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ABSTRACT
Several methods have been propesed in the last few years for
evaluating uncertainty in forecasts produced by nonlinear
econometrtc modelse Some methods resort to Monte Carlosy while

others resort to different simulation technigques. This work aims at
comparing these methods by means of experiments on some econometric

models of smally medium and large sizey used in practice

forecasting purposese In most cases of practical interesty

simulation of confidence intervals allows to overcome

for
direct
the

difficulties connected with the nonexistence of finite second order
momentssy often encountered by the authors when applying Monte Carlo

maethods to real world modelse,
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le INTRODUCTIOGN

Some paperss in the last few yearss have dealt with the problem
of evaluating the degree of uncertainty associated with forecasts
produced by macro economic modelss Alternative methods have been
proposeds wnich estimate the variance of the forecast errorss when
forecasts are produced with systems of simultaneous equations.
These methods are of three typess
1) Full analytical methods: they were originally designed for linear

systems (2«ges Goldberger et aley 1961y or Schmidty 1974)y Dut

even in case of models containing nonlinearitiesy these methods
can be applied to solve a good deal of the problem (Calzolariy

1981).
2) Mixed methodss partially analytical and partially based on
numerical simulation procedures (analytic simulation):

conceptually equivalent to the full analytical methodss they
allow for a considerable reduction of computational complexity
and are suitable for application even to medium-large size models
{Bianchi and Calzolarisy 1980).

3) Monte Carlo methods: estimates of the variances are computed from
sample wvariances of replicated simulation experimentss after
additive pseudo-random errors have been jinserted 1nto the
structural equations of the model {Schinks 1971)s or even into
model*s coefficients (Fairs 1980]).

In two recent papers the authors have performed some experiments on

a set of smally medium and large size real world modelsy both Yinear

and nonlinears comparing the results and performances of the

di fferent methods proposed in the literature for the computation of

variances of forecastses Comparisons were first confined to the case

of forecasts one period ahead {(Bianchi and (alzolaris 1982)s then to
the case of multiperiod forecasts produced with dynamic simulation

(1983). Two main conclusions were drawn from the experimental

comparison of the methods on models wusedsy in practicey for

forecasting purposese.

1) A1l the Monte Cario methods proposed in the Jliterature for this
purpose involvesy to some extenty a risk of nonconvergences. This
is because at some stage of the process the Monte Carlo methods
are faced with the problem of computing the moments of random
variables whose distribution may have no finite moment of any
order. Forecasts praduced by a system of simultaneous equations
ares in facts strictly connected with the reduced form
coefficientsy and there is no warranty of existence of finite
moments for the small sample distribution of these coefficients,
when derived from structural form estimators Tike 2SLS or 3SLS
{seey for exampley the discussion in Marianoy 1982y pe520).
Empirical experiments simply showed that the risk may be purely
theoretical for some modelss but actual for others.

2} wWhen convergence of the Monte Carlo methods was ensuredy it was
not rare the case of diverging results for the second order
moments of forecasts obtained with the different methodse The
alternative Monte Carlo methods may lead to results substantially
different from one anothers and different from results obtained
analytically or from analytic simulation. These differences were
often encountered 1n case of multiperiod dynamic simulation
forecastsy rarely in case of one-period (static) forecastss

Of <courses the case of coincident or at least similar results

obtained with all the methods does not give particular troubless



The model builder can use the resulting standard errors either as
simple indicators of the degree of uncertainty associated with his
forecastsy or to perform the test of hypothesesy or finally to build
confidence intervals of forecastsa

The case of large differencess on the contrarys leaves the model
builder doubtful about the amount of uncertainty involved in his
forecastss Can he overcome this difficulty? Not completely,
unfortunatelys but to some extente. This paper aims at showings with
empirical evidence on real world modelss that if all Monte Carlo
methods are used for direct construction of forecast intervalsy
without intermediate computation of the moments of forecast errorsy
the cases where large differences are encountered become much rarera.

2e WNOTATIOGNS AND ASSUMPTIONS

The following notations will be adopted in this paper. Let the
structural econometric model be represented as

{2e1) f(‘/t * Yeoq !Xt!a) = Uyg s t=1lslvacerd

where f = (f; +fe seneypfm)! is a vector of functional operatorsy
continuously differentiable with respect to the elements of current
and lagged A X and a; Ye @ (Yyg 1¥as vesaryYme) s
Xy = {Xq4y *Xgp veeerXne) ' and Ye.q are the vectors of current
endagenousy exogenous and lagged endogenous variabless respectively;
a = (a,1399ee01ag) " is the vector of the structural coefficients to

be estimated (all the other known coefficients of the model are
excluded from this vector and included in the functional operators);
Uy = (Ugg tUgy voserlipe)! is the vector of structural stochastic
disturbances {(or error terms) at time ty having zero mean and being
independentiy and identically distributed over times with finite
contemporaneous covariance matrixs and independent of all the
predetermined variables. In all the experiments described in this
papery the contemporaneous distribution of the =error terms s
assumed multivariate normal: u,~wN(0sZ).

It is wusually assumed that a simultaneous equation system like
{(2e1) implicitly defines a single inverse relationship (reduced
form) for relevant values of the coefficientssy the predetermined
variablesy and any values of the disturbance terms:

{(2«2) Ye = GlYp_qgorXg 2@ruy )

0f coursesy the vector of functions g tmplicitly defined is usually
unknowns bDut can be assumed continuously differentiables like fo
Processing the sample data by means of a suitable estimation
methods we get an estimated vector of coefficientsy 3y an estimated
covariance matrix of the structural disturbance processs Xy and an
estimate of _the <coefficients covariance matrix which will be
indicated as Y/T« Four remarks may be helpful at this pointes
1) Few assumptions in addition to those listed above are usually
enough to ensure consistency and asymptotic normality of 3y
produced by suitable estimation methodssy in <case of linear
dynamic or nonlinear static models. In these casessy 1t 1is
usually ensured thaty asymptotically as Ty



(2e3) VT (8 - a) ~ N(0yY¥) e

2) Unfortunatelyy to our knowledges there are no general theoretical
tools to prove that (2.3) holds when the nonl inear model includes
lagged endogenous variables among the predetermined variables.
It cane howevery bDe assumed that (23) holds under heuristic
considerationss as in Gallant (1977e ppaT73-T74)s If (23) holds,
then several results which will be derived are asymptotically
exact; if (243) does not hold exactlys the results which will be
derived are not asymptotically exacty but simply '"reasonable
approximationsa

3) If Y is a consistent estimate of ¥y an estimate of the covartiance
matrix of 3 multinormal distribution which approximates the smal]
sample distribution of 3 is obtained as ¥Y/Ty, that is dividing V¥
by the actual length of the sample period (see Schmidte 1976,
90254)‘

4) ?/T 15y together with 3y a standard outcome of system estimation
methodse. For examples tn case of FIML estimations QVT is nothing
but the inverse of the Hessian (with wminus sign) of the
concentrated 1log-likelihood, calcul ated at the point which
maximizes the likelihoods When limited information estimation
methods are appliedy this matrix must be built block by blocky
after the estimated coefficients have been obtaineds and the
resulting matrix may be singulary 1n case of undersized sampless

Let us now introduce an additional simplifications which is crucial:

we disregard from misspecifications Of «courses the results which

will be obtained could be used for tests of misspecification ory
more simplyy for empirical measurement of the misspecification
effects (easgs Faire 1980), however we shall works in the rest of
the papery as |(if equation (2.1) represents the "true" structure of
the economic system andy therefores the "true®™ process which
generates endogenous variables is represented by equation (2.2)e¢ AN
assumption ltike this 15y of courses considerably hazardous and
unrealisticy but quite helpful and useful. We should not forgety in
facty that we are going to analyze and measure the degree of
uncertainty associated with forecasts obtained from simulation
experimentse. Roughly speakings if a measure of wuncertainty is
obtained under the assumption of correct specificationy it should be

interpreted as the "minimum'" degree of uncertainty associated with a

given simulation results In other wordsy we get in this way a kind

of empirical upper bound for the reliability of model*s forecasts.

Forecasts obtained with the usual simulation procedurey which s

deterministicy are in some way related to the reduced form notation

(2.2) where a is replaced by its estimates 3y and the random error

terms u, 4dre set to their expected value (zero)e For examplesy if we

are interested in one period forecasts at time hy given all
available information on endogenous variables at time h-le and
conditional on the exact knowledge of all the exogenous variables at

time hs we calculate the values of the endogenous variables ?h such
that fF (Y, »y,19%,3)=0y that isy resorting to the reduced form
notations

(244) Yo = 9lyga1%,1840).

Generalization to dynamic simulation is straightforward (see section
4)

Wwhichever use is made of the modelsy we must not forget that,
while (2e2) 1s the process which generates the real datas what we



are using is the simulation process {2+4)s The differences in the
two processes are given by the presences in the latters of the
random vector of estimatesy ay instead of the vector of constant
"true® coefficients ay and by the presence of the random error terms
uy in the formers These two differencesy which <cause the
uncertainty of simulated resultsy are the two error sources whose
ef fects will be measured in this paper.

Wwe shall try to isolate the effects of these twOo error sourcesy
as far as possible. when separation of effects can be madey the two
error sources can be treated with different computation procedures.
Although both error sources havey in some sensey a common originy it
is extremely 1mportant ¢to distinguish between their different
behavioura

3. THE TWO ERROR SOQOURCES

The structural disturbance vectors uge is 3 vector of zera mean
random error terms embodied in the model by the very nature of the
endogenous variabless which are random variables. Whichever sample
period length we have at our disposalsy and whatever estimation
method we applys we cannot reduce the size of the error caused by
uee All we can gets from using more and more efficient estimation
methodsy (is @ more accurate estimate of the error process covariance
matrixy XZy which however remains 38 nonzero matrixe Even if a)l the
other variables and parameters of the model were known with
certaintysy the simulation process would differ from the real data
generation process by a nonlinear function of uys

The simplest (and perhaps the only possibley in case of
medium-1arge models) way of treating nonlinear transformations of
random variables with finite variances and covariances is surely
stochastic simulation (Monte Carlo). We may proceed as follows.

First of all a vector of pseudo-random error terms must be
generated for each period of time to which simulation results are
related (one onlys for instances if we are dealing with one-period
forecasts)s The distribution of these pseudo-random vectors must be
as close as possible to the distribution of ugi @ suitable choice
may be the multinormal distribution with zero mean and covariance
matrix equal to the available estimate e When we are dealing with
a2 case of undersized samplesy as for most models used 1in practice
for forecasting purposesy a3 sulitable generation method has been
proposed in McCarthy {(1972)e The generated error terms are inserted
into the modelsy and the usual simulation procedures are applied to
produce forecastses The whole procedure s repeated from the
beginning a given (possibly large) number of timess in such a way as
to produce a sample of outcomesy from which we calculate sample
means and variancess A number of replications more and more
increasing isy usuallys expected to produce more accurate values of
means and variances. Analytical approximationsy based on model's
linearizations are possibley but they are not exact: we shall always
resort to stochastic simulation when dealing with this source of
uncertaintya.

N The nature of the error involved in the estimated coefficients,
dy 1S rather differente If we are able to isolate its effects from
those due to the structural disturbancesy we c¢an process and measure
such effects in a completely different waye 1In many casess in facty



we could even apply full analytical methods ors if simpler in
practices some simulation procedures which are straightforward
numerical applications of the amalytical methodss therefore called
"analytic simulation”.

e notice that the error involved in the estimated coefficients
is only due to the availability of data for a short number of time
periodse If an infinitely large sample could be availables the
consistency of the estimation method would produce a coefficient
vector without errorse For finitte sample lengthsy we now observe
thaty conditional on the exact knowledge of predetermined variablesy,
the simulation process i1s nothing but a function of the estimated
coefficients (2e4) and that thts functions even if usually uaknowns
is continuously differentiable. We cans therefores apply a well
known theorem on the limiting distribution of functions of sample
statisticsy which states as follows (5ee Raos 1973+ pe388)e

Theorem. Let A& be an s-dimensional statistics such that the
asymptotic distribution of JT(8-a) is s-variate norma) with mean
Zero and covariance matrix Y« Let g be an m-dimensional vector of
functions of the s variables and each g be totally differentiable.
Then the asymptotic distribution of VT[g(d)-g(a) is m-variate
normal with 2ero means and covariance matrix GYG'y where G=dg/da’.

A practically equivalent statementy which is suitable for our case
(see again Raosy 1973y pe388)y is thaty if 4 is distributed
approximately as s-variate normal with mean a and covariance matrix
/Ts then g(&) is distributed approximately as m-variate normal with
mean g{a) and «covariance matrix GYG'/Te. The accuracy of the
approximations of coursey increases as the sample size increases.

We can resort to the above theorem to measure the deqgree of
uncertainty due to errors in estimated coefficientse. When we
evaluate the effects of coefficients errors on forecastsy then g(3)
is the simulation process (2¢4)y and the matrix of its derivativesy
Gy can be computed analytically even if the functional operators g
are unknowna Faor the 1mplicit functions theoremy in facts we have
the equality

(3e1} dgsdat = - (JEs N Y D sdar

which involves only the functional operators of the structura)l form

of the model. Howeverys we have preferred to calculate derivatives
only numericallyy as ratios of finite differences.s This method
(analytic simulation) seems to be <computationally simplter and has

proved to be sufficiently accurate in most casess

4. FORECASTS AND FDRECAST ERRORS

Let h be a time period not belonging to the sample estimation
period ls2veeesTy and let the model be wused to forecast at times
N+ly h*2y eseeay here Given the values of the endogenous variables at
time he y, ¢+ and the values of the exogenous variables in the
forecast periodsy Xy 49 Xy eees X .9 then the values of the
endogenous variables in the forecast periods can be obtained
recursively as:



{4el) Yhed = 90V "Xneg 13 0Upet } s
yhc-l = g(ykﬂ'xhd’a’ulﬂz} = Q(Q(Yh LYW ] 1aouh.1)9xh‘.,_oavuh,1)
T G (Y 1% g1 X v AUy s 0 U9 )5
Yier = G Yo g Xnen13vUpr) = G{G(eee) o Xpp varuy,)

1l

Op (yh PXppree ey Xy, vy, teeerllp, ] e

Beyond the possible misspecification of the model and the two errocr
sources discussed in the previous sectiony at least one more sgurce
of uncertainty should be considered (sees for examples Klein and
Youngy 1980y pe8l): the unknown values of the excgenous variables in
the forecast periods Xpgv Hpav eear Xppe If the model is used for
ex—ante forecastings that is h+lsy h+Z2e eeey h*r are in the future,
the exogenous variables must themselves be forecastedy thus
involving uncertainty. If ex-post forecasting is performeds some
uncertainty still exists about the values of the exogenous variables
(and of the initial wvalues of the endogenous variabless vy, )
especiaily if h is a sufficiently recent time period and preliminary
data are wused. This problem is not <considered in this papers as
well as the uncertainty deriving from the possible misspecification
of the model; the present analysis and comparison of methods
performed are conditional on exact knowledge of the initial wvalues
of the endogenous variables in the forecast periods y, s+ and on the
values of the exogenous variables xpas X9 sees X, »e As discussed
in section 2y this implies that the measure of uncertainty is a
"minimum" degree of uncertainty associated with forecastss

Let us now have a look at the usual way in which modelers produce
their forecastss. The model builder must choose a starting point for
the simulation experiments Such a point (h) is usually the last
time period for which "sure" information is available; in many cases
it is h=Ty the last point of the sample estimation period. For the
purposes of this papers it is simpler to start from 4 period h not
belonging to ls+Zseeas] (for exampley h=T+1); when this will not be
possible for lack of datas we shall choose h inside the sample
period and a slight approximation will occur.

The model builder next introduces values for vy, and Xp. 9 Xpezs
eeey Xy, Assumed exacty, sets the random error terms Upts Uyq v sees
Upspr to  their expected wvalue (zero) and solves simultanecusly the
dynamic system (4as1) at time h+ly h*2y sasyr Ntrae Forecasts are so
obtained as

A

(4.2) Xh1 = g{Yh ’xhr‘l'azo); - ~
Yoer = 9(93.-1 'xhet'a'o)ﬂz g{gly, 9% 9210) ex, 4 9390)
T G (W P X 10 730090)5
- * ~ A a
Yoew = g(?htrd'xhv?"a’o) = g(g("')'xhﬂﬂ’a’o)

= gl'(yh ,Xh,."--.')(hﬂ.’a'01 ceaer0) e

Forecasts §“1. ;Mz' TR }M, differ from the values of the
endogenous var?ables in. the forgcast Period Yuym ' Yyt sser Y
because the estimated 3 is used instead of the unknown coefficients
vector ay and due to the existence of the random error terms Uy
Upet?y seoer Up,e

In order to assiygn forecasts an estimate of their degree of
uncertaintys it would be useful to get an estimate of the first two

A -~ -~

moments of the forecast errors Yt Yot 7 Yar “Yhea? cesr YTV OF



some confidence intervals aof forecasts (briefly, forecast intervats,
Intriligators 1978, pe518). In most practical applicationsy
howevery the estimation of the first moment of the forecast errors
does not appear particularly interestingy due to the mld
nonlinearity of the econometric models useds which causes i1t to be
very smally at least for for static or short dynamic simulation
periods {(seey for exampley Calzolaris 1979; Faire 1980; Marianoc and
Browny 1980).

Much more interestings in practicey is the information which can
be derived from an estimate of the second order momentse.

Alternative methods have been proposed in the literature for the
evaluation of the second order moments of forecast errors 1in
nonl inear econometric modelss. Apert from the technical differences
and the computational approximations which they 1nvolves these
methods are conceptually equivalent in case of single equation
models and for nonsimul taneous equation modelse. This equivalence
does not extend to simultaneous equation systems (even linear).
Experimental comparisons of results on real world models used for
practical purposes aim at investigating to what extent the methods
can still be considereg as "practically" equivalent. The methods
can briefly be described as followse.

- Stochastic simulation in the sample period and in the forecast
periods with re-estimation of the structural coefficientse.

With this methody a certain number of stochastic simulation runs
over the sample period must be performede In each runy T vectors
(one for each period) of pseudo-random additive error termss wWith
Zero mean and covariance matrix equal to the available ¥y are
inserted into the stochastic equations of the systemy whose
simultaneous solution provides pseudo-random values of all the
endogenous variables over the sample period.

Each set of pseudo-random values is useds like a new set of data,
to re-estimate the model®s vector of structural coefficientses Each
vector is used for a new stochastic simulation runs this time not in
the sample periody but in the forecast periody also introducing new
pseudo-random additive error terms into the stochastic equationse

The values of the endogenous variables obtained as solutions of
the model in the forecast pericd are affected either by errors in
the estimated coefficientss which have been randomly generated by
the stochastic simulation in the sample period and re—-estimationsy or
by the structural error termsy which have been introduced by
stochastic stmulation in the forecast periode A convenient number
of replications of this process allows one to compute either a
variance—-covariance matrix of forecasts at times h+#ly he2y eeas her,
or forecast intervals for each endogenous variables or joint
intervals for groups of variablese

This method is <often used to analyze the small sample behaviour
of estimation methodsy when the analytica) investigation is
difficult or impossible (seey for exampley the discussion in
Marianos 1982+ pa503). Its wuse for investigating the forecast
errors of nonlinear econometric models is proposed and described in
detail in Schink (1971).

- Monte Carlo on coefficients and stochastic simulation in the
forecast peri1ode.

Instead of obtaining pseudo-rangom vectors of coefficients by means



of a stochastic simulation and re-estimation processy this method
gets them directly by sampling from the distribution of estimated

coefficientse The small sample distribution of structural
coefficients in a simultaneous equations system 1is usually very
complicatedy o©r even unknowns Thereforey recalling thates under
sufficiently wide conditionsy the asymptotic distribution is
multivariate normaly it is much easier for the experimenter to
perform the generation of pseudo-random coefficients from a

multinormal distribution (seey for exampley Cooper and Fischery
1974; Fairs 1980)

for this methody the covariance matrix of +the structural
coefficients is also requirede. An estimate of this matrix 1is
standard output from system estimation methodsy 1ike three stage
least squares or ful) information maximum likelihood; otherwisey if

single equation methods are usedy this matrix must be built block by
blocky as in Brundy ana Jorgenson (l1971spa215) for limited
information instrumental wvari1ablesy or Theil (197lepe500) for two
stage least squares estimatess Pseudo-random forecasts can then be
produced by performing stochastic simulation of the model in the
forecast periods For each simulation runs a pseudo-random vector of
coefficients must be generated from the multinormal distribution
just mentjoneds and r independent vectors of pseudo-random error
terms (one for each period of forecast) must also be generateds
Both error sources arey thereforey taken into account. As for the
previous methods a convenient number of replications allows the
computation of a variance-covariance matrix of forecasts at time
h+ls N*2y ssey N+*ry or the construction of forecast intervals.

- M™Mixed methods: analytical method, analytic simulation on
coefficients and stochastic simulation in the forecast periode.

These methods extend that proposed by Bianchi and Calzolari (1980),
for static simulation of nonlinear modelsy to dynamic simulatione
In turny the earlier proposal extended the fully analytical methods
developedy for linear modelsy in Goldberger et ale (196l)e The case

of dynami¢ simulation of linear models is treated in Schmidt (1974).
The random error terms have been assumed serially independent;
thereforey assuming exact knowledge of all the predetermined

variables (Y, s Xuyg 9 Xpgv esees Xy} the vector of coefficients, 3,
which is obtained from an estimation procedure applied to the data
of the sample periods is independent of the random error terms in
the forecast period (which is outside the sample estimation period).
We can now decompose the vector of forecast errorssy in the generic
forecast period heky as follows:

(4.3) ;l\bk = Yhex - gk(Yh ’Xh.1'0.nUXh‘KQgOOOQQAOO)
= Gy (Y, 9Xper Yo e 9Xp, 130 Upq v e vy Upik)

n

[k { Yn 9%Xnp1 90 09Xpk939050090) - gy (Y, XpesaeeX) k13105209 0)]
[gR(yk thnOOOQX)"“!a!OOOGOO) - g“(yh 9xh19..9xh'kyaoubﬂo...uhk)] .

Having assumed exact knowledge of all the predetermined variables
involved (n our forecasty the two components of the forecast error
vector are independents since the former depends on 4+ while the

lTatter depends 0N U,y eees Unxe We can o therefores calculate the
variances or the covariance matrices of the twO companents
separatelyy and sum them to get the final resultse. Forecast

intervals for endogenous variables <can be obtained from the
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estimated standard errorss wunder an approximate hypothesis of
normalitys

As far as the first component 1s concerneds we can apply the
Theorem of section 3. If we assume thats as T (sample period
length) increasesy asymptotically

(4e4) VT (3 - a) ~ N(0sY)

and define Gpex as the (m x s) matrix of first order partial
derivatives of the vector of functions g with respect to the
elements of ay computed at the point (Y, X,,qr sseyr Xt @y 09 eonny
Q)+ thens asymptoticallyy

("—ras) ﬁ‘ [gx(yh,Xh.1yO.Q’Xh-ﬂg!éyoyccoto)
- gk(yhoxhﬂ,-.-,xh.k,a,Oy-..,O)] ~t N(O,G““‘YG:‘_‘)

An estimated covariance matrix of a muiltinormal distributions which
approximates the small sample distribution of the first component of
the forecast errorss is obtained by calculating Guex at the point
(Yo v Xpyg? . sesr  Xpxr d9 Oy eess O}y replacing ¥ with the available
estimate ¥y and divading 6,,¥Y6/, by the actual length of the sample

periods T This approximation is asymptotically exact if the
functions of the vector g, are continuously differentiable and if
the estimated structural coefficients are consistent and

asymptotically normally distributed.

As already observed in section 3y the first order derivatives
might be computed analyticallye The computation would be rather
simple in case of one-period forecasts with models linear 1in the
coefficients (even if nonlinear in the wvariablessy see Calzolariy
1981)y but becomes rather difficult {(even if still possibley in
principle) in all the other casese It is simpler to abandon the
fully analytical methods and compute the first order derivatives by
means of numerical differentiations using finite differences between
a control solution and disturbed soclutions (with increments on the
structural coefficients) in the forecast period.

As far as the second component of the forecast errors 1is
concerneds that is the component which (s due to the random error
terms Uy, v eeses U, the variances of its elements can be computed
as in the previous methodses by means of replicated stochastic
simulations of the model i1n the forecast periods Iintroducing
additive random error terms into the stochastic equationss but with
fixed <coefficients. Forecast intervals can be constructed from
standard errors of forecastse.

Se FINITE MUMENTS AND CONVERGENLE OF MONTE CARLO METHODS

The <case of linear systems of simultaneous equations well
exemplifies the problems which may be encountered when calculating
variances of forecasts with Monte Carlo methods. Let the model be

(5-1} Ayt + th = Ug »
where A and B are matrices of structural coefficients (A is square

and nonsingular)y some of which are fixed a-priori {zerc and one
restrictionss for example)s while others must be estimated.
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Defining M=-a'8 and v, =N‘u¢o the restricted reduced form can be
represented as

(52) Ye = mxt * V¢ oo

If X. 8 and Tﬁ=—AJ§ (A nonsingutlar) are the available estimates of

the coefficientss the model can be used to forecast at time hsl,
he¢2y seae9 htre For examples at time herye it will be

(5«3) Yhewe = mxhﬂ'.
The vector of forecast errors at time h+r s
( S5e4 ) 9*\6? = Yhew = (rr1 - Trg ) Xaep =~ th‘ .

EQuation (Se«4) shows the strict relation between forecast errors and
errors in estimated coefficients of the restricted reduced form.

When performing stochastic simulation in the sample periods with
re—estimation of structural coefficientsy we reproduce
experimentally the small sample distribution of either the

structural form or the reduced form coefficientss When calculating
the sample variances of the .random forecastss we could be sure that
these variances converge only 1f the distribution of T, has finite
momentss at least to the second order.

The existence of finite moments of reduced form coefficients is
not a yeneral property of simultaneous eguations sSystemsy but it
strictly depends on the model and on the estimation method which is
adopted. Detailed proofs and references can be found in the recent
article by Mariano (1982); a simple intuitive explanation is given
in McCarthy (1981)e. Some estimat:ion methodssy like full information
maximum likelihoods directly estimate TWy; they make wuse of "any
overidentifying restrictions of the structural forms but oo not need
inversion of the matrix A. Howevery for other estimation methodsy
like two or three stage least sguaressy the reduced form coefficients
are derived from the structural form coefficients through the
inversion of the matrix Ay and "the model builder has no control on
the determinant' of such a matrixe. The determinant of A (appearing
in the denominator of each element of the inverse) '"can take a zero
value with positive probability density associated with all points
in the neighborhood of zero". The sames Of courses may happen when
Monte Carlo 1s applied by adding random errors to the structural
coefficientse We Ssees In this wayy that in the general case both
Monte Carlo methods are not equivalent to the analytic simulation
method; the latters in facty calculates the covariance matrix of a

distribution which asymptotically approximates the small sample
distribution of our reduced form coefficients or forecasts; since
this asymptotic distribution is normals it always has finite
moments s

6be LARGE DIFFERENCES EVEN WHEN MONTE CARLO METHOOS CONVERGE

In the large set of experiments on one period forecasts performed
in Bianchi and Calzolari (1982)s an approximate equivalence of
results was found in all cases in which Monte Carle methods
converged; in other wordss no Monte Carlo experiment ever converged
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to values of the second order moments largely different from those
produced by analytic simulatione The only cases 1n which Jlarge
differences occurred were those cases in which Monte (Carlo did not
converge anywhere. It seemedy thereforey that the nonconvergence of
Monte Carlos due to some determinant close to zero (or for some
other reasons presumably similare but not so explicit for nonlinear
models)y could be the only source of large differences in the
variances computed with the different methods for models actually

used for forecasting purposes. Thisy howevery is not true for some
modelss when we pass from one period (static) forecasts to forecasts
produced by multiperiod dynamic simulationse. Theny even if the

matrix which must be inverted is the same as 1n the static cases the
dynamic simulation mechanism i1ncreases the risk of generating values
of the denominator close to zeroe as will soon be cleare Let

(6el) Ay, ¢ Bxy ¥ Cypy = U,

be the structural form of the model. Defining TB=—E1C, the reduced
form of the model is

{62) Yo ° TT.yt__, + T]',x,_ t Ve s

The solution of the model at time he¢ry conditional on the value of y
at time hy assumed knowns is

P
{(6e3) Yhar = TT:Y,, + g T’:"“? Xhew ? Zﬂ: Tr.-thﬂ(°

Using the model with estimated coefficients to forecast at times
hely Nv2y eesy h+ry the forecast error at time her 1is

~ -~ » - N ~
(6:4) Yoor = Thee (TT: - ]T:) Yn * Z(Trark]T1 _Troﬁ.nm)xhox
ket
- r

i T Vh’k *

Hnad
The matrix A which must be inverted to compute T, and TV is sti1ll
the same as in the static casee Therefores the risk of
nonconvergence of Monte Carlo should be the same as in the static
cases Howevero 1n a long dynamic simulation run the Dbehaviour of
the model crucially depends on the powers of T andsy therefores on
the powers of Al Values of the determinant of A not too close to

zerosy but smaller than ones may become sufficiently close to zero as
soon as they are raised to a moderate powery as in dynamic
stmulation over a few periods; the probability density of the
determinant raised to a power is highersy near zeroy than for the
determinant raised ¢to ones. In this cases Monte Carlo experiments
would still converge after a sufficient number of replicationss but
the results would «crucially depend on the form of the distribution
of the determinant near zeros and not just on the first two moments
of the determinant itself. Slight differences between the
probability densities of the determinanty in the region between zero
and oney m3ay cause sufficiently large differences of results in the
computation of variances of forecasts after several periods of
dynamic simulations
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Te EMPIRTICAL RESULTS: STANDARD ERRORS AND FORECAST INTERVALS

Wwhen estimating the variance of forecasts in the dynamic
simulation of a large nonlinear models we cannot have a clear
analytical 1insight of the mechanisms which cause similarity or
differences in moments obtained with +the Jgifferent methads. It
seemsy howevery reasonable to telieve that the mechanisms are
similar to those which act in the linear casee

As far as the comparison of the different methods in procducing
variances of faorecasts is concerneds the experimental results
obtained in Bianchi and Calzeolari (1l983) showed cases in which:

- when computing the variances of forecastss all Monte Carlo
methaods converge and their results are close to each other and to
analytic simulation results;

- some methods do not convergey while other methods converge to
values of the variances of forecasts similar to those produced by
analytic simulation;

- some or all methods converges but produce variances of forecasts
which are close to those produced by analytic simulation in the
first period of forecasts but diverge from each other and from
analytic simulation after a few periods.

For completeness sakes some of the results in Bianchi ana Calzolari

{1982) are reproduced in the first opart of each table. We have

repeated all the Monte Carlo experiments without computing second

order momentss but simply collecting all the simulation results and

building for each variable a forecast interval at 3%0% by dropping 5%

of each tail of the distributione. The extreme points of the
intervalsy for each endogencous variabliey are displayed in the second
part of each table. Values are given as percentages of the

deterministic simulation value (that is the actual forecast)e For
exampley an interval (—-4% : +5%) means that 90% of the simulation
results fall i1n the interval between -4% and +5% of the forecasted
valuea In this ways the outliers which are responsible of the
nonexistence of finite momentse or of large differences when finite
moments existy are dropped in most cases of practical interest.

cven if differences still remainy as obviously expecteds the
results become comparable in most cases.

The extreme points of the forecast intervals related to analytic
simulation have been obtained from the standard errors {(plus or
minus 1«65 times each standard errors using a narmal approximation).

Results indicated with I.Ve in the tables are related ¢to
stochastic simulation in the samplte period and in the forecast
periods wlith re-estimation of the structural coefficients;
re-—estimatiaon has always been performed by means of limited
information instrumental vartables methods {(l.Ve)y obtained with one
iteration of Brundy and Jorgenscn's method after a first estimation
with ordinary least squares. For discussions on the problem of
efficiency of instrumental variables in <case of nonlinear models,
reference can be made to Amemiya (1977 +p+966 ).

Results indicated with M.C. in the tables have been obtained with
Monte Carlo on coeoefficients and stochastic simulation 1n the
forecast periodes Analytic simuiation results are indicated with
A.Se For one medel onty (Klein-I) we also present results related
to stochastic simulation with re-estimation performed by means of
full information maximum likelihood (FrIML}.

The first model experimented with is the well known model of the
UeSe economy 1921-1941ly described in Klein (1950)s usually referred
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(1931) AsSe FIML IeVe MeC o

C (‘3-9 T 43e9) (345 T +3e9) (3.1 I +841) (4.8 : +443)

I {—3e¢3 : +3.3) (-3.2 : +3.5) (‘3.0 : *5.6) (-4«0 1 +346)

Wl (=3e8 : +348) (=35 * +440) (=349 : +Ta3) (—4e4 : +349)

Y (=Tal ¢ 47el) (649 i +7e5) (=645 : +13,) (=846 : +7T47})

P (=348  +348) (=345 = +#349) (=3.0 : +649) (50 : +444)

K (*3.3 Po+3.3) (-3.1 ¢ +3e8) {=3e0 : +546}) {—-4.0 : +3 65}

(1941} AsSe FIML IeVe Mel o

C (—6-3 I +be3) (640 = +5e8) (‘6.8 i +348) [(—6eB T +Baq4)

I (=4e3 : +443) (=440 1 +407) (—b4a% * +7e0) (~4e4 : +5a9)

Wl (-5 : +549) (=545 | +5e2) (—6a5 ¢ +8a28) (~6el : +6£a8)

Y (_100 : *lO.) (—901 H +lO.) (‘110 . +l2.) (—lll H +12.)

P (=429 1 +4a9) (—Gel ! +5.0) (=448 : +T7.2) (-448 : +7.2)

K (-16e = *16e}) (—15e & +16a) (-19e ¢ +Z21le) (-19s : +16,)
tc as the "Klein-1 model". It consists of 3 stochastic equations
plus 3 identities; it i1ncludes 4 exogenous variables and 3 lagged
endogenous variablesa The 6 endogenous variables are: C=
consumption; [= net investment; Wl= private wage Dill; ¥= national
income; P= profits; K= end-of-year capital stock. Table 1 displays
forecastsy standard errors of forecasts and forecast intervals at

90% for the 6 endogenous variables of this model in the first and

last year of a dynamic simulation run from 1931 to 1%4l.
The results displayed in Table 2 are related to the annual
of the Itatian economy developed by [SPE (Istituto di Studi

mode |l
per la
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Table 2
ISPE model of Italian economy. DOynamic simulation
forecasts 1960-1977. Initial estimates: 2SLS with
principal componentss Standard errors of forecasts

at 1960 (percentage); at 1977 (percentage)

AeSe TeVe MeCe AaSa ToVe MeCa
CPNCF le7 le7 leB 58 6.7 el
DXML 3.5 3.2 3«5 el Teb Fe9
IFIT 10. 10« 10« 11le 13« L7
LI 2e3 2e3 2e3 et 440 4ol
MT 650 5.9 6.0 13, 15 1B
PCL la7 le6 17 10. 12. 15,
VAP le9 1.9 20 3.7 He5 59
xT 3«5 3.2 3¢5 BaB 10 13

Forecast intervals at 90%. Extreme points of the intervals
are given. as percentages of the corresponding forecasts

({1960) AeSe IeVe MeCe

CPNCF ( =3% : +3%) { =3% :  +2%) ( =3« = +3%)
DXML { —6% = +6%) { —-3% : +5%) ( =5% : +5%)
IFIT (-16% : +16%) ( =16 : +13%) {(=17% : +1laX)
LI { ~4% 1 +4%) { -3% : +3%) ( —3% :  +4%)
MT (=10% : +10%) { ~9% : +8%) {(=10% : +8%)
PCL { =3% @ +32%}) ( 24 ¢ +2%) ( -3% : +3%)
VAP { ~3% :  +3%) { -3% : +2%) { —3% : +3%)
XT { -6% : +6%) ( —-3% : +5%) ( =%% = +1%)
{1977 AeSa TaVe MaCo

CPNCF ( ~9% : +9%) (—-11% : +10%) (=10% : +11%)
DXML (-11% : +11%) (-11% : +15%) {-12% : +12%)
IFIT (=18% : +«18%) (-19% : +17%) (-20% : +21%)
LI { —6% : +6%) { -7% + +5%) { —5% 1 +71%)
MT (-21% : +21%) (-24% : +28%) (-19% : +29%)
PCL {(-16% : +16%) (~L7% : +20%) (=L7% : +17%)
VAP { —6% : +6%) { —7% :  +7%) ( =7T% 1 +8%)
xT (=1l4% : +«14%) (-15% : +20%) (=~14% : +19%)

Programmazione Economicas Roma})e The wmodel, described 1in Sartori
(1978) 9+ consists of 19 stochastic plus 19 definitional equations;
tnere are 7% estimatea coefficientse The initial estimates used for
the experiments have been obtainea by means of two stage least
squares with principal componentss FfFor lack of datas the forecast
period {1960-1977) is not external to the sample estimation period
{1955-1976) .

The results in the table are related to 8 of the main endogenous
variables of the model s The wvariables are: CPNCF= private
consumption; OXML= price deflator for exports; IFIT= private
investment; LI= employees in industrial sector; MT= imports of goods
and services; PCL= price deflator of private consumption; VAP= gross
output of private sector; XT= exports of goods and servicese The
standard errors are displayed as percentages of the forecast value
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of each endoyenous variables as well as the extreme points of the
90% forecast intervalse. It is «clear from Table 2 thaty for this
modely most methods remain approximately equivalent both for static
simulation (1960) and after a sufficiently long dynamic simulation
period; only Monte <{arlo on coeefficients convergess in dynamic
simulationsy to values of the second order moments slightly larger
than those produced by the other methodss and the forecast intervals
are slightly larger as well.

Table 3
I18M model of the United Kingdom. Dynamic simulation

forecasts 1976,1-19T78/1Ve Initial estimates: iterative
instrumental variables. Standard errors of forecasts

at 1976/1 (percentage); at l978/1IV (percentage)

A.S. I.V. M'C. AIS. Ilv. M.C.
BI 342 3.2 342 8.3 19. 28
CPl le4 lea le5 Fa6 11. 66
EM Oe4 Oat Qi la4 34 2e5
GNP le3 1.3 le3 247 4e6 10.
GNPC  1e5 1e5 Le7 12. 15 133
M 247 27 27 46 6e8 15.
XIe le3 262 la9 4e b 18. 16

Forecast intervals at 90%. Extreme points of the intervals
are given as percentages of the corresponding forecasts

(1976/1) AeSe IeVe MeCo

BI ( =5% : +5%) ( -6% : +5%) ( -6% @ +5%)
CPI { —2% : +2%) { —-2% : +2%) ( ~2% : +3%)
EM (—eb% : +e06%) (—e9% : +46%) (—eb% : +46%)
GNP { —2% : +2%) { -2% = +2%) ( -2% : +2%)
GNPC ( =2% 3 +2%) { ~3% :  +3%) ( -3% :  +3%)
IM { —4% @ +4%) ( —4% 1 +4%) { —4% 1 +5%)
XIP { =3% : +3%) { ~6% : +3%) ( —2% = +3%)

Forecast intervals at 75%

(1978/‘1’) A.S. I.V. M.C.

BI { -9% : +9%) {-19% : +14%) (—-ll% : +15%)
CPI (-L1% : +11%) { ~T% 1 +20%) (-13%  +17%)
EM ( —2% = +2%) { —4% 1 +2%) ( —2% : +2%)
GNP ( -3% @ +3%) {( -6% @ +2%) ( =3% 3 +4%)
GNPC {(-1l4% : +14%) [-12% : +21%) (-16% = +19%)
IM { —5% : +5%) ( -9% < +3%) ( —4% : +6%)
XIp { ~5% : +5%) (-11% : +5%) ( -6% : +9%)

The results displayed in Table 3 are related to the macroeconomic
model of the United Kingdom developed by the IBM Economics
NDepartment. It 15 a quarterly modely with 120 equationss 21 of
which are stochastics and with 32 exogenous variables; there are 63
structural estimated coefficients. The start of the sample period
varires from 1956/11 to 1969/1 but always ends at 1975/1V. The
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initial estimates wused for the experiments have been obtained by
means of iterative instrumental variables (obtained by iterating
T.Ve method till convergence is reached).

The results in the table are related to 7 of the main endogenous
variables of the model; standard errors are displayed as percentages
of the wvalue forecast for each variahleas The forecast period is
external ta the sample estimation period: from 1976/1 to 1978/1V.
The variables are: BI= private fixed 1nvestment; CPIl= consumer price
index; EM= private sector employees; GNP= gross national product;
GNPC= GNP in current prices; IM= imports; XIP= index of industrial
productions

it 1is clear from Table 3 thats while for static simulation
(1976/1) all methods are approximately equivalenty after some
periods of dynamic simulation Monte Carlo on coefficients method and
stochastic simulation and re—estimation with instrumental variables
converge to values of the second order moments which are rather
different from each other and from those produced by the other
methode

Unfortunately (and this is the only case we encountered in our
experiments) the number of outliersy in the Monte Carlo on
coefficients method at the end of the dynamic simulations 1S SO
large that the forecast interval at 90% is not enough to leave them
out. Comparable results were obtained only with narrower forecast
intervals (for exampley at 75%; in such a casey the extreme points
of the analytic simulation forecast intervals have been obtained as
plus and minus le«15 times the standard errors).

The results displayed in Table 4 are related to the real sector
sub-model of +thne Forecasting System Noa.l0 of the German economyy
developed bDy the University of Bonne For a description of +the
modely reference should be made to Krelle {1976). The sub-mode]l
used for these experiments consists of 136 equationss 59 of which
are stochastic; it includes 39 exogenous variables and 163 estimated
coefficients {aata are annual)s. For most of the equationsy the
estimation period is 1960-1977.

The initial estimates used for the experiments have been obtained
by instrumental variables (two iterations after an initial ordinary

least squares estimate). S5ince for this model the number of
structural equations is considerably larger than the Jlength of the
sample periods the estimated covariance matrix of structural

coefficients is not positive definitey so that the triangular
decomposition of the matrixes required by the Monte Carlo on
coefficients methody cannot be performed. Therefores experiments
with Monte Carlo on coefficients have been performed assuming the
matrix to be block diagonaly as in Cooper and Fischer (1974)+ Fair
(1980); of courses this introduces an additional approximatione

Analytic simulation on coefficients has been performed both with
the complete covariance matrix and with the Dblock diagonal matrix;
as the results did not change significantly, at least for most
variablesy only results obtained with the complete matrix are
displayed in Table 4.

The results are displayed for 7 of the main variables: P'C= price
index of consumption; WR'P= wage rate oprivate; C'PR= private
consumption; YDP'P= gross domestic product private; M'GSNO= imports
of goods and services; T= total tax payment; FW= foreign workerse

In the first forecast period {(static simuliation)y the results
produced by all methods are quite similar to each othersa On the
contrarys in the last forecast period (dynamic simulation from 1970
to 1977; also in this casey the forecast period is not external to
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Table 4

Bonn Forecasting System NoelO (real sector)s
Oynamic simutation forecasts 1970-1977.
Inftial estimates: l.Ve Standard errors of forecasts

at 1970 (percentage}; at 1977 (percentage)
A.S. IIV. M.CG A.S. I.VO M.C.

ptC led lel lel 3e.5 ek 3.4
WR*P 206 2eb6 2eb 8e7 a1 9.3
C'PR 145 1.5 165 3.1 Se8 3.4
YDP'P le4 15 le5 22 8e3 264
M*GSND 3.2 3.2 3.2 53 19. 5.6
T 3a1l 361 3.1 6a8 Fe4t 65e 9
FW 1le 11. 11. 25 240 28e

Forecast itntervals at 990Xs. Extreme points of the intervals
are given as percentages of the corresponding forecasts

(1970) AeSe TeVe MoCao

peC (2% ¢ +2%) ( -2% : +2%} ( -2% : +2%)
WR * P (4% @ +4%)  ( -5% : +4%) ( -4% : +5%)
C'PR { =2% : +2%) ( -2X% : +2%) ( -2% f +3%)
YOP'P  ( —2% : +2%). { ~2% : +2%) ( -3% : +2%)
MIGSNO ( =5% 3 +5%) ( -4% & 4%} ( -4% : +5%)
T ( -5% = +5%) ( ~4% ¢ +5%) { =5% : +35%)
Fw (~18% : *+18%)  (-16% : +14%)  (-19% : +19%)
(1977) AeSa TeVe MoeCo

prC ( —6% +6%) - ( -9% i *3%) ( -6% : +5%)
WR*P (-14% : +14%}  (-19% : +12%)  (-15% : +14%)
C'PR ( -5% #5%)  { -6% : +4%) ( -5% : +5%)

Yop*'p ( —4% +4%) ( -2% +7%) ( —4% : +4%)

e¢ ®ma ap &> B¢ S« wo
v,

M*GSNO ( -9% £9%y ( =9% : +10%) ( -7% 3 +9%)
T (-11% +11%) (=13% : +8%) (-11% : +10%)
FW (~41% 3 +41%) (-35% : +45%) (~42% : +45%)

the sample estimation period) two methods produce quite similar
valtues of the second order momentss while moments produced by
stochastic simulation and instrumental variables re-estimation
diverge substantially from the otherss The 90% forecast intervalsy
howevery are quite similar also for this casee.
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