simulated annealing algorithm (Nemhauser and Woolsey, 1988).  

  

4.1 Overview of Fit Via Searching the Parameter Vector 

 The steps in the fitting of the IPDO or the SWDO to six relative frequency distributions per 

year in each of 43 years (6 X 43 = 258 histograms) are done in a cycle. The steps for fitting one 

model (e.g. in terms of the IPDO) are:  

a) The fits are done year by year.  

b) The number of particles in each of the six ωψ equivalence classes is made proportional to 

the fraction of the labor force with the corresponding level of education.  

c) The vector of six ωψ„s is initiated to .5‟s. 

d) The initial vector of six ωψ„s is perturbed by multiplying it by the product of a vector of 

continuous [0,1] uniform random variates and a scalar damping factor. In the first 

iteration of fits the damping factor is 1.0. In the seven succeeding iterations the damping 

factor is multiplied by .5. A different vector of uniform random variates is used in each 

iteration of fits. The smaller damping factor is the “cooling” aspect of a fit.  

e) Each perturbed vector of six ωψ„s is used to generate an IPDO stationary distribution of 

wealth.  

f) The scale of the wealth amounts in all six ωψ equivalence classes is multiplied by the 

estimate of the unconditional mean of labor income in the year whose labor income 

distribution conditioned on education is being fitted. See Section 8, the Appendix for the 

estimation method of the unconditional mean of labor income. 

g) The wealth distribution in each of the ωψ equivalence classes is fitted to the labor income 

distribution of the corresponding education group of the year being fitted.  

h) Errors in the fit are squared and weighted by the fraction of the labor force at each 

education level in that year and summed.  

i) If the perturbed vector fits better than the optimum parameter vector, the mean of the 

two is taken, and that mean vector becomes the current optimum parameter vector.  

j) The damping factor is re-set to 1.0 after eight independently perturbed fits with the initial 

vector or current optimum parameter vector have been performed, a “re-heating” or 

“annealing”. 

k) There are 100 iterations of the 8 successively damped perturbations of the parameter 

vector regardless of how closely the fitted relative frequencies approximate the empirical 

relative frequencies, i.e., 800 IPDO stationary distributions are generated and fitted in 

each one of the 36 independent fits of the IPDO to a particular year‟s data. 43 years‟ data 

are fitted. 
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The fitting of the SWDO to the same data set is done identically but for the line of GAUSS code in the 

generation of its stationary distribution that distinguishes it from the IPDO and the address to which 

the output files are directed.  The IPDO program rounds up or down the stochastic driver of wealth 

exchange between particles in the SWDO, a [0,1] continuous uniform random variate, to a 0,1 

discrete uniform random variate, the IPDO‟s stochastic driver of wealth exchange between paired 

particles. GAUSS is a matrix-oriented programming language used to simulated the IPDO and the 

SWDO and to fit their stationary distributions to the data (Aptech Systems, 2009). 

 

4.1.1 Details of Search over the Model Parameter Vector 

  There are constraints on the search over the parameter vector. A perturbed value of ωψ 

smaller than .001 is replaced by .001. Similarly, a perturbed value of ωψ greater than .999 is replaced 

by .999. The start vector of ωψ‟s is six .5‟s, the midpoint of the interval on which the ωψ‟s are defined. 

The number of particles in each ωψ equivalence class is the rounding of (wψt x 1,000) where wψt is the 

relative frequency of workers at the ψth level of education in year t. Note that „w‟ is chosen because it 

is a weight in a weighted sum and should not be confused with „ω‟ omega. Each model (IPDO or 

SWDO) simulation is run for 300 iterations before sampling. Then at the 301st the wealth of each 

particle is recorded. Each particle's membership in an ωψ equivalence class is known. The simulation 

runs for another twenty-five iterations. At the 326th simulation, the wealth of each particle is recorded 

again, and so on to the 401st iteration, at which point there are 5 observations on the wealth of each 

of 1,000 particles for 5,000 observations altogether.  Particle wealth in each ωψ equivalence class is 

adjusted via (13) so that mean wealth in each ωψ equivalence class equals mean labor income of 

workers with a given level of education. Particle wealth is then aggregated into ten relative frequency 

bins, i.e., {$1 to $10,000}, {$10,001 to $20,000}, up to {$90,001 to $100,000} in 2003 dollars, the 

same bins empirical incomes are aggregated into. The percentage of labor incomes under $100,000 in 

2003 dollars is over 95% in every year from 1961 through 2003. Over-estimation of the frequency of 

large incomes is a common misperception.   

  

4.3 An Example of How Fit is Done in One Year, 1986 

 The fitting procedure employed in this paper fits the model‟s (IPDO or SWDO) stationary 

distribution of wealth conditioned on the particle parameter, ωψ, to the distribution of U.S. labor 

income conditioned on education is most easily explained by how it works in a particular year. 1986 is 

chosen as the example. Figure 4 shows that both models reach their best fit in the mid-1990‟s.  Figure 

1 displays the empirical target of the IPDO and SWDO fits in 1986.  

 

4.3.1 The 1986 IPDO Estimates of ωψ and μψ, the Mean of Wealth in the ωψ Equivalence Class 

There are 36 weighted sums of squared errors produced by the 36 independent fits of the 

IPDO to the 1986 data. The weights are the fraction of the sample in each education category.  The 

mean of the 36 sums of weighted squared errors for 1986 is 0.0040189. Their standard error of 

estimate is 0.0001495 . This statistic is estimatable because there are 36 independent fits of the IPDO 
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to the histograms of Figure 1. The 36 t̂ vectors estimated in these fits to 1986 data are all ordered 

as predicted by the IP‟s meta-theory. t̂ is used in lieu of ωψ to indicate that ωψ is being replaced by 

an estimate of it (the caret or “hat”) in a particular year (by the subscript „t‟, in this instance 1986). 

The means of the 36 1986 IPDO estimates of t̂ ‟s are shown in Table 3 along with their standard 

errors of estimate. The estimated means of wealth, t̂ , in each of the six t̂ equivalence class 

stationary distributions are also given in Table 3 along with their standard errors of estimate. The 

unconditional mean of wealth in the OPIP and the IPDO is a constant. Without loss of generality it is 

assigned the value 1.0 for reasons of stability in numerical calculation. t̂ is the estimated mean of 

wealth of the stationary distribution of wealth of IPDO particles in the t̂ equivalence class. Each 

t̂ is the mean of the 36 estimates of μψt generated by the 36 independent fits of the IPDO to the 

data of Figure 1. The 36 t̂ vectors are all ordered from small to large with (1- t̂ ), i.e., wealth in 

the t̂  equivalence class identified by the IP‟s meta-theory as corresponding to more productive 

workers, with productivity operationalized as workers with more education. The estimation of the 

IPDO‟s relative frequencies in terms of 2003 dollars is presented requires converting t̂ into 2003 

dollars and is presented in Section 7, the Appendix. The small standard errors of the t̂ 's and 

the t̂ 's show the unlikelihood of a different ordering of each. Nothing in the fitting and estimation 

procedure forces the t̂ 's to scale inversely with level of education or the t̂ ‟s to scale with 

education, the orders predicted by the IP‟s meta-theory. 

Table 3 about here 

 

4.3.2 SWDO Fits in 1986 

 The SWDO relative frequencies fit are the mean of the 36 sets of relative frequencies 

estimated in the 36 fits of the SWDO‟s stationary distribution to 1986 data. 34 out of the 36 SWDO 

t̂  vectors estimated in this fit to 1986 data are ordered as predicted by the IP‟s meta-theory. 

Each SWDO fit has a weighted sum of squared errors. The mean of the 36 SWDO sums is 0.0057261,  

42% larger than that of the IPDO. The standard deviation of the SWDO sums of squared errors is 

much greater than that of the IPDO. The SWDO‟s standard deviation, .00159842, is over ten times 

that of the IPDO. The SWDO fits the six empirical partial distributions but not as well as the IPDO nor 

as reliably. 

    Table 4 about here. 

 Table 4 shows that the SWDO passes the tests set by IPDO meta-theory, that is, its estimated 

vector of ωψt„s, its t̂ , (where tt   ˆ1ˆ  ) varies inversely with level of education and its 
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estimated vector of μψt‟s, its t̂ .  Estimates of the parameters of the fitted stationary distributions of 

the SWDO and IPDO do not approximate each other: compare the SWDO‟s t̂ 's (data column 1 of 

Table 4) to those of the IPDO (data column 1 of Table 4). The SWDO‟s t̂ „s are over twice those of 

the IPDO. The standard error of estimate of the SWDO's t̂  are larger than the IPDO‟s particularly for 

the more educated. The SWDO‟s estimate of the unconditional mean of annual wage and salary 

income approximates the IPDO‟s. The SWDO‟s estimate is $30,921 in 2003 dollars whereas the IPDO‟s 

is $31,043.  The s.e.e. of the IPDO's estimate of the unconditional mean of annual wage and salary 

income in 1986 is $234 while the SWDO‟s is $286. 

    Figure 2 about here. 

 

4.3.3 Comparing IPDO and SWDO Fits to the 1986 Histograms in Figure 1 

 Figure 2 displays the IPDO (solid curves) and SWDO (dashed curves) partial stationary 

distributions fitted to the partial distribution of 1986 labor income of people with an elementary 

education or less (red curves), to the partial distribution of people with some college (green curves), 

and to the partial distribution of people with post-graduate educations (purple curves). The fitted IPDO 

partial stationary distributions transition are more peaked at their mode than the SWDO‟s in the case 

of the least educated to less peaked at the mode than the SWDO‟s in the case of the most educated. 

The IPDO stationary distributions (those with ωψ equivalence classes with smaller ωψ) fitted to the 

labor income distributions of the more educated have larger variances than the comparable SWDO 

stationary distributions fitted to the same data. Consequently, the IPDO partial stationary distributions 

fitted to the labor income distributions of people with at least some college have heavier tails than the 

fitted SWDO partial stationary distributions. The comparisons of the fitted partial stationary 

distributions not shown in Figure 2 are intermediate between the comparisons that are. 

    Figure 3 about here. 

 

5. Comparing IPDO and  SWDO Fits 1961-2003 
 The findings of the previous section of the paper about IPDO and SWDO fits to 1986 data  

generalize to March CPS data from 1961 through 2003. In each year the IPDO and the SWDO are 

fitted in the same way as in 1986. In each year of the 43 years of data, each model is independently 

fitted 36 times. Figure 3 displays the (43 years X 6 levels of education = ) 258 IPDO and SWDO t̂  

estimates from 1961 through 2003. The t̂ ‟s displayed in Figure 3 are the mean of 36 estimates in 

each year. Both the mean IPDO and SWDO t̂ vectors in every year are ordered as the IPDO‟s meta-

theory requires its ωψ„s to be ordered, i.e., inversely with level of education. However, the IPDO‟s and 

the SWDO‟s t̂ do not equal or even approximate each other. The SWDO‟s t̂ are over twice as large 

as the IPDO‟s.  The trajectories of the IPDO‟s and SWDO‟s t̂ from 1961 through 2003 are nearly flat, 
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although the estimates in each year are independently arrived at. There appears to be more noise in 

the SWDO‟s estimates than the IPDO‟s.   

Figure 4 about here 

In not a single year is the mean IPDO fit (the mean of 36 independent IPDO fits) poorer than 

the mean SWDO fit. Figure 4 graphs the 36 IPDO and SWDO fits in each year. Figure 4 is the 

piecewise linear curve formed by connecting fit k in year t and fit k in year t+1. These two fits were 

estimated independently of each other. Both the IPDO and the SWDO fit the data well. However, the 

IPDO fits are in all but a few cases better, so much reliably better that Figure 4 shows at a glance that 

it is redundant to do 43 two sample difference of means tests. The 36 IPDO and the 36 SWDO fits in 

each year hardly overlap and the difference between their means is over three times the standard 

error of estimate of the mean fit of each model (i.e., the mean of 36 fits). The standard error of 

estimate of the mean of 36 IPDO fits is smaller than that of the 36 SWDO fits. The IPDO grand total of 

the 36 sums of weighted squared errors in each of 43 years, 1,548 fits altogether, is 6.4559; the 

SWDO's is 8.9676. The sum of IPDO weighted squared errors is 72% of that of the SWDO.  

 

Out of the 43 x 36 = 1,548 fits of the IPDO to the distribution of annual wage and salary 

income conditioned on education, 1961-2003, with 36 independent fits per year, in only 31 instances ( 

2%) did the t̂ vector fail to be ordered exactly as the IP‟s meta-theory requires. The SWDO 

conformed less closely to the IP‟s meta-theory requirement. Out of the 43 x 36 = 1,548 fits of the 

SWDO to the 43 years of data on the distribution of annual wage and salary income conditioned on 

education with 36 independent fits per year, there are 87 instances of the ωψ vector failing to be 

ordered exactly as the IP‟s meta-theory predicts (about 5.6%). The IPDO had 31 such failures out of 

its 1,548 fits (2%). 

    Figure 5 about here. 

 

5.1 Why the IPDO Fits the Data Better Than the SWDO  

 Figure 5 shows the ratio of the IPDO weighted sum of squared errors to the SWDO weighted 

sum of squared errors at each level of worker education in each year. The IPDO is often a better fit 

than the SWDO to the labor income distributions of the two least educated groups, but its superiority 

is not great or uniform over time. However, among workers with at least some college education, the 

IPDO provides a distinctly superior fit to annual wage and salary income distribution, a superiority that 

grows over the decades.  The education level of the U.S. labor force steadily rose, so the IPDO's 

advantage overt the SWDO grew over time. See figure 6. 

    Figure 6 here. 

6. Conclusions 

 The Inequality Process (IP) and the Saved Wealth Model (SW) are stochastic binary interacting 

systems. Both models randomly pair particles for interaction. In both models the population of 

particles is isolated and the positive quantity, called wealth, exchanged between particles when they 

are paired and interact is neither created nor destroyed. Every time particles are paired, they 
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exchange wealth. Since the populations of particles in both models are isolated, the sum of wealth 

over all particles does not vary over time. Since the encounters are zero-sum, they can be construed 

as competition for wealth. The IP was abstracted in the early 1980's from an old theory of economic 

anthropology about the origin of substantial economic inequality in competition for stored food, as 

speculatively extended by a sociologist to account for decreasing inequality, in the sense of 

concentration, over the course of techno-cultural evolution. This speculative extension is that more 

skilled workers retain a larger share of the wealth they create. This verbal meta-theory assigns an 

empirical referent to the IP's parameter, a characteristic of particles. This parameter is denoted ω, 0.0 

< ω < 1.0 , and is the share of wealth a particle loses when it loses to another particle. This meta-

theory designates the empirical referent of (1-ωψ) as worker productivity, operationalized as the ψth 

level of worker education.  

 Consequently, the stationary distribution of wealth of the Inequality Process with Distributed 

Omega (IPDO), the IP in which particles can have different values of ω (as workers can have different 

educations), is obliged to fit the distribution of labor income conditioned on education, taking labor 

income as the index to the primary form of capital in industrial societies, human capital, 

operationalized here as a worker‟s education. This obligation is tested by showing that when a) the 

stationary distribution of wealth in the IPDO ψth equivalence class of particles is fitted to the 

distribution of labor income of workers at the ψth level of education, and b) the fraction of particles in 

the ψth equivalence class equals the fraction of workers at the ψth level of education, then c) the 

IPDO's stationary distribution in the ψth equivalence class fits the income distribution of workers at the 

ψth level of education, and d) the estimated (1-ωψ)‟s increase with level of education.  The IPDO 

passes these tests. 

 
6.1 How does the Saved Wealth Model Do on the Empirical Test the Inequality Process‟ Meta-Theory 
Requires it to Pass? 
 Although published after the Inequality Process was shown to be a particle system model 

similar to that of the Kinetic Theory of Gases (Angle, 1990), Ispolatov, Krapivsky, and Redner (1998) 

raise the possibility for statistical physicists of modifying a particle system so that it models socio-

economic phenomena. The Kinetic Theory of Gases (KTG) is the best known particle system among 

statistical physicists. Dragulescu and Yakovenko (2000) relabel the KTG. The Saved Wealth Model 

(SW) (Chakraborti and Chakrabarti, 2000) accept their relabeling of the KTG and tinker with its 

mathematics to yield the Saved Wealth Model (SW). 

The SW has had many fewer and less demanding empirical tests than the IP because it a)  

appeared 17 years later, b) was not abstracted from a social science meta-theory assigning an 

interpretation to its parameter and setting tests that it must pass, c) was proposed by physicists 

whose educations were not in socio-economic phenomena, and, d), possibly surprisingly for 

sociologists, do not view the empirical testing and enlarging of the empirical explanandum of a 

mathematical model of labor income as a priority2. For example, Chakraborti and Chakrabarti (2000) 

does not broach socio-economic theory or data. Despite a radical difference in provenance, the SW is 

                                                 
2
 Econophysicists are not averse to testing models on stock market data. 
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isomorphic to the IP up to the stochastic driver of wealth exchange between particles and the end 

point of the interval on which its parameter is defined, a consequence of the different stochastic 

driver. The IP‟s driver of wealth exchange is a 0,1 discrete random variate; the SW‟s is a continuous 

[0,1] uniform random variate. The IP‟s particle parameter, ω, is the fraction of wealth a particle loses 

to another particle; the SW's parameter, denoted λ, is the complement of  ω, λ = 1 – ω, with an 

exception at the endpoint of the interval on which the parameters are defined. The SW‟s particle 

parameter, λ, can be mapped into the complement (1-ω) of the IP‟s parameter, ω, one to one, except 

at λ = 0 (the special case of SW equal to the KTG) because the IP with ω = 1.0 is not ergodic.  

 While there is no published SW analogue of the IPDO, an SWDO, it is clear how to define an 

SW version that is isomorphic to the IPDO (the Inequality Process with Distributed Omega) up to the 

difference in definition between the OPIP (the One Parameter Inequality Process) and the OPSW (the 

One Parameter Saved Wealth Model). The SWDO passes the key empirical test required of the IP by 

its social science meta-theory. The stationary distribution of both the IPDO and the SWDO provide a 

moderately close fit to the 258 partial distributions of the distribution of labor income in 43 years 

conditioned on 6 levels of education, as does the IPDO.  In every one of the 43 years from 1961 

through 2003 the mean of the 36 independently estimated  ωψ SWDO vectors is ordered as required 

by the IPDO‟s meta-theory (inversely with level of education). The same is true of the IPDO. See 

Figure 3. 

 

6.2 The Difference Made by Similar Sounding Stochastic Drivers of Wealth Exchange 

 The IP employs a 0,1 discrete uniform random variate to drive wealth exchange between 

particles. It is a coin toss to see which wins wealth from the other. The amount of wealth is 

predetermined. The SW employs a similar sounding stochastic driver of wealth exchange between 

particles, a [0,1] continuous uniform random variate. The IP‟s driver can be considered a rounding up 

or down of the SW‟s, an exaggeration of winning or losing. While similar sounding, the difference of 

stochastic driver creates differences in how well the IPDO perform on the test that the IPDO‟s social 

science meta-theory sets for it. While the mean estimated ωψ vectors in each year of both the IPDO 

and SWDO are ordered as required by the IP‟s meta-theory, Figure 3 shows that the IPDO‟s ωψ„s  are 

quite different from the SWDO‟s ωψ„s estimated from the same relative frequency distribution, for 

exsmple, 1986‟ six relative frequency distributions shown in Figure 1. Not only is there a gross 

difference between the IPDO and SWDO estimates of ωψ , Figure 3 shows that the SWDO estimates 

are noisier than the IPDO‟s. The greater variability in the SWDO‟s estimates of ωψ also is seen when 

one looks at the ordering of the SWDO‟s ωψ‟s by size in each of the 36 independent estimates 

obtained in each of the 43 years of data. In any one year the mean of the SWDO‟s estimates of ωψ, 

like the IPDO‟s, are ordered by size as the IPDO‟s meta-theory requires the IPDO estimates of ωψ to 

be ordered. However, in the 1,548 (36 independent estimates X 43 years = 1,548) SWDO ωψ vectors 

estimated there are 87 instances of ωψ vectors not ordered exactly as the IPDO‟s meta-theory 

requires, i.e., a 5.6% error rate according to the IPDO‟s meta-theory. The comparable error rate for 

the 1,548 estimated IPDO ωψ vectors is 31 estimates failing to be ordered exactly as required by the 
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IPDO‟s meta-theory, a 2% error rate. If ωψ is a signal, then the exaggeration of winning and losing in 

the IP makes that signal less obstructed by noise than in the SW. 

  Although the fit of the SWDO‟s stationary distribution to the distribution of labor income 

conditioned on education in the U.S. 1961 through 2003 is good, it is not as good as that of the IPDO. 

Figure 4 shows that the sum of squared error of the IPDO and SWDO fits of the 36 independent fits of 

each to the distribution of labor income conditioned on education in each year only fail to show the 

IPDO‟s sum to be smaller in a few instances out of (1,548 IPDO independent fits + 1,548 SWDO 

independent fits = ) 3,096 fits. The distance between the mean IPDO fit and the SWDO fit in any one 

year is well over three multiples of the standard error of estimate of these means. The IPDO standard 

error of estimate of mean fit is smaller in the 43 years of fits than that of the SWDO. Figure 5 shows 

where the IPDO‟s advantage in fit is by worker level of education. While the IDPO fits are, averaged 

over 43 years, better than the SWDO‟s regardless of education level, the IDPO‟s  advantage in fit is 

concentrated among the more educated where it  increases over time. Figures 2 shows why: the tails 

of the IPDO‟s stationary distribution in ωψ equivalence classes with smaller ωψ are heavier than those 

of the SWDO. The right tail of the distribution of labor income of the more educated, in particular, is 

heavier than that of the less educated. See Figure 1. The shapes in Figure1 are typical throughout the 

time period 1961 to 2003: that‟s why the IPDO and SWDO estimates of ωψ‟s are flat over time in 

Figure 3. Figure 6 shows why the fit advantage of the IPDO increased between 1961 and 2003. Figure 

6 shows that the fraction of the U.S. labor force with the least education (less than a high school 

diploma) decreased sharply, while the fraction with more education than a high school diploma 

increased steadily. The U.S. labor force shifted out of levels of education in which the fit advantage of 

the IPDO over the SWDO was slight into levels of education in which is more substantial. The two 

models are not interchangeable as socio-economic models. 

 

6.2 The Particle System that is the More Likely Source of an Empirically Relevant Analogue 

of Thermodynamics in the Social Sciences 
The Inequality Process (IP) has been shown to explain the empirical phenomena of income 

and wealth enumerated in Table 1. The IP was derived from verbal social science theory and is based 

on the knowledge incorporated in it. This meta-theory poses tests for the IP the most important of 

which is the requirement that it fit the distribution of labor income conditioned on education. It does. 

The Saved Wealth Model (SW) is isomorphic to the IP up to the stochastic driver of wealth exchange 

and a consequence of that difference. It is the result of tinkering with the particle system model of the 

Kinetic Theory of Gases (KTG), proposed in the 18th century as a model of gas thermodynamic laws 

such as Boyle‟s Law and Charles‟ Law. Boyle‟s Law is about the relationship of pressure and volume in 

a gas in a container. Charles‟ Law is about the relationship of temperature and volume of a gas in a 

container. Together they are referred to as the “combined gas law” (Fischer-Cripps, 2004). It is 

natural to ask whether the IP or the SW is the more likely source of empirically relevant analogues of 

Boyle‟s Law and Charles‟ Law in socio-economic phenomena. The hard part of answering this question 

is identifying the socio-economic analogues of temperature, pressure, and volume. Angle (2007a) 

suggests a socio-economic analogue of temperature different from the straight forward analogizing of 
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temperature as a function of mean molecular kinetic energy in the KTG with mean wealth or income. 

The present paper‟s demonstration that the IP passes the test its meta-theory requires of it better 

than the SW suggests that the IP‟s one difference from the SW, a stochastic driver of wealth exchange 

that exaggerates the effect of the exchange to a clear win or loss from what it would have been in the 

SW, is naturally selected and that the IP is perhaps a better bet than the SW to be shown to be the 

particle system underlying a socio-economic analogue of the combined gas law. 

 

7. Appendix Estimating Mean Labor Income of Workers at the ψth Level of 

Education From, t̂ , Mean Wealth in the t̂ Equivalence Class 

The estimate of mean 1986 labor income at each level of education, its tx
ˆ (in constant 2003 

dollars), is estimated as: 

t

t
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x
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                                                                                                                                   (13) 

where, 

 tx )50(
ˆ         =       median annual labor income of workers at ψth level of education,                                          

    in constant 2003 dollars, estimated from data; 

            )50(x        =       median wealth of particles in the IPDO‟s ωψt equivalence class; 

             t̂           =       mean wealth of particles in the IPDO‟s ωψt equivalence class. 

With the tx
ˆ ‟s in hand, the unconditional mean of labor income in 1986 of people aged 25 to 65, tx̂ , is 

estimated as: 




 ttt xwx ˆˆ  

where, 

 wψt         =        fraction of sample at the ψth level of education .  

The 1986 IPDO estimate of the unconditional mean of annual labor income, 1986x̂ , is calculated as the 

mean of its estimates in the 36 independent fits of the IPDO to the empirical distribution: $31,043 in 

2003 constant dollars. The standard error of this estimate of 1986x̂ is the mean of the 36 estimates, 

$234. 
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Table 1. The Empirical Explanandum of the Inequality Process 

1. The universal pairing (all times, all places, all cultures, all races) of the appearance of social 

inequality and concentration of wealth after hunter/gatherers acquire a storeable food surplus. 
(Angle, 1983, 1986) 

2. Why the gamma family of probability density functions (pdfs) is a useful approximation to labor 
income distributions conditioned on education and why the unconditional distribution of labor 
income has a right tail whose heaviness approximates that of a Pareto pdf; (Angle, 1983, 1986, 

1996, 2002, 2003, 2006, 2007b) 

3. How the unconditional distribution of personal income appears to be gamma distributed at the 

national level and in successively smaller regions although the gamma distribution is not closed 
under mixture, i.e., under aggregation by area;  (Angle, 1996) 

4. The shapes of the distribution of labor income of workers by level of education, why this 

sequence of shapes changes little over decades, and why it is similar to the sequence of shapes of 
the unconditional distribution of personal income over the course of techno-cultural evolution; 
(Angle, 1983, 1986, 2002, 2003, 2006, 2007b) 

5. The dynamics of the distribution of labor income conditioned on education as a function of the 
unconditional mean of labor income and the distribution of education in the labor force; (Angle, 

2003a, 2006, 2007b) 

6. Why and how the distribution of labor income is different from the distribution of income from 

tangible assets; (Angle, 1997) 

7. Why the IP‟s parameters estimated from certain statistics of the year to year labor incomes of 

individual workers are ordered as predicted by the IP‟s meta-theory and approximate estimates of 
the same parameters from the fit of the IP‟s stationary distribution to the distribution of wage 
income conditioned on education; (Angle, 2002) 

8. The Kuznets Curve in the Gini concentration ratio of labor income during the industrialization of 
an agrarian economy; (Angle, Nielsen, and Scalas, 2009) 

9. In an elaboration of the basic IP: if a particle in a coalition of particles has a probability different 
from 50% of winning a competitive encounter with a particle not in the coalition, this modified IP 

can reproduce features of the joint distribution of personal income to African-Americans and other 
Americans: 
              a) the % minority effect on discrimination (the larger the minority, the more severe  
discrimination on a per capita basis); 
              b) the relationships among: 
                         i) % of a U.S. state‟s population that is non-white;  

                        ii) median non-African-American male labor income in a U.S. state;  
                       iii) the Gini concentration of non-African-American male labor income in a U.S. 
state; and  
                       iv) the ratio of African-American male to non-African-American male median labor 
income in a U.S. state. (Angle, 1992) 
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Table 2. Ordered Set of Education Categories 

eight years or fewer years of primary education (including illiteracy); open end category 

some high school education  

high school graduate (completion of four years of secondary education 

some college (some post-secondary education) 

college graduate (completion of four years of post-secondary education) 

at least some post-graduate education (including academic and professional degree programs); open 
end category 
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Table 3. Estimated Particle Parameters t̂ and the Estimated Mean of Wealth, t̂ , in Each 

IPDO ωψ Equivalence Class Based on 31 Fits of the IPDO to the Distribution of Wage Income 
Conditioned on Education in U.S. in 1986 

education estimated t̂  mean standard 
error of estimate 

of t̂ in 36 

replications of fit 

to 1986 data 

estimated t̂ wh

ere μ = 1.0 
(mean of 36 
independent 

replications of fit 
to 1986 data) 

mean standard 
error of estimate 

of t̂ in 36 

replications of fit 

to 1986 data 

eight years or 
less 

.4733 .0200 0.6571 .0280 

some high 

school 

.4261 .0173 0.7826 .0273 

high school 
graduate 

.3674 .0096 0.8602 .0130 

some college .3162 .0104 1.0046 .0234 

college graduate .2528 .0090 1.2568 .0353 

some post-
graduate 

education or 
more 

.1940 .0078 1.6152 .0402 
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Table 4. Estimated Particle Parameter Vector, t̂ , and the Estimated Mean of Wealth, t̂ , 

in Each SWDO ωψ Equivalence Class Based on 36 Fits of SWDO to Distribution of Wage 
Income Conditioned on Education in U.S. in 1986 

education estimated t̂  standard error 

of 

t̂ (estimated 

from 36 
replications of fit 

to 1986 data) 

t̂ estimated 

where μt = 1.0 
(mean of 36 
independent 
replications of fit 

to 1986 data) 

standard error 

of  t̂  

(estimated from 
36 replications 
of fit to 1986 

data) 

eight years or 
less 

.9697 .0221 0.6811 0.0269 

some high 
school 

.9055 .0350 0.7426 0.0248 

high school 
graduate 

.8006 .0214 0.8517 0.0121 

some college .6928 .0298 0.9837 0.0328 

college graduate .5346 .0252 1.2786 0.0406 

some post-
graduate 

education or 
more 

.4138 .0191 1.6425 0.0406 
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Figure 1. Distribution of U.S. Annual Labor Income in 1986 Conditioned on 
Education.  
Histograms are 1986 relative frequencies. Dollar amounts are in terms of 2003 
constant dollars. Sample: People age 25+ with at least $1 in labor income. Source: 
March Current Population Surveys (Unicon 
Research). 
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Figure 2. Differences in Peakedness at Mode between IPDO's (solid curve) and 
SWDO's (dashed curve) Stationary Distributions Fitted to Partial Distributions of 
Annual Labor Income in 1986 Conditioned on Education.  
Each piecewise linear curve is the relative frequency polygon histograms of bins 0.1 
wide at wealth midpoint. Unconditional mean of wealth, μ, equals 1.0 . 
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Figure 3. Time-series of Estimates of ωψ in IPDO and SWDO 
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Figure 4. 36 IPDO Fits Per Year v. 36 SWDO Fits Per Year 
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Figure 5. Time-Series of the Ratio of Mean Squared Error of IPDO Fits to Mean 
Squared Error of SWDO Fits 
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Figure 6. Fraction of Labor Force by Level of Education (except high school 
graduates), 1962-2004 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


