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CCHERENT OPTIMAL PREDICTION WITH LARGE
NONLINEAR SYSTEMS: AN EXAMPLE BASED
ON A FRENCH MODEL?

by Jean-louis BRILLET?, Giorgio CALZOLAR|?®
and Lorenzo PANATTONI?

The drawbacks of predictors obtained with the usual deterministic solution
methods in nonlinear systems of stochastic equations have been widely
investigated in the literature. Most of the proposed therapies are based
on some estimation of the conditional mean of the endogencus variables in
the forecast period, This however provides a soclution to the problem
which does not respect the internal coherency of the model, and in
particular does not satisfy nonlinear identities. At the same time, for
analogy with univariate skewed distributions, the conditional mean may be
expected to lie on the wrong side of the deterministic solution, meaning
that it moves towards values of the wvariables which are less likely teo
occur, rather than towards the most probable values. Estimation of the
most likely joint vatue of all endogencus variables is proposed as an
alternative optimal predictor. Experimentation is performed on a large
scale macroeconomic model of the French economy, and some considerations
are drawn from the results.
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1. INTRODUCTION

The drawbacks of predictors obtained with the usual deterministic
solution metheds in nonlinear systems of stochastic eguations have been
widely investigated in the literature and are now well known.

Several therapies have been proposed and there seems to be a kind of
general consensus oh the idea of replacing deterministic solution
predictors with an estimate of the conditional means of endogenous
variables in the prediction period.

Howrey and Kelejian (1371) point ocut that, being in general the
deterministic  solution different from the c¢onditional mean of the
endogenous variables, model's wvalidation should not be based on the
comparisen between deterministic solution and historical wvalues of the
variables.

Mariano and Brown (1983) observe that deterministic solution of a
nonlinear model with estimated parameters produces asymptotically biased
and inefficient estimates of the ceonditiona! means. They recommend to
use the sample mean of replicated parametric stochastic simulations (using
the algorithms proposed by Nagar, 1969, or by McCarthy, 1972, if the
random errors are supposed multivariate normal), or (Brown and Mariano,
1984, 1985) to use the sample mean of nonparametric residual-based
simulations. Both procedures attain, under certain conditions, asymptotic
unbiasedness {and efficiency to some extent).

Wallis (1982) gives examples where the use of deterministic simulation
predictors from a nonlinear econometric model may be less efficient than
an extrapolative time-series forecast, in contrast with a well known rasult

on the relative efficiency in the case of linear systems.
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Empirical studies have been performed on a variety of real-world
macroeconomic models used in practice by model buildars for forecasting
purposes {e.g. Bianchi et al, 1976, 1980, 1984, Calzolarm, 1972, Ffair,
1980, Hall, 1984, 1985, Fisher and Salmon, 1986). They aimed at
evidencing whether considering the conditional mean of the endogencus
variables in place of the deterministic solution gives or not significant
improvements to the forecaster. The  conclusion is clearly
model-dependent and not univocal: cases with significant differences have
been evidenced.

Predictors obtained as conditional means of the endogenous variables
are not, however, optimal from all points of view. They are obviously
optimal if the forecaster has in mind some kind of quadratic loss function
for his forecasts. These predictors have, in fact, two highly undesirable
properties, the first of which is that

the means do not necessarily satisfy the equatlons of the model; If the

model Is nonflnear and contains ldentities, given the values of the

predetermined variables and of the model's parameters, it Is generally

impossible to find values of the rondom error terms which correspond

to the mean values of the endogenous variables.
This s a problem in particular for those variables which appear in
nonlinear identities; if the means are computed with replicated stochastic
simulations (parametric or nonparametric), although all identities hold
replication by replication, they do aot held anymore {at least the
nonlinear ones) in terms of the means. {n other words, the conditional
mean does not provide a coherent forecast, and this can lead to some
serious misinterpretations of the results.

Suppose for example that a model is designed te predict the exchange
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rate in francs per dollar (ER?). Then, in order to compute the exchange
rate in doliars per franc, the model simply takes the reciprocal, that is
the identity £R2 = 1 / ERT will be included among the equations. |If we
use the conditional means as predictors, the mean of ERZ is not the
reciprocal of the mean of FR?., The naive anzlyst who uses the results
supplied by the model might believe that arbitrage opportunities exist in
this market, while of course they do not.

Considering the problem of incoherency of predictors obtained from
conditional means, Hall (1985) observes that also the modes of the
marginal distributions of the endogenous wariables would not escape the
problem: a nonfinear identity does not generally hold for the mode values
of the wvariables. Since ctoherency is an important property, Hall {1535)
reconsiders the properties of forecasts obtained from deterministic solution
of the nonlinear modef, He shows that, in particular conditions and with
an appropriate extension of the concept of median to the multivariate
case, the deterministic solution of the ncnlinear system can be regarded
as the multivariate median of the joint distribution of the endogenous
variables; and, being a solution of the system, it provides a ¢oherent set
of forecasts, It has also some desirable properties in terms of the loss
function of the forecaster since, while the mean minimizes the mean
squared error of predictors, the median minimizes the mean absolute
erraor.

Considering the mean of each endogencus variable as opposed to
median and mode, a second undesirable property is also usually expected
from the analysis of simple univariate distributions:

the mean (s usually expected to be less probable than the determinfstic

predictor. In other words, with respect to the deterministic solution
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volue, the mean of an endogenous variable is shifted towards the side
of more unllkely values, -~ather than towards the slde where the
probabllity density grows.

In fact' in skewed univariate distributions which are unimedal and of
moderate asymmetry, an empirical relationship helds between mean, median
and mode (see Kendall and Stuart, 1969, section 2.11), and it is that the
three quantities occur on the distribution in the same order (or in the
reverse order) as in the dictionary. This should imply that, if we
associate the median of each endegencus variable to the deterministic
solution of the model, the most likely walues of the wvariable are
systematically expected to lie on the opposite side of the mean.

What we propose in this paper is to reconsider the mode of the joint
distribution of the endogenous variables as an optimal predictor which
preserves identities. Although it does not coincide with the mode of the
univariate distributions of the endogenous variables considered separately
(i.e. their marginal distributions), it has the quite appealing proper‘ty) of
being an estimate of the most llkely joint value of all the endagenous
variables simultaneously. At the same time, since it is obtained as
solution of the system corresponding to a particutar set of values of the
random error terms, it implies coherency.

Strong technical difficulties are encountered when searching for the
maximum of the joint density function of all the endogenous variables in a
large scale macroeconometric model. We had to overcome these difficulties
when performing experiments on the large scale nonlinear model of the
French economy considered in this paper. The empirical results related
to ex-post optimal forecasts one period ahead are presented in this paper

and compared with estimates of the conditional means of the endogenous
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variables obtained with parametric and nonparametric stochastic simulation
procedures.

Some interesting conclusions are obtained from the experimental
results. In particular, since we are considering the mode of the joint
distribution of all the wvariables and not of each wvariable separately,
empirical results show that for most variables the mean is shifted, with
respect to the deterministic predictor, towards the side of increasing

probability, rather than the opposite side.

2, THE CONDITIONAL MEAN AS PREDICTOR

Let the simultaneous equation model be represented as

(1 f [yt,xt,a) = Uy t=1,2,....T7

where Ye is the Mx7 vector of endogencus variables at time t, X, is the
vector of exogenous variables at time ¢ and o is the vector of all unknown
structural coefficients in the model. The model is supposed to contain
m<M stochastic equations and M-m identities. The Mx? vector of random

. - ;o
error terms at time ¢, u, (uh'”.?t ..... umt,o,._.,{)} , is assumed to be

independently and identically distributed as
L0
oo

with the mxm covariance matrix I completely unknown, apart from being

(2} N {0,

symmetric and positive definite.
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It is usually assumed that a simultaneous equations system like (1)
uniquely defines the wvalues of the elements of ¥ once values for the
coefficients, the predetermined variables, and the disturbance terms are
given. This means that the structural form equations (1) implicitly define

a system of reduced form equations

{3) ¥ < y(xt,a,ut].

If the wvector of functional operators y is representable in closed form,

and the analytical computation of the conditional mean is feasible

(%) !(xt,a,i) = E(yt%xt,a,i}

then if & and £ are the available estimates of the structural form
parameters, the estimated conditional mean in the forecast period h,
I(xh,é,i) may be used as predictor. Nonlinearity usually implies this
predictor to be different from the usually employed deterministic predictor
yix;.4,07.

Since, however, the vector of functional operators y is generally not
representable in closed form in the case of nonlinear models, and the
analytical computation of the mean is usually infeasible, some

approximation techniques are usually employed.

2.1. Parametric stechostic simulotion

1t is the stochastic simulation procedure that is most widely used in

the literature (e2.g9. Bianchi et al., 1976, Fisher and Salmon, 1886, Hali,
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1985). The procedure is as follows.

1Y A wvector of pseudo-random numbers Jh’ with multivariate normal
distribution, zero mean and the available covariance matrix £ is
generated. The method of Nagar (1969) can be applied if § is positive
definite; if § is not of full rank, the method of McCarthy (1972) can
be used.

2) The vectors ﬁh are inserted into the model, where the structural
coefficients are maintained fixed at their originally estimated wvalues,
and the model is solved in the forecast period, h, obtaining for the
endogencous variables the vector ;h‘

Stages 1 and 2 are repeated and sample means of the elements of Fh are

computed.

If finite moments exist, a wvery large number of replications would
lead, in practice, to the exact values of the means, if the parameters of
the model (the wvector g and the covariance matrix of the structural
disturbances) were Kknown with certainty. As, however, we assume only
estimates of these parameters, stochastic simulaticn will lead to an
estimate of the conditional means of the endogenous wvariables in the
prediction period.

The experimental wvariance of the sample mean decreases in inverse
proportion with the number of replications. This is often insufficient to
allow appreciating significant differences between the mean and the
deterministic solution wvalue even with a rather ilarge nhumber of
replications (Bianchi et al., 1976, 1980, Fisher and Salmon, 1986). Huge
gains in  the computational efficiency are often obtained in
macroaconometric models by the use of antithetic variates in the stochastic

simulation procedure [(Calzelari, 1979, Brown and Mariano, 1885).
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Replications are performed pairwise, once with pseudo-random error terms
ﬁh generated as discussed above, and once with the same vector of error
terms with opposite sign, -&h. The results of the two replications (which
will presumably be negatively correlated) are averaged, and the means of
the endogenous variables are computed as sample means of the pairwise
means.

Whether or not antithetic variates are used, the results do not change,
except that the same accuracy may be obtained (and has been obtained
for the model we are considering in this paper) with a smaller number of
replications. The results we present have been obtained with 40000
couples of antithetic replications, which guaranteed for all the variables
displayed in the tables an estimate of the bias (deterministic solution
minus conditional mean) at least 50 times larger than its experimental
standard deviation: a similar computational accuracy without antithetic
variates would be obtained only at the cost of several millions of

independent replications.

2.2. Resldual-based procedures

A residual-based procedure has been proposed by Brown and Mariano
(1984) for estimating the conditional means of endogenous variables in the
prediction period. The procedure utilizes complete enumeration of the
residuals over the sample period. [t consists of replicating the solution
of the model in the forecast period, h, exactly T times, using the T
vectors of estimated residuals &;, d,, ..., dp, and then computing

sample variances of the elements of the T vectors of solutions. The
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computational steps are quite similar to those of the parametric method
described above. In the first step, however, we use one vector of
estimated residuals rather than using a generator of pseudo-random
numbers; moreover, steps 1 and 2 are repeated exoctly T times (rather
than an arbitrary number of times), using each time a different vector of
residuals.

The procedure produces an asymptotically unbiased predictor, as the
parametric procedure. The parametric stochastic simulation predictor is
more efficient if the number of replications is large (it can be made
arbitrarily close to the closed form predictor), but the residuai-based
predictor is more efficient when the number of replications in the
parametric procedure is not greater than the sample period size. )

Brown and Mariano (1985) propose an antithetic version of the
residual-based procedure. Although asymptotic efficiency gains are not
guaranteed, a small sample experiment showed that the antithetic
residual-based predictor was efficient relatively to all other asymptotically
unbiased procedures.

Since the use of the antithetics produces results numerically different,
both residual-based procedures have been applied to the model.

Numerical differences in the three computations of conditional means as
predictors can be observed in the tables; in many cases the information is
"qualitatively® the same, since the sign an the magnitude of the
difference with respect to the deterministic predictor is the same, but not
always. Since Brown and Mariano (1984) show that the parametric
procedure is more efficient than the residual-based method (provided that
the number of replications is sufficiently large, as it certainly is in our

case) we shall confine comments to the former group of results; in any
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case also the others will be displayed for the sake of completeness.

3. THE MOST LIKELY JOINT VALUE AS PREDICTCR

The log-likelihood of the t-th observation can be expressed as

(5) L, = ~1/2 fog|T| + foglaf, fay | ~ 1/2 fE 08,

whera the Jacobian determinant |3ft/ayt'\ is taken in absolute value.
Since the system includes identities, the foliowing cansiderations must

be kept in mind when computing the log-likelihood (see Oberhofer, 1971,

who extends to the nontinear case the treatment of identities in maximum

likelibocd estimation given by Rothenberg and Leenders, 1964, pp.71-72;

see also Anderson, 1958, appendix 1.3}.

13 I is computed from the residuals of the m stochastic equations of the
modeal, excluding identities.

2] afh.fayh’ is the s Jacobian matrix of first derivatives of the
structural form functions with respect to endogenous wvariables, ofter
all identitles hove been substituted into the stochastic equations. |If

we partition the MxM Jacobian corresponding to all equations

J

Y11 02

{8} f =
4

21 ‘0
where the 1,7 block corresponds to stochastic equations, then the
Jacobian determinant that must be used in (3) is the absolute value of

\JI/IJZZ\, that is the ratio between the determinant of the MxM
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Jacocbian matrix of the complete system, and the determinant of the

(M-m)x{M-m) submatrix cqrresponding to identities.

Conditicnal on the parameters of the structural form (coefficients and
covariance matrix of the random error process, which are set at their
estimated values & and £),the estimate of the most likely joint value of the
endogenous variables in the forecast period & is obtained from the vector
up which maximizes the sum of the second and third term of (5) (the
first term is constant).

The maximization of the log-likelihood functicn has been performed
using the well Kknown updating formula due to Broyden, Fletcher,
Goldfarb and Shanno (BFGS, see for example Dennis and More', 1977).
The algorithm is based on an iterative updating of an initial (mxm)
positive definite matrix. Since the computational efficiency is greatly
improved if the initial matrix approximates the Hessian matrix of the
function to be maximized a’Lh/auhauh', it was rather obvious in this case
to use the available estimate of ).

The algorithm alse requires the evaluation at each step of the gradient
of the function. This revealed to be a rather serious problem and at this
first stage it has been solved by the numerical computation of first
derivatives. This approach however has two main drawbacks. First of all
it requires a long computation time, but nevertheless it came out to be
computationally more efficient than rival maximizing algorithms which
require only the computation of the function wvalue. To quantify this
aspect we can mention that in the case of the French model here
considered {see below for description) the BFGS algorithm reached the
optimum, with a nine significant digits on the value of the log-likelihood,

in six iterations and the computation globaily took about five minutes on
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an 1BM 3083 computer.

A second main drawback lies in a possible lack of accuracy in the
computation of the derivatives. In corder to assess the robustness of the
results versus the way in which derivatives are computed several formulas
(i.e. two, three and five points formulas with different sizes of the
increment) were experimented with., The results proved to be very robust
versus both the choice of the formula and the choice of the numerical

increment, provided that a centered formula is used.

4. A BRIEF NOTE ON MINI-DMS MODEL FOR THE FRENCH ECONOMY

The Mini-DMS model (Brillet, 1981) constitutes a smaller version of the
Dynamic Multi Sectorial model of the French econemy {Fougquet et al.,
1978) " built in 1974-1976 at INSEE (National Institute for Statistics and
Economic Studies) to be used as a medium term forecasting tool, in
particular for national planning studies conducted through the
Commissariat General au Plan (General Planning Agency). Largely
reduced in sizel (the present version contains 225 equations, 71 of which
are behavicral, as compared to more than 2400 for the larger version),
Mini-DMS aevertheless preserves the same economic structure as well as
most of the theoretical mechanism of the original model.

In ite present state, the Mini-OMS model can be considered as being
half way between a forecasting tool and a model for ecanomic policy
decisions. Its acceptable forecasting qualities, as well as its rather
detailed set of decisional variables. can lead to its use for simple enough

macro-economic  studies, and for carrying out mathematical economic
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experiments.

Estimates of the structural coefficients of the model, on the sample
period 1962-1980, were obtained by means of a straightforward extension
of Brundy and Jorgenson's (1971) instrumental variables method (limited
informaticn) to the case of nonlinear models. The method was appiied
iteratively, till convergence was reached, so that the final estimates of
coefficients are not affected by the choice of the values of the initial
coefficients wvalues., In each iteration, the instrumental variables are
computed as the deterministic solution values of the system (which is the
simplest choice, although not the best in the class of nonlinear estimators

as is explained in Amemiya, 1983).

5. RESULTS ON MINI-DMS MODEL FOR THE FRENCH ECONOMY

As already mentioned, the model has been estimated by means of
instrumental variables (limited information) on the sample period
1962-1980. Static forecasts are related to the first year outside the
sample estimation period.

Table 2 presents, for some of the main endogenous variables of the
model, the difference between the deterministic and the conditional mean

predictors. This difference is displayed in percentage form

Ydet ~ Ymean
(7} - . 100

Ydetr

where y is computed with parametric stochastic simulation and with

mean
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the residual-based methods (with and without antithetics).

The

difference between the deterministic predictor and the estimate of the

last column of the table displays, still in percentage form, the

most likely joint value (ymode}

(83

Q1
QQz

PIBZ
bF1

DF2

Yot ~ Ymode

. 100
Ydet

Table 1

Variables in real terms

Added value of the industrial product in millions of

1970 francs.

Added value of the non-industrial product in milliens of

1970 francs.

GDP in millions of 1970 francs.

Final demand of the industrial product (demand in France not
including internal consumption) in millions of 1970 francs.
Final demand of the non-industrial product (demand in
France not including internal consumption) in millions

of 1970 francs.

= Household consumption of industrial product in millions

wonon n

n

of 1970 francs.

Household consumption of non-industrial product in
millions of 1970 francs.

Total household consumption in millions of 1970 francs.
Household lodgings investment in millions of 1970 francs.
Productive investment of firms in industrial product in
millions of 1970 francs.

Productive investment of firms in nen-industrial product
in mitlions of 1970 francs.

Total productive investment of firms in millions of 1870
francs.

Imports of industrial product in millions of 1970

francs.

Imports of non-industrial product in millions of 1970
francs.

Total imports in millions of 1970 francs.

Exports of industrial product in millions of 1970

francs.

Rate of use of productive capacities in the industrial
sector.

Coherent
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N1

N
FPDRE
OEFM

w1
w2

SALT
RDM

PVATL
PVA2

PC
PU1

PU2

PPIB

TEP
TPRO1
TPRO2
AUTI

AUT2

BF1

BF2
CFF
CFM

S0

1] n (L1

nn

[ T | I 1

Employment

Employment in the industrial sector in thousands.
Employment in the non-industrial sectar in thousands.
Total employment in thousands.

Unemployment in thousands (Definition of the Bureouw
International du Travail}.

Offers for jobs at the end of the month presented at
the ANPE (National Agency for Labor) in thousands.

Prices and wages

Wage rate per hour in the industrial sector (the dimension
is not important).

Wage rate per hour in the non-industrial sector {the
dimension is not important).

Wage rate per hour for all wage earners.

Household revenue {all household resources minus income
tax) in millions of current francs.

Price index of added wvalue in the industrial sector (=1

in 1970)

Price index of added value in the non-industrial sector
(=1 in 1870).

Price index of household consumption (=1 in 1970).

Price index of the industrial preduct used in France

(not including VAT); =1 in 1970, This is the ratio
between current and real values of the sum = production *+
imports - exports.

Price index of the non-industrial product used in France
(not including VAT); =1 in 1970. This is the ratio
between current and real values of the sum = production *
imports - exports.

GDP deflator (=1 in 1970).

Ratios and balances

Savings ratio of Households.

Profits ratio of the industrial sector.

Profits ratio of the non-industrial sector,
Autefinancing of the industrial sector in million of
current francs (numerator of the profits ratio * gains
on the value of stocks).

Autofinarcing of the industrial sector in millions of
current francs (numerator of the profits ratio * gains
on the value of stocks).

Balance of industrial firms in millions of current
francs (* means losses).

Balance of non-industrial firms in milliens of current
francs{* means losses).

Balance of Credit institutions and Insurance Companies
in millions of current francs,

Balance of Households in millions of current francs.
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CFX = External batance in miflions of current francs.

CFG = Government Balance in mitlions of current francs.

PIB = Current GDP in millions of current francs.

CM = Household consumption in millions of current francs.

In the four columns of table 2, the following values are displayed.

Pss = Percentage difference between the deterministic solutien
forecast and the estimate of the conditional mean,
computed with parametric stochastic simulation (40000
couples of replications with antithetic variates).

Rb = Percentage difference between the deterministic solution
forecast and the estimate of the conditional mean,
computed with the residual-based procedure.

Rba = Percentage difference between the deterministic solution
forecast and the estimate of the conditional mean,
computed with the antithetic residual-based procedure.

Mode = Percentage difference between the deterministic solution
forecast and the estimate of the most likely joint value.

Table 2
One-period forecast at 1981. Static simulation

Percentage deviations from deterministic forecasts

Determin. Pss Rb Rba Mode

Forecast
o1 258326.0 0.100 0.286 0.114 0.056
QQ2 536543.0 0.064 0.073 0.059 -0.008
uT . 8080540 0.087 0.273 0.101 0.043
SALT §6.72830 G.0a1 -0.580 -0.063 0.106
PU1 2.514670 -0.464 -1.520 -0.713 Q.011
FUZ 3.079440 -0.054 -0.663 -0.131 -D.009
RDM 2296130, 0.047 -0.705 -0.075 0.014
CM 1981490. 0.039 -0.2580 -0.086 -0.028

Caoherent Optimal Prediction

o4} 216234.0
c2 494296.0
N1 4581, 480
N2 13025.80
PDRE 1636. 860
OEFM 58.04020
w1 1.900640
w2 1.3534870
PVAT 2.468430
PVA2 2.839010
PC 2.758950
TEP . 13125830
IL2M 59275.80
BF1 60955, 80
BF2 95328.70
AUT1 99158.80
AUT2 220742.0
TPROT 0298494
TPRC2 .0487430
DF1 336288.0
DF2 576187.0
pig 3148560.
CFG -83026.60
CFM 142544.0
CFX ~34661.10
P1BZ 1132280.
PPiIB 2.780710

0.309
0.100
0.057
0.035
-0.158
-1.110
0.036
0.073
0.054
(.032

0.490
0.039
-1.196
2.853
1.093
-2.460
3.763
-2.163
0.113
0.057
-0.079
~1.391
0.725
3.629
0.082
-0.154

.573
.87
104
.090
185
. 140
.635
. 367
.631
.784
.938
647
L5313
77
230
.278
167
.860
.818
. 361
.032
947
.776
923
162
17
.087

0.345
0.112
0.065
0.034
-0.173
-2.004
-0.089
-0.050
-0.052
~0.034
-0.307
0.281

8.570
3.888
-6.697
9.928
~5.714
0.134

-0.224
-2.018
0.108
2.062
0.060
-0.303

142
.007
.024
.040
.247

074
.18
.032
017
075
.33
061
.002
124
.223
. 849
977
178
.078
.020
049
757
.665
.665
.00
.047

19
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CFF 621086.10 -2.343 8.615 3.589 -1.178
11 35797.10 0.510 2,159 1.0%1 0.471
12 83001.00 -0.512 -2.839 -1.369 -0.284
M1 180087.0 0.079 -0.01 0.026 0.0m
M2 73167.80 0.109 0.128 0.110 0.090
X1 189824.0 -0.047 G6.522 0.080 0.018
c 710529.0 0.164 0.305 0.183 0.048
| 118798.0 -0.204 -1.333 -0.627 -0.075

253255.0 0.038 0.021 0.034 0.034
N 17607 .30 0.041 -0.039 0.042 -0.023

For the vartables which represent ratios and balances it would be more
appropriate to give the differences in absolute value and sign, rather
than in percentage form, given the nature of the wvariables themselves.
In table 2 they are nevertheless given in percentage form for homogeneity

with the other variables, but are in table 3 given in absolute value and

sign.
Table 3
One-pericd forecast at 1981. Static simulation
Deviation from deterministic forecasts

Determin. Fss Rb Rba Mode

Forecast
TEP .1125830 0.00055 -0.00073 0.00032 0.00037
BF1 60955. 80 -729.3180 -6813.20 -3390.37 1.94
BF2 95328.70 2720.02 16424.70 8169.56 1071.46
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AUTI 99158.80 1083.59 5234.08 3855.27 221.31
AUT2 220742.0 -5430.88 -33479.50 -14782.30 -1874.52
TPROI1 .0298494 0.00132 0.00562 0.00286 0.00029
TPRO2 .0487430 -0.00105 -0.00578 -0.00279 -0.00057
CFG -83026.60 1154.85 3964.94 1675.23 628.21
CFM 142544 .0 1033.56 -2741.08 153.95 947.30
CFX -34661.10 -1257.74 -3036.98 -714.84 -23G.33
CFF 62106.10 -1455.44 5350.698 2235.16 -732.44

Let us first look at the two groups of statistics independently from

each other.

5.1. Deterministic predictor versus conditional mean

As already observed, for the conditional mean predictor we refer to
results obtained with parametric stochastic simulation (second celumn).
The difference with respect to the mean is hereunder indicated as bias.

The first thing we can observe is the size of the bias, which seems
rather small for almest all variables, although we must consider that we
are dealing only with one-year-ahead forecasts; for instance a value of
06 for total domestic product (PIBZ), of -.15 on domestic product
deffator (PPIB)} are small compared to the actual growth rate of these
variables; the case is somewhat worse for household consumption of
industrial product (C1: 0.3}, for the price of the same product (PU1:
-0.4) or investment per sector (I1 and 12: 0.5 and -0.3); in these cases

the error is not negligible compared with the actual rate of growth.
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It is also interesting to remark that the size of these biases is closely
related to the forecasting uncertainty of the associated variable, which is
of course matural since the two statistics are dependent on the variance
of the variables itself.

On the whole it would seem that the size of the bias is sometimes large
encugh to reduce the trust we should put in the forecasts produced by
the model using the deterministic solution, if the conditional mean is
supposed to be the most appeating result.

Now let us consider the coherence of the biases between variables,
trying in particular tc determine whether, for behavioral equations, this
bias comes from the random error term in the associated eguation or from
the influence of explanatory variables. We can see that the second reason
is predominant: most of the quantities and employment show a positive
bias; an exception is given by exports (of course influenced negatively
by activity) and by investment in the non-industrial sector (but the most
important determinant, profits ratio, shows a negative bias too). This
evolution of the profits ratio looks due to the positive difference in biases
between the wage rate (W2) and the price (PVA2), which is not true for
the industrial sector. Indeed, the only major incoherence lies in the
price system: while the behavioral variable {price in added wvalue) shows
a positive bias, all the other variables show a negative one; this could be
linked (but not explained) to the fact that the bias on export price is
much more negative than the one on import price.

As to the evolution of the different balances, it is not surprising to
find a negative bias on trade balance, a positive one for Government,
households, industrial sector, and a negative cne for the non-industrial

sector,
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Finally, we can try to measure, for some wvariables, the power of the
argument pointing out the fact that the conditional mean does not respect
the nonlinear identities; for instance if we look at domestic product, we
see that the bias on current domestic product (PiB): -.079% is not
compatible with a percentage bias of 0.62% on real domestic product

(PIBZ) and of -.154% on its deflator (PPIB).

5.2, Deterministic predictor versus mulitivariate mode

Let us now consider the difference between the deterministic solution
and the mode of the joint distribution of the endogencus variables.

The first remark will be that in most cases the size of the value looks
rather small, ageain compared to the actual rate of growth of the
associated variables. Again it looks correlated to the variance of the
variable itself. As to economic coherence inside the sample, it is again
glebally verified; but it is only in the industrial sector, this time, that
quaantities show a positive difference (deterministic solution is greater
than the mode); in the other sector, the large difference on imports
{considering that it comes from the equation itself, as demand shows an
opposite sign) draws final demand, production and employment down
(even global employment, considering the relative importance of
non-industrial employment).

Az to prices, they show this time a negative difference for almost all
variables, except for wages, where the growth of purchasing power is
due to the rise of job offers, coming mainly from the industrial sector.

The consequent evolution of the trends on the different balances is the
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same as in the previous case, for the same reasons.

5.3. Mean versus most likely joint value

Now let us come to the most interesting element: the comparison
between the two statistics. It has been shown (see (Kendall and Stuart,
1969, section 2.11) that in most univariate cases the difference between
mean and mode is about three times the difference between mean and
median (which can be assimilated to the deterministic value). This is of
course equivalant to saying that the second statistic (median - mode}
should be minus two times the first one (median - mean). This is
obviously not true in our case.

- First the sign is generally the same: out of the 45 main wvariables
presented in table 2, only 12 show an opposite sign; indeed we have
already shown that the statistics showed globally the same sign
whether we considered real values or prices; the main differences come
from employment in the non-industrial sector, from global activity in
that sector, and from Value Added prices, the negative value of which
can be associated with the decrease in production costs ceming from
the decrease in employment (higher than the cne on production].

- Second, the absolute size of the second statistic is generally lower (in
36 cases out of 45); out of the nine exceptions, at least six have a
single cause: the high relative difference in the second case on OEFM
(offers for jobs) which enters by its fogarithm in the determination of
the wage rate; this explains by itself the high wvalue for wages, and

investment in lodgings. Otherwise, the lower (sometimes much lower)
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value of the second statistic allows to smeoth the message given at the
beginning: if we consider the mode as the most likely value for the
model forecast value, the use of the deterministic solution instead does
not look so dangerous. in other terms, in most cases we shall find the
mean and deterministic values to be on opposite sides relative to the
mede, Using one or the other introduces then an error of different

sign, but of a size which is globally of the same ordar.

5.4. Some univarlate modes

For five variables of the model we have coltected the results of a
parametric stochastic simulation experiment with 200000 replications. The
histocgrams allow te locate, with some rough approximation, the modes of
the marginal distributions of the five variables.

OEFM: the deterministic solution exceeds the mode by some 8%; the
difference is smaller than for the mode of the joint distribution,
but has the same sign. The mean (computed with parametric
stochastic simulation, see Table 2) and the univariate mode are
on the opposite sides of the deterministic solution.

TPROT: this time the mode exceeds the deterministic solution [(the
difference is between 2% and 8%); the sign has changed, with
respect to the multivariate case. Again mean and univariate
mode are on opposite sides with respect to the deterministic
solution,

TPRO2: the mode is not distinguishable from the deterministic solution.

CFG: again the mode and the deterministic solution are not
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distinguishable.
CFX: the histogram is flat in a wide region around the deterministic

solution.
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