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ABSTRACT

Ir the econometric literature simulation techniques are suggested for
estimating standard errors of forecasts, especially in case of nonlinear
models, where explicit analytic formulae are not available. For this
purpose analytic <imulation on coefficients, Monte Carlo on coefficients,
Monte Carlo simulation based on parametric estimate of the underlying
error distribution have been proposed, and more recently a nonparametric
procedure which uses the bootstrap technique is also suggested. Main
purpose of this paper is to compare, in empirical applications for real
world models, parametric and nonparametric estimates. Furthermore, in
case of linear models, the same ¢omparisons are performed with respect to
the resuits cbtained wvia analytic foermulae. Additional results are obtained
from an error-in-variables approach.
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1. INTRODUCTION

Forecasts produced by econometric models are subject to many sources
of uncertainty: error terms, coefficient estimates, measurement errors in
the wvariables in the sample estimation period, exogenous wvariables
forecasts and possible misspecification of the model.

Several methods have been preoposed for estimating the contribution to
forecast errors of some or all of these error sources. |In particular there
is a wide literature! dealing with the first two components: fully analytic
methods have been developed for linear models, simuiation techniques are
usuvally applied in the nonlinear case. The other sources of uncertainty
have been less extensively investigated: in fact, forecasts are generally
given supposing no errors in the variables and conditional on forecast
period exogenous variables and model’'s structure.

On the one hand this paper will still follow the main stream of the
literature; as a sequel to Bianchi and Calzolari (1882, 1983), it will be
mainly concerned with the comparison of methods for estimating the
contribution to forecast erroers of the first two sources of uncertainty
(i.e. error terms and errors in the estimated coefficients). These
methods are of different types.

1} Full analytical methods: they were originally designed for linear
systems (e.g. Goldberger et al. 18961, or Schmidt, 1974}, but even in
case of models containing nontlinearities, these metheds can be applied
to solve a good deal of the problem (Calzolari, 1981).

2) Mixed methods, partially analytical and partially based on numerical

' Reference can be made, for example, to Nagar (1969), Schink {1971},
Haitovsky and Wallace {1972), Sowey (1973), Cooper and Fischer (1974),
Bianchi and Calzolari (1980), Fair {1980), Calzolari (1981), Marianc and
Brown (1983), Freedman and Peters(1984) and Brown and Mariano (1984).
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simulation procedures {analytic simulation}: conceptually equivalent to
the fult analytical methods, they allow for a considerable reduction of
computational complexity and are suitable for application even to
medium-farge size models (Bianchi and Calzolari, 1980).

3) Parametric Monte Carlo methods: estimates of the variances are
computed from sample wvariances of replicated simulation experiments,
after additive multinormal pseudo-random errcrs have been inserted
into the structural equations of the modet (Schink, 1971), or even into
model's coefficients (Fair, 1980).

4

Nonparametric Monte Carlo methods as the procedure recently
suggested by Freedman and Peters (1984), where estimates of the
variances are computed as in the previous case from sampie variances
of replicated experiments but using the so called bootstrap technique.
When using bootstrap, the theoretical distribution of an unobservable
disturbance term is approximated by the empirical distribution of an
observable set of residuals.

In the two recent papers Bianchi and Calzolari (1982, 1983) have
performed some experiments on a set of small, medium and large size real
worlgd models, both linear and nonlinear, comparing the results and
performances of three different methods [(analytic simulation, stechastic
simulation and re-estimation, Monte Carlo on coefficients) proposed in the
literature for the compuotation of variances of forecasts. Comparisons
were first confined to the case of forecasts one period ahsad (1982), then
to the case of multiperiod forecasts produced with dynamic simulation
(1983}.

Main purpose of this paper is to compare the nonparametric bootstrap
technique with parametric Monte Carle and analytical methods, using
emprrical applications on real world models.

Moreover, another source of forecast uncertainty will be investigated:

measurement ercors in the wvariables. Fer this purpose a parametric
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measurement error process, proposed by Weihs (1988), will be introduced,
which facilitates the consideration of a-priori information on the maximal
size of measurement errors. A Monte Carlo procedure will be used to
study this process empirically. In the performed experiments, ereors in
the wvariables will influence the forecasts both through the estimated
coefficients and through the errors in the exogenous variabies in the
forecast period.

The plan of the paper is as follows. Section 2 summarizes the main
assumptions and notations used in the paper. In Section 3 four methods
for analyzing the component due to errors in the estimated coefficients
are discussed. Section 4 deals with the component due to the error
terms. In section 5 some empirical results for real world models are
presented and in section 6 the measurement error process is introduced

and experiments with this process are commented on.

2. ASSUMPTIONS AND NOTATIONS

A structural econometric model can be represented as

(2.1} flyp.¥pgoXp.a} = by, t=f,2,...,T

where f = {f].,f‘.,,...,fm}’ is a vector of functional operators, continuously
differentiable with respect to the elements of current and lagged y, x and
80 ¥y T ¥y Yope o ¥eds Xp T (X ppaXgpeoux 00 and y, o are the
vectors of current endogenous, exogenous and lagged endogencus
variables, respectively: a = (a?,ag,...,asJ’ is the vector of the structural
ceefficients to be estimated (all the other known ceefficients of the model

are excluded from this vector and included in the functional operators);

Wy = (Ut U s the vecter of structural stochastic disturbances
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(or error terms) at time t, having zero mean and being independently and
identically distributed over time, with finite contemporaneocus covariance
matrix, and independent of all the predetermined variables. In the
experiments based on parametric Monte Carlo the contemporaneous
distribution of the error terms wiil be assumad multivariate normal:
ut-'N[O,Z).

1t is wusually assumed that a simultaneous equation system like (2.1)
implicitly defines a single inverse relationship (reduced form) for relevant
values of the coefficients, the predetermined variables, and any values of

the disturbance terms:

(2.2) Ye = gly,y.%..9.u,).

Of course, the wvector of functions g implicitly defined is usuvally
unknown, but can be assumed continuously differentiable, like f.

Using a suitable estimation methcd, an estimated vector of coefficients,
&, an estimated covariance matrix of tbe structural disturbance process,
. and an estimate of the coefficients’ covariance matrix (which will be
indicated as ¥/T) can be obtainsd.

In case of linear dynamic or nonlinear static models, few assumptions
in additien to those listed above are usually sufficient to ensure
consistency and asymptotic normality of &, produced by suitable estimation

methods, In these cases, asymptotically as 7w,

£2.3) e - @) ~ NEOLY)

Unfortunately, to the best of our knowledge, there are no general
theoratical tools to prove that (2.3) holds when the nonhinear model
includes lagged endogenous variables among the predetermined variables.
It can, however, be assumed that {2.3) holds wunder heuristic

considerations, as in Gallant (1977, pp.73-74). If (2.3) holds, then
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several results which will be derived are asympiotically exact; (f (2.3)
does not hold exactly, the results which will be derived are not
asymptotically exact, but simply "“reasonable” approximations.

If ¥ is a consistent estimate of ¥, an estimate of the covariance matrix
of a multinormal distribution which approximates the smali  sample
distribution of & is obtained as @/’T, that is divigding ¥ by the actual
length of the sample period (see Schmidt, 1976, p.254). YIT is, together
with &, a standard outcome of system estimation methods. When limited
information estimation methods are applied, as in our case, this matrix
must be built block by bleck, after the estimated a has been obtained,
and the resulting matrix may be singular, in case of undersized samptes.
In the models used in the following experiments, the blocks of the matrix
¥/T have been computed as in Brundy and Jorgenson (1971, p.215).

Indicating with h the first time period not belonging tc the sample
estimation period 1.2,..., T, (i.e. A=T+f), making use of the reduced
form notation, at time A the actual wvslues for the endogesnous variables

can be written as:

(2.4} Y © gfyh_,,xh.a,uhj.

In the same period, supposing to kKnow x, and ¥pos with certainty, the
forecast is usually obtained as:

(2.5} }7,., = g(yh_r,xh.ﬁ,O}

where @ is the vector of the estimated coefficients and the random error

terms u, are set to their expected value (zero).

Introducing the following auxiliary vector:

(2.6) Yy 7 9lygog.%p.9.0)
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{where ;h could be defined as the vector of forecasts that would be
produced by the model 1f there were no errors of any kind), the vector

of forccast errors (eh] can be written as:
{2.7} eh:i}h_yh:(;h';h) '{;"h' }"h)-

This expression exglicitly decomposes the forecast error (conditronal on
the model structure) into two terms: the first takes into account errors in
the coefficient esumates and the second the presence of the error terms.

These two components, conditional on the exact knowledge of the
predetermined wvariables, are independent when forecasting outside the
sample pericd, 5o that their statistical properties can be studied

separately.

3. FOUR METHODS FOR AMALYSING THE COMPONENT OF FORECAST
ERRORS DUE TO ERRORS IN ESTIMATED COEFFICIENTS

Four different methods to analyre the component ()}h*ih) are briefly
described in this section. For exposition purpose they will ba ceferred teo
as:

- Parametric stochasfic simulation and re-estimation

- Bootsirap sumulation and re-estimation

- Monte Carfo on coefficients

- Analytic simulation on coefficients

3.1. Parametnc stochastic simulation and re-estimation

This method can be summarized as follows (sze Schink, 1871 for more
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details). Let £ be the available estimate of the covariance matrix of the
structural disturbances.

13 T vectors of pseudo-random numbers, &, t=1,2,....T leach of which

e
having multinormal distribulion, zero means and covarance matrix
equal to the available 11, are generated. The method by Nagar (1969)
can be applied if § is positive dafinite; if T is not of full rank, the
method by McCarthy (1972,3) can be used.

2) The wvectors z.'rt are inserted into lhe model, where the structural
coefficients are maintaned fixed at their originally estimated values,
and the model is selved over all the sample periaod, obtairing for the
endogenous variables the wvectors :}:, t=f,2,....T.

3) The wvectors ¥, are treated as a2 nrew set of observations of the
andogenous varisbles and are wused o re-estimate the model, thus
cbtaining a new vector, 4. of pseudo-estimated coefficients.

4) The coefficients & are nsertad into the model to produce, wia
determimistic solution, a vector of pseudo-forecasts at Lime A, )T-h.

The process s repested from step | 10 4 and the desired results follow

from the computation of the sample variznces of the elements of all the 9-’1

computed 10 the wvacwous replications,

Some complicatiens armse from the treatment of lagged endogencus
variables in the simufation phase (in other words simulation can be static
or dynamic) and in the re-estimatron phase [they can be maintained
"static”, i.e. fixed at some given historicof value, or their simulation
value can bHe chosen). This problem 15 discussed in Schink (1871,
pp. 101-108%, .0 the experwrents here performed different combinations
have been adopted.

This method s frogoently used in the literature to derive small sample
distributions of estimators for simultanesus esquation  sysiems, when
analytical methods are not available. The main thecretical limtation is in

the possible nenexistence of finite moments in  the smail sample
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distribution of the structural form or reduced form coefficients {these last
directly related to forecasts); this topic is discussed, for exampie, in
Dhrymes (1970, p.182), McCarthy (1872,b), Sargan (1978) and Mariano
(1982).

As pointed out in McCarthy (1972, b, p.761), "...it should be noted
that the non-existence of moments has some implications fer those engaged
Monte Carlo studies. Qutliers can be expected. Computation of mean
squared forecast errors and the mean squared errors of the restricted
reduced form coefficient estimates will not converge as the number of
Monte Carlo runs increases. These computations really will not vield
meaningful information. Throwing out the outliers in making these
calcuiations is also of questionable wvalue. What s accomplished by

throwing them out?..."”

3.2. Bootstrap simulation and re-estimation

This method described in Efron {1979}, has been recently used by
Freedman and Peters (1984) for the purposes in which we are jnterested.

Like stechastic simulation, bootstrap is a procedure for estimating
standard errors by resamgling the data using a Monte Carle approach.
The process is exactly the same as the ane described in the previcus
subsection, with the only difference that in the first step, rather than
samphng from some assumed parametric  distribution (i.e. from a
multinormal with zero means and covariance matrix eqgual to the available
£}, the T wvectors {, are the results of 7 draws, made at random with

t
replacement, from the 7T vectors ﬁt {(r=7,2,....T} of the calculated
structural residuals corresponding to a. Steps 2, 3, 4 and the way in
which the sample wvariances of jrh are computed, are exactly the same as

describred in the previous case.
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Using this procedure, the onfy distributional assumption concernirg
the disturbances in the system is that the disturbances should be
independent and identically distributed over time. Of course, in order to
preserve the stochast:c relationships of the estimated equations., the
pattern of the disturbances across equations does not change in the

experiment.

3.3. Monte Carlo on coefficients

This method, described in Fair (18280), can be summarized as follows.
Let ¥/T be the available estimate of the covariance matrix of the
structural ccefficients &.

1} A wvector & of pseudo random numbers. with mean & and covariance
matrix equal to the available ¥/T, is generated.

2) The pseudo-random coefficients vectoer & replaces the original estimates
& and the model is solved deterministically 1n the forecast period h,
obtaining the vector of pseudo-forecasts j/h.

The process is repeated from step 1 to 2 and the desired results follow

from the computation of the sample variances of the elements of ali the jfh

computed in the various replications.

A difficuity may arise in the generation of the pseudo-random vectars
d. The wusual generation methods are, n fact, based on Choleski
triangularization of the matrix §/7 (see Cooper and Fischer, 1974, or
Nagar, 1969, for example] and most of the available algorithms perform
the triangular decomposition only 1f such a matrix 1s positive definite {see
for example MNagar, 1963)}. Unfortunately, this is not always the case.
For example when, in a large scafe model, the fength of the time series
does not allow the application of system estimation methods, the matrix

¥/T must be built block by block (see, for example, Brundy and
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Jorgenson, 1971, p.213, for instrumental variables LIVE estimation) and it
is not necessarily of fuli rank. In this case the frianguiar decomposition
must carefully take into account the possible singularity of the matrix.
Alternatively the generation of the pseudo-randem ccefficients vectors g
might pass through the generation of shorter vectors with full rank
covariance matrix (see, for example. Rao, 1985, pp.498-501) with some
additional computational difficulties.

This problem clearly does not arise if only the diagonal blocks of the
¥/T matrix are taken into account, as in the work of Cooper and Fischer
{(1974), Haitovsky and Wallace (1972) and Fair (1980). in the experiments
that will be described in the fellowing sections, the complete matrix ¥/7
will be taken into account whenever possible, otherwise only its diagenal
blocks will be used. 1t must, however, be pointed out that all the
experiments performed with the complete ¥/T matrix have 2lse been
repeated with the dJdiagonal blocks only, obtaining in most cases rather
simlar results {a swmilar cenclusien is in Bianchi, Calzolari and Cersi,
1981).

With respect to parametric stochastic simulation and re-estimation or
bootstrap simulation and re-estimation this method seems to be more
sensitive to outhers; a kind of “instability” in the convergence of the

Monte Carle process is encountered more often.

3.4. Analytic simulation on coefficients

This method, described n  Bianch: ang Calzolari (1880), is an
extension, to nonlinear models, of the fully analytical methods deveioped,
for one-period forecast with linear models, in Goldberger et al. (1961)
and Caizolari (1881); the case of dynamic (multiperiod} forecast in linear

models is {reated by Schaudt (1974).

Parometric and Nonparaometric Monte Corlo 17

The method relies on the property, well known in large sample theory
(see, for exampie, Rao, 19653, p.322), that asymptotic normality of sampie
statistics can be maintained through transformations, even nonlinear,
provided they are continuous and differentiable.

Hf we assume that, as T ingreases to infinity, asymptotically
2
(3.4.1) TG - a) ~ N(0,¥)
(and ¥ is a consistent estimate of 1) then, asymptotically,

- - 4 - ’
(3.4.2) T’l{yh-yh) = T glyy g%y 800 gy g.xp,.0.00) ~ NIO,C ¥G ")

where G,, is the (m=s} matrix of first order derivatives of the elements of
g with respect to the elements of @, computed in the point {yhvj,xh.a,GJ,
provided that Yot and x, are given.

If the cemputation is performed at the point (yh_r,xh,a,ﬂ) and ¥ is
used in equation (3.4.2), then éh?éh' is a consistent estimate of GhYGh’;
the division by the sample period length, T, leads te the result we are
looking for, the estimate of tha covariance matrix of a multinormal
distribution which approximates the small sample distribution of the
random vector (Qh-yh}.

Continuity and differentiability of the etements of the {unknown)
vector of reduced form functional operstors g is ensured by the implicit
function theorem, which also provides the way of computing the

derivatives

(3.4.2]  (ag/aa') = ~{atiag') |(af/sa")

where the derivatives of the structural form operators vector f (known)
can be also analytically computed, once the deterministic solution of the
mocel at trme bk has been computed.

For medium or large scale models it can be simpler to perform the
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computation of the above derivatives with numerical methods [(finite
differences), rather than analytically; this criterion has been followed for
all the models used here, with the exception of the Klein-1 model, where
both analytical and numerical differentiation has been performed (of

course, with coincident results}.

3.5. Some remarks on the four methods

It must be pointed ocut that not only are there technical differences in
the computational algorithms, but there are some basic conceptual
differences among the methods,

Parametric stechastic simulation and re-estimation as well as bootfstrap
simulation and re-estimation try to deal with the “small sample”
distribution of (Qh-yh) directly. Although no formal proof is undertaken
in this paper, 1t s reascnable to expect greater efficiency from
parametric  stochastic simulation if the distribution of the errer terms is
correctly specified (since in this case we would use a-priori information).
On the contrary we should expect a greater robustness from bootstrap
simulation and re-estimation agarnst misspecification, since 1t does not
make explicit assumptions on the error process.

Monte Carlo on coefficients starts from the estimate of the asymptotic
covarmance matrix of the structural coefficients, treats this matrix as an
approximation of the small sampie covariance matrix of the coefficients and
derives the consequences of this assumption on (j/h-}'fh).

Also analytic simulation on coefficients starts from the estimateg
asymptotic covariance matrix of the structural coefficients and derives the
asymptotic covariance matrix of (§h~)7hJ: only after this computation is
performed, the resulting matrix is interpreted as an approximation of the

small sample covarance matrix of (th-yh). Iln some sense, with respect to
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Monte Carlo on coefficients, the approximation is performed at a later
stage.

From a purely empiricat point of view, howewver, all methods lead to
the same information, j.e. an estimated covariance matrix of the given

component of forecast errors.

4. THE COMPONENT DUE TO THE STRUCTURAL DISTURBANCES

when dealing with linear models, the statistical properties of the term
(S/h-yh), which is a function of the random disturbances U, are well
known in the econometric literature,

Foer nonlinear models, the properties of such a term are generally
unknown, as far as the distribution and its parameters are concerned; for
example, the conditiona! expectation of [yh-yh} is generally different from
1810, i.e.; ENG,ypdlyy g xy.0l40.

As suggested by Howrey and Kelejian (1871), approximate values for
the conditional expectation and the covariance matrix of (fh-yh} can be
obtained using stochastic simulation.

As pointed out in the previous section, stochastic simulation can be
performed with Monte Carlo draws from some assumed paramstric
distribution or drawing directly from the empirical distribution of the
calculated residuals using the bootstrap procedure.? In both cases
stochastic simulation would supply approximate estimates of moments of the

distribution of (;h-yh] and, of course, the accuracy of the approximation

2 The residual-based procedure recently proposed by Brown and Mariano
(1984) for the one-period forecasts in static models, utilizes complete
enumeration of the residuals over the sample pericd. In some way, it
could be considered a particular case of bootstrap. Applying the same
procedure in case of linear models gives the same results as computing
the reduced form variances through the calculation of the mean squared
errors over the sample period.
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improves as the number of replications increases.

Some improvement in the accuracy of the approximation can be obtained
by appiying some wvariance reduction technique (more precisaly, some
technique to reduce the experimental variance of the sample variance).
The control wvariates technique in Calzolar and Sterbenz (1983) allows for
considerable reduction of computation time with respect to straightforward

stochastic simulation simply based on independent random drawing.

5. EMPIRICAL RESULTS FROM REAL WORLD MODELS

This section s econcerned with numerical results obtained from
experiments performed on some real world models which will be briefly
described below.

Some general considerations hold far all the experiments and must be
taken into account for a clear understanding of the tables of results:

1) Parameter estimates in each model have been obtained by means of
Imited information instrumental variables efficient method (LIVE). The
estimation method is exactly the methed of Brundy and Jorgensan
{1971), since it make use of the deterministic solution of the models to
build the instruments. Therefore the name LIVE has been maintained,
although this kind of instruments is generally not fully efficient when
applied to rnonlinear models [sea Amemiya, 1977),

2) tf not otherwise specified, for all the models the resampling has been
performed wusing static simulation; forecasts are related to the first
period outside the sample estimation period and the standard errors of
forecasts generally include both the component due to the errors on
the estimated coefficients and the cemponent due to the additive
random error terms.

3) in all the tables, the first numerical column displays the deterministic
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4)

5)

6)

forecast values of some of the most important endogenous variables of
the model; the other columns display the results (standard errors of
forecasts) we are interested 1n. For easier comparison, at the top of

each column the corresponding method is reterred to in the following

way:
ANAL = analytic simulation
PS5 = parametric stochastic simulation and re-estimation
BOOT = bootstrap simulation and re-estimation
MCC = Monte Carlo on coefficients

The wariances due to random error terms have been computed using
the procedures described in section 4: local linearization of the model
in the reighborhood of the solution point has been used for ANAL, for
PSS and MCC the parametric stochastic simulation procedure suggested
by McCarthy (1972,a) has been used. It must e recalled that, in
case of linear models, ANAL furnishes results that are exactly equal to
the ones obtained via analytic formulae.

The number of replications in the Monte Carle experiments will be
specified when discussing the empirical results; in general this number
has been chosen locking at the sample wvariability of the variances in
the Monte Carlo process.

In general the results reported in the following tables show the
empirical equivalence of the parametric methods ANAL and especially
PSS with the nonparametric methed BOOT. This conctusion seems to
be quite different frem the one obtained in Freedman and Peters (71984)
where the empirical illustration shows that the parametric analytic
method by Goldberger, Nagar and Odeh ({1961) (for linear models
exactly equivalent to ANAL) systematicaliy underestimates the standard
errors as computed by the ngnparametric BOOT. One explanation of
the divergences in the empirical results can be found in the way in

which Freedman and Peters (1984) apply the BOOT method. In fact,
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MCC3, MCC4 and MCCS} show abnorma! fluctuations.
when forecasting, bootstrap is extended to the forecast pertod in the

sense that the forecast period is inciuded in the pseudo-samples used Table 1-3
in the Monte-Cario process for estimating the structural coefficients. Kigin-1 model: LIVE estimates 1921-1841
Therefore their results are not completely comparable with the ones One-period forecasts at 1948
reported in the present paper.
Det.sol. ANAL PSS BOOT MCC1 MCC2
7) As far as the parametric MCC method is concerned, when there is
C 78.07 1.3 2.56 2.56 2.6 2,82
convergence in the Moente-Carlo process., the results are similar to
¥ 9.221 1.68 1.68 1.67 1.88 1.96
those produced by the other methods. Nevertheless, as pointed out in
W1 59.80 2.08 2.1 2.710 2.74 2.31
Bianchi and Calzotari (1982, 1983), this method is very sensitive fo the
Y 95.49 3.98 3.99 3.98 4.28 4.57
presence of outliers: the sample variances may not converge as the
26.98 2.35 2.32 2.37 2.55 2.70
number of replications increases so that, as reported in table 1-b,
K 206.9 1.68 1.68 1.67 1.88 1.96
there is an abnormal fluctuation in the experimential results,
Glossary
C Consumption
5.1. Klein-1 model: LIVE estimates 1927-1941 ! Net investment
w1 Private wage bill
Y National income
P Profits
The model, proposed in Klein (195%0), consists of three stochastic plus K Endg-of-year capital stock

three definitional equations; there are 12 estimated coefficients, 4 for

each equation. Estimation has been performed with the LIVE on the

Table 1-b
sample period 1921-1941. Forecasts are related to 1948 using, for the

Klein-1 modsel: LIVE estimates 1921-1939
predeterminaed wvariables, the wvalues :n Goldberger et al. (1961). The

One-period forecasts at 1940
results are based on 1000 replications.

MCC1 and MCC2 are related to results obtained with the MCC method A Det.sol. ANAL PSS BOOT MCCI MCCZ MCC3 MCC4 MCCS
but using a different set of pseudo-random numbers for the Monte-Carlo C 65.56 2.26 .40 2.47 457 8.14 6.82 6.08 6.59
process. After 1000 rephcations the differences in the sampie standard | 2.970 1.62 1.71 1.9 3.20 7.20 s5.88 5.31 5.85
errors could anticipate the nen convergence of the MCC method for the Wi 45.94 1.92 2,08 2.068 3.33 5.52 4688 4.22 443
LIVE estimates of Klein-1 model. Furthermore the possible instability of ¥ 74.33 3.79 398 4.01 7.88 15.27 12.7 1.3 12.2
the MCC method can be stressed by LIVE over the sample period P 20.39 2.20 223 2,29 459 9.%0 8.23 7.28 7.80

1821-193%. In fact, as reported in table 1-b, the experimental results K 204.2 1.62 1.7 1.69  3.20 T7.20 5.88 5.31 5.85
after 200, 400, 800, 800 and 1000 replications (respectively MCC1, MCC2,
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Table 2

e

5.2. The Wharton Mini Growth Model {(MGM) of the U.S5. Economy MGM model: LIVE sstimat 1960-1980 forecast at 1981
: es - ,

Standard errors of forecasts due to the coefficients only
The nenbinear mede! analyzed 1n this subsection is an annuzl medel of
Det.sol. ANAL PSS BOOT ANALBD MCCBD
CE S04.7 8.55 .00 9.07 7.82 7.54

ENER.OCE 17.87 278 .283 276 269 . 269

the U.5. economy developed at Wharton Econcmetric Forecasting
Associates (WEFA). The current structure, an updated version of the

model described in Sheinin (1982), consists of 16 stochastic equations, 82

1BFR 61.99 4.14 4.1 4.35 4.04 4.12
economic behavior and national income identities and 31 exogeonous
IBFNE 92.94 3.87 4.24 4.20 3.54 3.54
ariables; it "is designed to analyze the short and long run effect of
vert ® Ve : ° IBFNS 49.05  .899  .980 1.05  .791 .87
alternative policies and random shocks on aggregate economic indicators”™.
1BLT .6338 3.27 3.77 3.63 2.53 2.57
It must be recalled that, in this model, supply, demand and pric are
PRI prices ENER.DPR 52,87 733 716  .892 623  .628
simultanecusly determined, producing short run equilibrium and long run
ENER.TD 70.74 .876 .854 .834 .718 .718
tead tate properties; th articul terati estimation technique used
steady sta properties e parficular terative imati niqu TMB-E 88 02 5 21 2,10 5> 4 2 04 —
to estimate the corresponding block of equations is described (n Sheinin
TMBE 6.940 3995 .385 376 324 .324
(1982, pp. 21-22).
TEB 174.8 3.35 3.58 3.84 3.39 3.32
In order to respect the above menticned characteristics, ilerative LIVE
GVR 8976.9 17.1 17.8 17.4 13.0 12.9
has been used to re-estimate the model on the sample peried 1960G-1980;
GVE 1027, 8.97 8.81 9.32 8.14 8.13
the co ence, generally, has been reached after 12 iterations. In
nvers g Y © ' YPD 985.5 9.47 9.89 9.53 B8.46 8.34
table 2 the displayed results are based on 500 replications and are
GNP 1473. 16.6 7.5 17.4 13.6 13.4
relative to the standard errors of forecasts due to errors on the estimated
NEHT 101.8 1.01 1.G62 .98 .878 .875
coefficients only.
CPRGNP .9028 .008 .08 .008 .007 007
Since the estimated covariance matrix of the structural coefficients is not
NLC 108.7 .523 .522 493 . 490 494
positive definite, in the MCC case (referred to in table 2 as MCCRBRD),
NRUT 65.363 .555 .558 .543 L4372 .476
this matrix has been used in itz block-diagonal part only (i.e. only the
POGNP 202.4 1.99 1.96 2.05 1.87 1.88
covariances among coefficients of the same equation have been included),
WRC 343.3 3.75 3.73 3.42 3.13 3.1
and for comparison purposes, standard errors of analytic simulation have
PENER 900.0 4.72 4.60 4.51 3.87 3.87
been computed oot only with the full covariance matrix f{column ANAL),
" or anly W L " ) FRAMLCDS  14.52 110 .723 .46  .085  .083
but also with a block-diagonal one (column ANALBD). Of course, the
PKBFN 211.6 2.48 4.70 4.31 2.37 2.39

above mentioned computation is impossible for the PS$ and BOOT

methods.
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Glossary

CE Personal Consumption Expenditures

ENER.DCE Restidential Energy Consumption

IBRFR Residential lnvestment

IBFNE Nonresidential Investment in Equipment

IBFNS Nonresidential Investment in Structures

IBIT Changes 1n Business Inventory

ENER.DPR Demand for Energy

ENER.TD Demand for Energy TJotal

TMB-E Total Import less Energy

TMBE Import of Energy (Bill. 1972 US doliars)

TEB Export, Total

GVR Total Government Receipts

GVE Total Government Expenditures

YDP Real Disposable Income

GNP Gross National Product

NEHT Demand for Labor

CPRGNP Capacity Utilization Rate

NLC Labor Supply

NRUT Unemployment Rate

POGNP Aggregate Price Deflator

WRC Wage Rate

PENER Average Energy Price

FRMLCDS Interest Rate on Large Time Deposits

PKBFN User Cost of Capital

5.3. A Nonlinear Mcdel of the Itahan Economy

The mode! used for the experiments described in this section is an
annual model of the Italian economy. It is an updated version, estimated
in the sample period 1953-1982, of one of the first ltalian econometric
models (Sylos Labini, 1967); for a detailed description see Dal Monte
(1981).

The model is mildly ronlinear in the endcgenous variabies (in fact,
nonlinearities arise only from some identities); in this wversion it includes
23 endogenous and 1% exogenous wvariables (several of which are
dummies): 14 are the stochastic eguatiens and 9 the identities, which
mazinly connect wvariables axprassed in different ways, like levels, first
differences, anpual percentage differeaces. The results are based on 500
replications.

The meaning of the endogenous wvariables displayed in table 3 is
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indicated in the following glossary: a final "H" in the name of a variable
means that the refsted wvariable is expressed in annual percentage

differences.

Table 3

itaiian Model: LIVE estimates 1933-1982, forecasts at 1983

Det.sol. ANAL PSS BOOT MCC
PREAGRH 7.371 4.35 4.42 4.18 4.49
PREINCH 7.745 2.03 2.08 2.07 2.10
PREMINH 10.52 2.1 217 2.02 2.29
COSTOCCH 13.05 2,76 2.81 2.85 3.03
RELADIH 13.95 2.27 2.35 2.33 2.44
CORTOTCH 13.51 2.66 2.73 2.37 2.96
OCCSTREH -1.766 .12 1.14 1.12 1.13
INVINDKH -6.135 3.65 3.52 3.63 3.58
VAINDKH 1.881 2.7 2.13 2.13 2.19
IMPEOBCH 5.861 4.80 4.85 5.01 4.64
PREINGH 7.709 2.08 2.23 1.95 2.22
COSVITH 10.68 2.10 210 1.93 2.23
RELADINH 10.85 3.48 3.53 3.89 3.67
CONSALCH | 10.97 2.8% 2.99 2.79 3.07
VAINDK 391.3 iz.6 12.3 12.¢ 2.7
OCCSTRE 145.7 1.67 1.69 1.67 1.67
RELADIN 2818, i82. 185. 194. 192.
CORTOTK 388.6 5.82 §5.43 5.82 5.94
CORTQCTC 4172, 97.7 100. 87.2 108.
PREIND §93.9 13.1 13.4 13.3 13.6
COSTPROH 8.805 3.63 3.61 3.66 3.92
RELADI 6672, 133. 138. 137. 143 .
PREMIN 1073. 20.4 21.0 19.6 22.2
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Glozsary

PREAGR Wholesale Price of Agriculturai Products

PREIND Wholesale Price of Industrial Products

PREMIN Retail Prices

COSTOCC Gross Wage per Dependent Worker

RELAD! Contractual Earnings

CORTOTC Domestic Private Consumption [Current Prices)
OCCSTRE Dependent Workers in Industry

INVINDK Fixed Industrial Investments {Constant Prices)
VAINDK Added Value in Industrial Sector (Constant Prices)
IMPFOBC Import at FOB Prices

PREING Whalesale Prices

COSVIT Cost of Living

RELADIN Centractual Earnings in fndustrial Sector
CONSALC Domestic Food Consumption [Current Prices)
CORTOTK Domestic Private Consumption (Constant Prices)
COSTPRRO Unit Product Labor Cost

6. MEASUREMENT ERRORS IN THE VARIABLES: A PARAMETRIC ERROR
PROCESS AND NUMERICAL ILLUSTRATION

6.1. A parametric process for the generation of measurement errors

Up to new it was supposed that all endogenocus and exogenous variables
can be measured without error in some relevant time-period. In this
section these wvariables are assumed to be fatent only and some
assumptions on the structure of the measurement errors are proposed (see
Weihs, 1986):

1) The (unlagged and lagged) endogencus wvariables ¥;p &nd  the

exogenous variables x!.r are observable in a sample-period, t=7,...,7T,

only indirectly by means of measurement variables y.,-”r‘, x;."r‘, where;
m - j =

Yit Y * dy,‘rr i I.....m and
m = i =

X,u'r xft * dxjr‘ { I,....n.

2) The measurement errors o o 3ve identically distributed for all

vit” xf
t=1,...,7, and E(dyit) = E(dxit} =0, i=t,.... m, j1,....n.

3) The messurement errors in the lagged endogenous variables are equal
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to the errors in the corresponding unlagged endogencus variables in
the corresponding pre-period.

4) The structure of the measurement errors o d_. can be interpreted

wit? T xjt
as the result of some a-priori-informatien. On the one hand it is
assumed  that measurement errors of different variables are
uncorrelated and that all measurement errors are not correlated to any
of the endogenous and exogenous latent variables. On the other hand
it is assumed to be known that more than 99% (say} of the absolute
values of the measurement errors of a variable are smaller than p% of
the latent wariable itself, where p is a-priori information and may
vary for different varizbles.

The following measurement generating process (MGP) has the desired

properties:

Let D := digg (4}.....9, .95 4. ..., be a diagonal matrix with

Q pk/.?OO, pkE[O,?O(J} fixed a-priori. Let (E‘yt’ ; &Xr'J* be

independently identically N{0,0}-distributed random variahles, t=7,....7,

which are independent of Yor ¥gu $=7,....T, Then define the measurement

nt

variables yf} x{"as
m . . o - . j =
Yie 17 Vg U0 Fynd 50 vy v Ay 12 T m

X iE X (12 d ] S T
Relative error sizes like the Py may be taken from the official data
producers. Otherwise rough guesses should be sufficient.

Unfortunately this measurement generating process may cause measurement
variables which do not have the property to follow the same definitional
equation system as the latent variables. But some statistical offices force
their measurement wvariables to have just that property. In this case a
somewhat different version of the error process has to be used. To

@nsure the existence of measurement variables of that kind, one has to
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assume that another imglicit function exists besides the reduced form.
Suppose that the structural econometric model {2.1) is formalized in the

following way

(6.7} ¥y 7 ¥y, gexpa) 2 oug, t=7.2,....7

and that it consists of mg behavioral equatiens and mp, * m - mg
definitional equations (equilibrium conditions etc.). Then besides the

reduced form

(6.2) ¥ = aly, q.xp0,u,],
there has to exist a continuously differentiable function g, so that

6.31 Ypr T 9pl¥gp Y. qoxpa.u,). t=t,....T.

where Yger ¥pe Tepresent the endogenous variables on the left hand side
of the behavioral and the definitional model equations respective:v.
Property (6.3) leads to the following adopted measurement generating

process (AMGP):

m
it
MGP. Then compute the measurement wvariables y;:', i:ms*f,...,m, by

Compute y;':, i:T,...,mB, and x i~1.....n, in the way defined In
using [6.3) sc that for the measurement variazbles the same defimitional
equations hold as for the latent variables.

To be able to measure the effect on the forecast error caused by

measurement errors in the wvariables, Schink’s parametric stochastic

simulation and re-estimation method (see 3.1) is extended to deliver not
only the estimates for mean and standard deviation of the forecast error
for data free of measurement errors, but also the corresponding wvalues
for the data-generating-process AMGP in which measurement errors are
included. For this experiment Schink's algorithm is adopted using both

the static-static and dynamic-dynamic combinations [see 3.1).  As an
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approximation to the latent variables :n the sample period the observed
values of the mede! variables are used. In the forecast period the same
error sizes are used as in the sample period for convenience. For the
latent exogenous wvariables in the forecast period any probable course may
be taken. The endogenous starting values, i.e. the values of the lagged

endogenous variables outside the sample period, are never disturbed.

8.2. A nonlinear mode! for the German economy

For experimenting on measurement errors in the variables the model
for the economy of the Federal Republic of Germany described in this
subsection was utilized. It is a log-linearized version of a small model
built for simulation purposes from a big macroeconomic model for the FRG
(see Weihs, 1986).

The model includes 32 equations, 5 of which are behavioral. The model
is nonlinear in the variables only. To reduce computer-time consumption
for estimation. nonlinearities in the parameters were removed by
log-iinearizing two of the five behavioral equations of the original model.
The behavioral equations include 18 unknown coefficients, for which
LIVE-estimations were computed based cn the sample period 1962-1982.

The model stands for the development of the private sector of the
German economy and its dependence on governmental decisions and on the
development of foreign trade and of interest rates. Especially all the
public sector is exogencus. The main part of the non-behavioral squations
represents national accounting. Behaviprat aguations are nctuded for
private consumption, private non-inventory investment, the private labor
coefficient (employees in the private sector per unit of private gross
national product)., and for the price indices of consumption and

investment. According to Friedman’s permanent-income-hypothesis, real
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Glossary
private consumption is modeled to be dependent on real disposable income )
P'C Price index for consumption (1976=100)
of private households and on their expectations of income in the future. Pl Price index for investments (1378=100}
: FlFP Real non-inventory private investment, Billions-76DM
The estimation of the other wvariables is based on the concept of a cp Real private consumption, Billions-760M
KFN_PN Capital stock in private sector, Billions-DM
representative firm, optimizing its decisions. YDP'P Real private gross national product, Billions-76DM
P Price index for private sector (1976=100)
This model was used to evaluate the effect of measurement errors in Y wWe Wages in private sector, Billions-DM
Y PNET Net-profits in private sector, Billions-OM
the variables using the error process described in 5.1. The percentages Y'DIS Real disposable income of private households, Billions-760M
Py, of maximal relative error (see 6.1 MGP), used in the experiment, are
based on suggestions of the German statistical office (Statistisches
Bundesamt). But note that these suggestions did not rnclude the Table 4-a
percentages themselves but only a rough ordering. Therefore there is ) Model for Germany: standard errors computed at 1983
not only one set of percentages compatible with a-pricri-informaticn. For ‘ Static resampling
the experiment from the possible sets of percentages one set was fixed
Det.sol. ANAL BCOT MCC PSS ERR1.
with percentages of reasonable size. These percentages vary between 0% ‘
PC 137.6 1.38 1.36 1.36 1.47 1.46
(e.g. for dummies) and 20% (for inventory investment only). Most of the .
Pt 136.0 1.36 1.36 1.33 1.36 1.51
percentages were chosen to be equal to 3% or 5%. This set wiil be calied ,
I'FP 201.4 5.60 6.17 5.52 5.77 5.65
basic in what follows. To demonstrate the effect of error size, the basic .
C'P 694.3 5.22 6.38 6.30 6.58 12.5
percentages were alsc used muitiplied by 0.5 and by 1.5,
KFN'PN 4007 . 35.9 40.1 381 40.0 44.6
The results of the Monte Carlo experiment for the evaluation of the ,
YDP'P 1109. 7.82 8.46 7.5% 8.20 15.0
effect of measurement errors to forecast errors are summarized in tabie 4.
P 132.2 1.10 1.06 1.10 1.15 1.80
The results are based on 500 replications. The meaning of the endogenous
Y'WP 738.3 10.5 10.5 10.5 10.0 16.1
variables displayed in tables 4-a, 4-b and 4-c is indicated in the glossary
Y'PNET 285.5 14.3 13.4 14.2 14.7 20.2
ahead of the tables. The titles displayed at the top of each column in the
¥Y'DIS 789.0 5.72 5.14 5.57 6.05 13.9

tables are explained in section 5, with the exception of ERR.5, ERRI.,
ERR1.5, which stand for the extension of Schink’'s method to measurement

errors in the variatles applied wusing .5, 1., 1.5 times the error

percentages of the basic set.
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P'C

Py
I'FP
c'P
KFN'PN
YDP'P

Y WP
Y PNET
Y'Dis

P'C

P
VFEP
c'p
KFN'PN
YDP'P

Y'WP
Y'PNET
¥'DIS

Table 4-b
Model for Germany: standard errors computed at 1883
Dynamic resampling

Det.sol. ANAL BOOT MCC PSS ERR.3 ERRI.

137.8 1.38 1.4 1.34 1.40 1.38 1.
136.0 1,36 1.38 1.42 1.44 1.41 1.
207.4 3.60 5.62 5.53 5.59 §.41 7.

§94.3 6.23 6.12 6.25 §.40 8.45 13.0

4007. 40.0 40.7 41.7 42.6 41.5 46.8
1109. 7.82 7.70 7.65 7.83 10.5 15.3

132.2 1.10 1,15 1.08 1.14 1.29 1.

738.3 0.5  10.9 10.4 10.6 11.8 15.5

285.5 4.3 14.7 4.6 15.2 15.C 19.1

ERR1.5

44 1.57

39 2.16

37 8.64
18.6
63.6
21.3

84 2.55
20.2
24.8
21.6

788.0 5.72  5.57 3.61 3.69 8.98 14.9

Table 4-¢
Model for Germany: standard errors computed at 1988

Oynamic simutation Dynamic resampling

Det.sol. ANAL BOOT MCC PSS ERR.5 ERRI1. ERR1.3

161.0 1.94 1.95 2.00 1.90 2.23 2.58
163.1 2,24 230 12.25 2.22 2.33 2.80
207.5 13.4 12.6 13.8 12.9 13.7 7.7
720.3 11.0 10,8 1.9 1.1 13.6 5.8
5202. 115. 11, 112, 113. 120. 151.
1195. 17.1 16,5 17.3 16.9 19.6 27.5

146.4 1.62 1.4 .67 1.58 21.30 2.88
928.1 17.7  18.3  18.2 17.5 20.5 8.7
283.9 17.4  18.2 8.2 18.0 a7 6.7
817.86 10.3 0.3 10.5 0.6 13.0 19.4

37
3.95
3.9
7.0
307.
37,1
3.93
38.5
34.4
27,1
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The results in tables 4-a, 4-b and 4-c can be summarized as follows:

- As for the other models discussed in this paper the four methods not
including errors in the wvariables are generating very similar estimates
for the standard error of ferecast for one-period forecasts and static
resampling. But note that at least for this model this is true also for
dynamic resampling and one-period forecasts and even for the
estimates in the 6th forecast period (1988) having used dynamic
resampling and dynamic simulation,

- Using static or dynamic resampling does not affect the estimates of
standard errors very much. This is also true for the extension of
Schink's method described above, which was included to demonstrate
the effect of measurement errors (see ERR1. in tables 4-a and 4-b).

- Looking at the results for the basic set of percentages (see PSS and
ERR1.), the effect of errors in the wvariables to standard errors of
forecast wvaries from nearly no effect (see P'C in 1883) up to an
ingrease of more than 100% (sesa Y'DIS in 1983). Fortunately the
maximal percentage effects do not grow with time using dynamic
resampling and dyramic simulation (see 1983 and 1988). Moreover note
that standard errors never exceed 10% of the deterministic solution and
most of them came out less than 3%. Considering the percentages, the
standard errors in !'FP and Y'PNET are the biggest. Indeed, this
result is in accerdance with a-priori \nformation, since measurement
errors in these variables are suspected to be relatively high.

- Comparing the results for the different sets of percentages [(see PSS,
ERR.53, ERR?,, ERR1.5), one should note that the change in the
standard error of forecast is increasing faster than linear in relation
to the percentages. This behavior is similar for all the forecast

periods .

Reviewing the results of this Monte Carlo experiment, one should be

really sure that measurement errors (n the wvariables can be excluded
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intending to estimate reliable sizes for the standard errors of forecast by

analytic simulation etc.
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