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Abstract 
 

We carry out a statistical physics analysis of the flash crash of May 6, 2010 using 

data from the Dow Jones Industrial Average index sampled at a one-minute 

frequency from September 1, 2009 to May 31, 2010. We evaluate the hypothesis 

of a non-Gaussian Levy-stable distribution to model the data and pay particular 

attention to the distribution-tail behavior. We conclude that there is non-Gaussian 

scaling and thus that the flash crash cannot be considered an anomaly. From the 

study of tails, we find that the flash crash followed a power-law pattern outside 

the Levy regime, which was not the inverse cubic law. Finally, we show that the 

time-dependent variance of the DJIA-index returns, not tracked by the Levy, can 

be modeled in a straightforward manner by a GARCH (1, 1) process. 
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1 Introduction 
 

 The “flash crash” is the term used to describe the stock-market crash on 

May 6, 2010 involving US corporate stocks. The Dow Jones Industrial Average 

(DJIA) suffered its largest intraday decline, 998.5 points. Most of the losses 

occurred between 2.40 pm and 3.00 pm, with a peak at 2:45 pm (Figure 1). The 

stocks of Accenture, for example, briefly traded for one cent. The crash was 

followed by an almost immediate rebound. 

 The trigger of the crash remains unknown, but some observers point to 

possible causes, including computer-automated trades and error by human traders. 

An initial rumor that a trader had typed a sell order for 16 billion shares of Procter 

& Gamble, instead of 16 million, was later dismissed by regulators. On October 

1
st
, 2010 the Securities and Exchange Commission issued a report blaming a 

sloppily executed sell order of one mutual-fund group (Waddel & Reed), which 

started to sell $4.1 billion of “E-Mini” futures contracts through robot trading, 
taking account only of volume, not time or price. Some analysts blame an 

intermarket sweep order, anxiety over Greece’s bailout package, the British 

election’s outcome, and simply two previous days of declines. Even if not the 

main cause, robot trading through electronic-trading platforms (such as Direct 

Edge and BATS), which execute trades in milliseconds, certainly played a role in 

magnifying the crash. The trigger is uncertain, but a confluence of factors (with 

no need for a particular trigger) is a more probable explanation for the crash. 

What is certain, however, is that regulators did not act preemptively; they only 

reacted in the aftermath. The Securities and Exchange Commission later 

suggested a market-wide system of “circuit breakers,” which would require all 
exchanges to stop or slow down trading for a few minutes if the market 

experiences a certain rate of decline. Whether this strategy works well in the 

future remains to be seen. 

 If stock markets are viewed as complex systems, there is no need for a 

trigger to explain a crash [2]. Extreme events need not have a cause when a 

confluence of factors is involved. Here, we share this viewpoint. As a result, we 

are interested in assessing the hypothesis of a leptokurtic, fat-tailed non-Gaussian 

shape of the distribution of index returns. To accomplish this, we collected data 

from the DJIA index sampled at a one-minute frequency from September 1, 2009 

to May 31, 2010, totaling 65,534 observations. We then carried out a canonical 

statistical physics analysis of the index returns [6, 8, 4] for evaluating the 

hypothesis of a Levy-stable distribution to model the data. Particular attention was 

paid to both the tail of the distribution and the time-dependent variance. 

 The next section presents our analysis, and the conclusions are 

summarized in Section 3. 



2 Methods 
 

 Analysis was carried out through eight steps. In the first step, we plotted 

the probability density function (pdf) of returns, Z , defined as  

 

 ( ) ( ) ( )tZ t Y t t Y t                                                                                 (1) 

 

where Y  is an observation of the DJIA index at time t . We first plotted the pdf 

( )P Z  for the returns ( )tZ t  using 1t  min (Figure 2). For better visualization, 

we plotted the log of ( )P Z  on the y-axis, and we divided the returns Z  by the 

variance calculated from the data, which equals  5.243, for plotting the values 

on the x-axis. A Gaussian distribution (dotted line) was also plotted for 

comparison using the same variance value. The pdf of data (circles) is almost 

symmetric, highly leptokurtic, and non-Gaussian for small index changes. The 

excess kurtosis is well above 3 ( 208.5  ), and thus Gaussianity is not detected 

in any of the standard tests presented in Table 1. 

 How does the shape of ( )P Z  change with time? We assessed this (in the 

second step) by considering increasing values of t  in the definition of returns 

(equation 1). Usually, pdfs change in both shape and scale as time changes. 

However, the Gaussian pdf is stable, that is, it does not change in the functional 

form but only in the scale (it becomes broader as the time interval increases). The 

Gaussian pdf is a member of the family of Levy-stable pdfs. There are other pdfs, 

for example, the Cauchy (Lorentzian) pdf, which is also stable and shows non-

Gaussian scaling. Because the data in Figure 2 are compatible with a possible 

non-Gaussian stable pdf, we evaluated the time behavior of ( )P Z  by considering 

several subsets of ( )tZ t  for growing values of t . The number of records in each 

set decreased from 65,534 ( 1t  min) to 64,535 ( t  1,000). Figure 3a shows 

the pdfs for t  1, 2, …, 10 (Figure 3b is the corresponding semilog plot). Two 

patterns emerge: (1) the pdfs spread as t  increases, as in a random process 

(Figure 3b); (2) the peaks of the pdfs ( Z = 0) decrease as t  increases (Figure 

3a), following visible intervals that are suggestive of non-Gaussian scaling. 

 Scaling means that the stable distributions are self-similar [8, Ch.4]. The 

scaling variables for a Levy-stable process of index   are 
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and 

 

 
1( ) ( ) ( )P Z P Z t
    .                                                                                (3) 

 



The symmetric Levy-stable distribution ( )LP Z —with a zero mean, index  , and 

a positive scale factor —is given by the expression [8, Ch.4]: 
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where 
q

e


 is the characteristic function of the symmetrical stable process. 

Analytical forms for ( )LP Z  are available only for  = 1 (Cauchy) and  = 2 

(Gaussian) in the symmetrical case, and for 1
2

   (Levy-Smirnov) in the 

asymmetrical case. 

 In the third step, we then estimated the parameters of the Levy distribution, 

if any, present in the data. Here, we departed from the analyses presented in the 

reports by Mantegna and Stanley [6, 8] and calculated   and   by the maximum-

likelihood method, following Nolan’s approach [9] and using his software 
Stable.exe (available at http://academic2.american.edu/~jpnolan/). 

 The log-likelihood function is given by 

 

 ln ( ) ln ( ) ln ( ) constantt t t
Z Z Z

P Z L Z f Z       .                      (5) 

 

The maximum-likelihood estimation is carried out by minimizing (5) as a function 

of the distribution parameters. Equation (5) is made up of three terms. For 1t  , 

the first term depends only on   and  , whereas the second term depends on the 

other parameters. Thus, the estimation process can be carried out separately for 

1t  . Estimation of   and   by maximum likelihood yields the same result as 

when the stochastic process was generated by a Levy-stable pdf. We considered 

the software’s S0 default parameterization, which is (according to Nolan) “better 

suited to numerical calculations and modeling data than the standard 

representations. Unless you have a specific reason to use a different 

parameterization, I suggest that you use the S0 one.” We obtained values of 

1.493 0.05    and 2.0544 0.05   . Because 0 2  , the result is 

suggestive of a Levy-stable pdf, generating the DJIA index returns. 

 Using these parameter values, in the fourth step, we derived the theoretical 

Levy pdf (Figure 4). A nice fit was observed for the central region of the pdf, but 

data in the extremes were located below the theoretical Levy, thus indicating 

breaking down of scaling. This is not unexpected because the theoretical Levy 

presents infinite variance, and the second moment in the data is finite. The fit with 

the empirical pdf is good for the set of observations  

 

  2.56Z  .                                                                                              (6) 

 



Data of the empirical pdf thus are located below the theoretical Levy pdf for 

2.56Z  . The tails decay precisely because variance is finite in the empirical 

pdf. We then partially concluded that (1) data can be modeled by a Levy-stable 

pdf for the central region of the pdf, and (2) the tails deserve further scrutiny. 

 In the fifth step, we then sought scaling considering all the other regions of 

the empirical pdf and not only in regions where 0Z  . We then considered 

equations (2) and (3) along with 1.493  . Figures 5a and 5b show that all the 

empirical pdfs (for all values of t ) collapse to the 1t   pdf. Again, the fit is 

good for the central region of the pdfs, thus suggesting that scaling breaks down 

for long time intervals. We thus conclude that (1) there is non-Gaussian scaling 

for the DJIA index returns; and (2) this scaling breaks down for long time 

intervals in the definition of returns. 

 In the sixth step, we checked for the robustness of the calculated 

parameters   and  . We considered nine subsets (months) of the original 

database and for each of them, repeated the same analysis previously carried out 

on the entire database (steps 1 to 5 above). 

 Figure 6 shows that   is located always inside the non-Gaussian Levy 

regime (1.4 1.8  ), thus confirming that the hypothesis of a Levy-stable 

distribution cannot be dismissed from the data. Figure 7 shows that   experiences 

strong fluctuations (1.43 4.31  ). It can be shown [8, Ch.9] that the parameter 

  increases as  increases. Thus, parameter   is unstable and the Levy pdf fails 

to track the volatility present in the data. 

 To put these results in the context of previous works, we note that the 

value of our index 1.49   for the DJIA index matches that found in the 

pioneering work of the S&P-500 index [6], which reported a value of 1.40  . It 

also matches that of the Bovespa index, namely, 1.66  , calculated previously 

by one of us [4]. However, our value of 2.0544   for the DJIA index is greater 

than that of the S&P 500 ( 0.00375  ) and Bovespa ( 0.00093  ) indices. We 

speculate that our large value for   may be related to our sample selection, which 

was aimed exactly at tracking a shorter period on the eve of the flash crash. 

 Because the Levy pdf of the index 1.49   cannot explain the rare 

occurrences of large positive or negative returns of the DJIA index, which occur 

whenever 2.56Z  , in the seventh step, we focused on the properties of the 

empirical 1t   pdf tails. Here, we estimated tail decay using the two major 

existing methods. 

 The first simple (although robust) technique of estimating tail exponents 

[3] is to run an ordinary least-squares regression for the sizes of the extreme 

returns ranked from top to bottom ( (1) ( )... tZ Z  ), that is, 

 

  1
2

log log ( )Tt c Z t                                                                           (7) 

 



where T  is an estimate of the decay exponent, whose asymptotical standard error 

is given by 2
Tt

 . 

 Table 2 shows the results for T  using equation (7) for the tail sizes of 1, 

5, and 10 percent of the series of ranked returns. Figure 8 shows the log of 

absolute returns versus log(rank 1

2
 ), that is, locally weighted scatterplot 

smoothing of the DJIA index. The slope corresponds to the estimate of the 

coefficient 
T

  in the regression represented by equation (7). The straight line 

shows evidence of power-law decay well outside the Levy regime of 0 2  . 

The decay exponent ( 2.5T  ) is lower than 3, and thus, an inverse cubic power 

law for extreme events [5] is absent from the data. 

 To sum up, (1) tail decay follows a power law of exponent roughly equal 

to 2.5, suggesting a pattern for the flash crash; (2) the tail exponent is located 

outside the Levy regime, thus confirming that the Levy pdf cannot account for the 

extreme events; and (3) the flash crash cannot be accommodated by an inverse 

cubic law. 

 To confirm our analysis of the tails, we considered a second method [5]. 

We again studied the returns Z  for 1t  min and divided the values by the 

variance calculated from the data, that is,  5.243, as shown in equation (8): 

 

 
( )

( )
Z t

g t


 .                                                                                               (8) 

 

We then formed a time-series by ranking the normalized returns from top to 

bottom, and plotted a cumulative probability distribution (cdf), that is, the 

probability for a data point being larger than or equal to a threshold g , 

 ( ) ( )P g P g t g  , as a function of g . The decay exponent 
T  was obtained by 

calculating the slope of the plot of log ( )P g  against log g . In fact, the data are 

well fit by the following power law: 

 

 ( ) TP g g
                                                                                                (9) 

 

which, in logs, is represented as 

 

 log ( ) logTP g g  .                                                                              (10) 

 

Table 3 shows that the decay exponents are only slightly smaller than the ones 

calculated using the previous method. Figures 911 show the power laws for the 

tail sizes of 1, 5, and 10 percent of the series of ranked returns. 

 In the final step of our analysis, we tackled the time-dependence of  . As 

described, because the parameter  is unstable, the Levy pdf fails to track the 



volatility in data. Here, the natural candidate to capture this time-dependent 

volatility is a GARCH(1, 1) model [8, Ch.10; 7, 10] 

 

 2 2 2

0 1 1 1 1t t ta a Z b                                                                                 (11) 

 

where 1a , 2a , and 1b  are the control parameters. In the GARCH(1, 1) model, 

although   is locally nonstationary, it is also asymptotically stationary. The 

asymptotic, unconditional variance is given by  

 

 2 0

1 11
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and the kurtosis is expressed as  
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 Using equations (12) and (13), considering the values  5.243 and 

208.5   measured from the empirical data of 1t  min, along with 1b  = 0.9, 

we get 0a  = 0.2348 and 1a  = 0.0915. The value of 1 0.9b   is chosen from the 

finance literature [1]. The conditional variance is then described by  

 

 2 2 2

1 10.2348 0.0915 0.9t t tZ     .                                                         (14) 

 

Figure 12 shows a comparison of the empirical 1t   min pdf from the DJIA 

index data with the unconditional pdf of a GARCH(1, 1) process characterized by 

0a  = 0.2348, 1a  = 0.0915, and 1b  = 0.9. The agreement between the two pdfs is 

good. 

 Because the GARCH(1, 1) process has finite variance, the central limit 

theorem for the sum of random variables applies. This means that the GARCH(1, 

1) process asymptotically converges to the Gaussian basin of attraction [8, Ch.10]. 

Because this is an unstable process, it shows no scaling. Thus, the GARCH(1, 1) 

process is able to describe the pdf of the DJIA index at 1t   min time horizon; 

however, it fails to describe properly the scaling properties of pdfs at different 

time horizons present in the data. 

 

3 Conclusions 
 

 Our study of the unique period preceding the flash crash of the DJIA index 

sampled at a one-minute frequency from September 1, 2009 to May 31, 2010 

allows us to conclude that 



1. The probability density function of the DJIA index returns is almost 

symmetric, highly leptokurtic, and non-Gaussian for small index changes (there is 

heavy excess kurtosis, 208.5  ). 

2. The pdfs spread as the time interval in the definition of returns increases, 

as in a random process. In addition, the peaks of the pdfs decrease as the time 

intervals increase, following a pattern that is indicative of non-Gaussian scaling. 

3. An index parameter of 1.49   can be calculated from the data. Because 

0 2  , this result is suggestive of a Levy-stable pdf generating the DJIA index 

returns. The fit is good for the central region of the empirical pdf but not for the 

tails, thereby demanding a closer look at tail behavior. 

4. This also means that scaling should break down for long time intervals in 

the definition of returns. 

5. A parameter 2.0544   is also established, which is greater than those 

typically found for other stock-market indices. Nevertheless, because   is related 

to volatility, the sample selection targeting the crash episode may explain the high 

value for the parameter. 

6. The index   remains inside the Levy-stable regime as we consider 

subsamples of data. However, the parameter   experiences strong fluctuations 

across the subsamples. Because parameter   is unstable, the Levy pdf fails to 

track the volatility in the data, thus demanding further analysis of  . 

7. Because the Levy pdf of index 1.49   cannot also explain the large 

positive and negative returns of the DJIA index, we estimate the tail decay of the 

empirical pdf through two major methods. Both find that tail decay follows a 

power law of exponent greater than two but less than three, thus suggesting a 

power-law pattern for the flash crash, which is not the inverse cubic law. 

8. Because the Levy pdf cannot explain the fact that   is time-dependent, 

the natural candidate to complement the analysis is to couple it with a GARCH(1, 

1) process. As a result, we find a formula from the GARCH(1, 1) model for the 

time-evolution of the volatility of the DJIA index data. But, because unstable 

distributions show no scaling, the GARCH(1, 1) model fails to detect the non-

Gaussian scaling present in the data. 

 To sum up, the hypothesis that the DJIA index returns are generated by a 

Levy-stable distribution cannot be dismissed. Scaling is present, and it is clearly 

non-Gaussian. This means that the flash crash cannot be considered as an outlier: 

it was an unpleasant fact rather than an anomaly. A closer look at the extreme 

events in the distribution tails shows the presence of power-law decay outside the 

Levy regime, but not the inverse cubic law. This means that the flash crash 

follows a power-law pattern outside the Levy regime, which is not also the inverse 

cubic law. Levy distributions are characterized by infinite variance, and thus, by 

definition, they cannot model finite data on variance. The time-dependent 

variance of the DJIA index has therefore been modeled using a GARCH (1, 1) 

process. Nevertheless, because the latter is an unstable process, there is no scaling. 

Non-Gaussian scaling in data thus suggest that a specific type of Levy-stable 



distribution (rather than any unstable distribution, such as the GARCH(1, 1) pdf) 

is the primary source generating the DJIA-index returns. 

 

 

Table 1  Normality tests for the 1t   empirical pdf of the DJIA index 

Lilliefors Cramer-von Mises  Anderson-Darling  Kurtosis 

0.1215 (0.0000) 454.8362 (0.0000) 2553.2260 (0.0000) 208.50 
Note: p-values shown in brackets. All the p-values are close to zero; therefore, the null of 

Gaussianity is rejected for any standard (0.01, 0.05, and 0.10) significance level 

 

 

Table 2  Estimates of the decay exponents of the extreme returns of the DJIA 

index: method of Gabaix and Ibragimov [3] 

 Tail size 
T (positive tail) 

T (negative tail) 

1% 2.30 (0.1778) 2.20 (0.1738) 

5% 2.53 (0.0875) 2.41 (0.0851) 

10% 2.54 (0.0620) 2.38 (0.0595) 

Note: standard error in brackets 

 

 

Table 3  Estimates of the decay exponents of the extreme returns of the DJIA 

index: method of Gopikrishnan et al. [5] 

 Tail size 
T (positive tail) 

T  (negative tail) 

1% 2.23 (0.0622) 2.12 (0.0553) 

5% 2.39 (0.0652) 2.26 (0.0534) 

10% 2.33 (0.0681) 2.21 (0.0593) 

Note: standard error in brackets 



 
Figure 1  Daily chart of the Dow Jones Industrial Average index during the May 6, 2010 flash 

crash 

 

 
Figure 2  The 1t  min pdf for the DJIA index from September 1, 2009 to May 31, 2010 

 

 

 

 

 

 

 



 
Figure 3a  Pdfs of the DJIA index changes measured at different time horizons t  1, 2, …, 10 

 
Figure 3b  Semilog plot of the pdfs of the DJIA index changes measured at different time 

horizons t  1, 2, …, 10 



 
Figure 4  The 1t  min pdf for the DJIA index from September 1, 2009 to May 31, 2010. The 

Gaussian pdf (dotted line), using the variance   5.243 obtained from data, is also plotted for 

comparison. The Levy pdf (solid line) is further obtained using 1.493   and 2.0544   

 
Figure 5a  The same pdfs as in Figure 3a plotted in scaled units. Scaling is performed using the 

value 1.493   



 
Figure 5b  The same pdfs as in Figure 3b plotted in scaled units. Scaling is performed using the 

value 1.493   

 

 
Figure 6  Time-dependence of the index   analyzed on a monthly time scale. Parameter    

remains inside (1.4 1.8  ) the non-Gaussian Levy regime ( 0 2  ) 

 



 
Figure 7  Time-dependence of the parameter   analyzed on a monthly time scale. Because   is 

unstable, the Levy pdf fails to track the volatility in data 

 
Figure 8  Log of absolute returns versus log(rank 1

2
 ) of the DJIA index. The slope corresponds to 

the estimate of the coefficient 
T

  in regression (7). Power-law decay is observed with an 

exponent of roughly 2.5, outside the Levy regime and below the level of 3 (inverse cubic law) 

 



 
Figure 9  Log-log plot of the cdf of ( )P g  for the tail size of 1 percent of the ranked, normalized 

returns ( )g t : power laws emerge from the data with decay exponents greater than 2 but less than 3 

 
Figure 10  Log-log plot of the cdf of ( )P g  for the tail size of 5 percent of the ranked, normalized 

returns ( )g t : power laws emerge from the data with decay exponents greater than 2 but less than 3 

 



 
Figure 11  Log-log plot of the cdf of ( )P g  for the tail size of 10 percent of the ranked, 

normalized returns ( )g t : power laws emerge from the data with decay exponents greater than 2 

but less than 3 

 
Figure 12  Fit of a GARCH(1, 1) process (dashed line) to the empirical 1t  min pdf from the 

DJIA index data (circles). The unconditional pdf of the GARCH(1, 1) process is characterized by 

0a = 0.2348, 
1a = 0.0915, and 1b = 0.9 
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