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Abstract

The purpose of the paper is to show some methods of extreme
value theory through analysis of Pakistani financial data. It also in-
troduced the fundamental of extreme value theory as well as practical
aspects for estimating and assessing financial models for tail related
risk measures.
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1 Introduction

This study was triggered by the late crisis of October 2008 in the Global
Markets not only in America but also in Europe, and Asia. The former
chief of the US Federal Reserve (Green span) met with the Congress and
explained the crisis as ”Tsunami of the Financial Markets that occurs once
in a Century” and stated that the financial models which have been used
during the past 4 decades were useless in face of the snow ball effects of what
began as a small problem in the real estate market in the United States. This
has lead to numerous criticisms about the existing risk management systems
and motivated the search for more appropriate methodologies able to cope
with rare events that have heavy consequences. The typical question one
would like to answer is: ”If things go wrong, how wrong can they go?” The
problem is then how can we model the rare phenomena that lie outside the
range of available observations. In such a situation it seems essential to rely
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on a well founded methodology. VaR, Extreme Value Theory provides a firm
theoretical foundation on which we can build statistical models describing
extreme events.

This paper deals with the behavior of the tails of Pakistani stock returns.
More specifically, the focus is on the use of extreme value theory to assess
tail related risk; it thus aims at providing a modeling tool for modern risk
management.

2 Risk Measures

We will discuss two risk measures Value-at-Risk (VaR) and the return level.
Value at risk (VaR) is a method of assessing risk that uses standard statistical
and mathematical techniques used routinely in other technidal fields. Loosely
V aR summarizes the worst loss over a target horizon that will not be exceeded

with a given level of confidence1.VaR provides an accurate statistical estimate
of the maximum probable loss on a portfolio when markets are behaving
normally. VaR is typically calculated for one day time period known as the
holding period. A 99% confidence level means that there is (on average) a
1% chance of the loss being in excess of that VaR. VaR can then be defined
as the p-th quantile of the distribution F, V aRp=F−1(1 − p), F−1 is the so
called quantile function defined as the inverse of the distribution function F.

Return level can be defined as if H is the distribution of the maxima observed
over successive non overlapping periods of equal length, the return level Rk

n

= H−1(1− 1
k
) is the level expected to be exceeded in one out of k periods of

length n.

3 Extreme Value Theory

EVT has two significant results. First, the asymptotic distribution of a series
of maxima (minima) is modeled and under certain conditions the distribu-
tion of the standardized maximum of the series is shown to converge to
the Gumbel, Frechet, or Weibull distributions. A standard form of these
three distributions is called the generalized extreme value (GEV) distribu-
tion. The second significant result concerns the distribution of excess over

1see Jorion (2007), page 17.
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a given threshold, where one is interested in modeling the behavior of the
excess loss once a high threshold (loss) is reached. This result is used to
estimate the very high quantiles (0.999 and higher). EVT shows that the
limiting distribution is a generalized Pareto distribution (GPD).

3.1 The GEV Distribution (Fisher-Tippett (1928), Gne-
denko (1943) Result)

Let {X1, . . . , Xn} be a sequence of independent and identically distributed
(iid) random variables. The maximum Xn = Max (X1, . . . , Xn) converges in
law (weakly) to the following distribution:

Hξ,µ,σ(x) =





e−(1+ξ
(x−µ)

σ )
−1
ξ

if ξ 6= 0

e−e
−(x−µ)

σ if ξ = 0
(1)

While 1+ ξ
(x−µ)

σ
> 0. The parameters µ and σ correspond, respectively, to a

scalar and a tendency; the third parameter, ξ, called the tail index, indicates
the thickness of the tail of the distribution. The larger the tail index, the
thicker the tail. When the index is equal to zero, the distribution H corre-
sponds to a Gumbel type. When the index is negative, it corresponds to a
Weibull; when the index is positive, it corresponds to a Frechet distribution.
The Frechet distribution corresponds to fat-tailed distributions and has been
found to be the most appropriate for fat-tailed financial data. This result
is very significant, since the asymptotic distribution of the maximum always
belongs to one of these three distributions, whatever the original distribu-
tion. The asymptotic distribution of the maximum can be estimated without
making any assumptions about the nature of the original distribution of the
observations (unlike with parametric VaR methods), that distribution being
generally unknown.

3.2 The Excess Beyond A Threshold (Pickands (1975),
Balkema-de Haan (1974)) Result

After estimating the maximum loss (in terms of VaR or another methodol-
ogy), it would be interesting to consider the residual risk beyond this max-
imum. The second result of the EVT involves estimating the conditional
distribution of the excess beyond a very high threshold. Let X be a random
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variable with a distribution F and a threshold given xF ,for µ fixes < xF . Fµ

is the distribution of excesses of X over the threshold µ

Fu(x) = P (X − u ≤ x | X > u) , x ≥ 0

Once the threshold is estimated (as a result of a VaR calculation, for ex-
ample), the conditional distribution Fµ is approximated by a GPD. We can
write:

Fu(x) ≈ Gξ,β(u)(x), u → ∞, x ≥ 0

where:

Gξ,β(u)(x) =





1−
(
1 + ξ x

β

)
−

1
ξ

if ξ 6= 0

1− e
−

x
β if ξ = 0

(2)

Distributions of the type H are used to model the behavior of the maximum
of a series. The distributions G of the second result model excess beyond a
given threshold, where this threshold is supposed to be sufficiently large to
satisfy the condition µ → ∞ for a more technical discussion, see Castillo and
Hadi (1997).
The application of EVT involves a number of challenges. The early stage of
data analysis is very important in determining whether the series has the fat
tail needed to apply the EVT results. Also, the parameter estimates of the
limit distributions H and G depend on the number of extreme observations
used. The choice of a threshold should be large enough to satisfy the con-
ditions to permit its application (µ → ∞), while at the same time leaving
sufficient observations for the estimation. Finally, until now, it was assumed
that the extreme observations are iid. The choice of the method for ex-
tracting maxima can be crucial in making this assumption viable. However,
there are some extensions to the theory for estimating the various parameters
for dependent observations; see Embrechts, Kluppelberg and Mikosch (1999)
and Embrechts and Schmidli (1994).

4 Modeling the Fat Tails of Stock Return

Our aim is to model the tail of the distribution of KSE (Karachi Stock Ex-
change) 100 index negative movements in order to estimate extreme quan-
tiles. We analyze the daily returns of the KSE 100 index for the period from
29-06-1993 to 27-05-2009. The application has been executed in a MATLAB
7.x programming environment. Figure 1 shows the plot of the n = 3, 762
observed daily returns.
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Figure 1: Daily returns of the KSE 100 index.

(a) (b)

Figure 2: (a) QQ plot of KSE returns against normal and (b) Sample mean
excess plot.

4.1 Explanatory Data Analysis

The main explanatory tools used in EVT (Extreme Value Theory) are the
quantile quantile plot (QQ plot) and the sample excess plot (ME plot). QQ
plot makes it possible to assess how well the selected model fits the tail of
the empirical distribution. For example, if the series is approximated by a
normal distribution and if the empirical data are fat-tailed, the graph will
show a curve to the top at the right end or to the bottom at the left end.
This is the case of the QQ plot of all the KSE returns against the normal
(Figure 2a).

Another graphical tool that is helpful for the selection of the threshold µ

is the sample mean excess plot. The sample mean excess function is an
estimate of the mean excess function E(µ). For the GPD it is linear. Figure
2b shows the sample mean excess plot corresponding to our data. First, we
will model the exceedances over a given threshold which will enable us to
estimate high quantiles and the corresponding expected shortfall. Second,
we will consider the distribution of the so called block maxima, which then
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allows the determination of the return level.

4.2 The Peak over Threshold (POT) Method

Given the theoretical results presented in the previous section, we know that
the distribution of the observations above the threshold in the tail should be
a generalized Pareto distribution (GPD). This is confirmed by the Figure3.

Figure 3: GPD fitted to the exceedances above the threshold 0.0292.

We use the maximum likelihood estimation method. We obtained the esti-
mates ξ̂ = 0.0502 σ̂ = 0.0120. High quantiles may now be directly read in
the plot or computed from above equation where we replace the parameters
by their estimates.

V aRgev = µ̂+
σ̂

ξ̂

{
(− ln(p))−ξ − 1

}
(3)

For instance if we choose p = 0.01, we can compute V aR = 0.0493. Mc-
Neil, Frey, Embrechts et al. (2005) discussed this method in detail. 2 Table
1 summarizes the point estimates, the maximum likelihood (ML) and the
bootstrap (BS) confidence intervals of the marginal distributions.

The results in Table 1 indicate that with probability 0.01 the tomorrows loss
will exceed the value 4.93%. These point estimates are completed with 95%
confidence intervals. Thus the expected loss will, in 95 out of 100 cases,
lie between 4.45% and 5.66%. As an alternative to confidence intervals, we
can also compute an approximation to the asymptotic covariance matrix of

2For detail on backtesting VaR based on tail losses, see Wong (2009).
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Table 1: Point estimates and 95% maximum likelihood (ML) and bootstrap
(BS) confidence intervals for the POT method.

Lower bound Point estimate Upper bound
BS ML ML ML BS

ξ̂ -0.079 -0.080 0.050 0.181 0.217
σ̂ 0.0101 -0.009 0.012 0.0145 0.0142

V̂ aR0.01 0.0445 0.0440 0.0493 0.0563 0.0566

(a) (b)

Figure 4: (a) Bootstrap estimation of ξ and σ and (b) QQ plot for estimates
of ξ and log(σ).

the parameter estimates, and from that extract the parameter standard er-
rors. Which is 0.666 and 0.0012 for ξ, σ respectively. Interpretation of the
standard errors usually involves assuming that, if the same fit could be re-
peated many times on data that came from the same source, the maximum
likelihood estimates of the parameters would approximately follow a normal
distribution. For example, confidence intervals are often based this assump-
tion. However, that normal approximation may or may not be a good one.
To assess how good it is in this example, we can use a bootstrap simulation.
We will generate 1000 replicate datasets by re-sampling from the data; fit a
GP distribution to each one, and save all the replicate estimates.

As a rough check on the sampling distribution of the parameter estima-
tors, we can look at histograms of the bootstrap replicates (Figure 4a). The
histogram of the bootstrap estimates for k appears to be only a little asym-
metric, while that for the estimates of sigma definitely appears skewed to
the right. A common remedy for that skewness is to estimate the parameter
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and its standard error on the log scale, where a normal approximation may
be more reasonable. A Q-Q plot is a better way to assess normality than a
histogram, because non-normality shows up as points that do not approxi-
mately follow a straight line. Let’s check that to see if the log transform for
sigma is appropriate. The bootstrap estimates for ξ, log(σ) appear accept-
ably close to normality. A Q-Q plot for the estimates of σ, on the unlogged
scale, would confirm the skewness that we’ve already seen in the histogram.
Thus, it would be more reasonable to construct a confidence interval for σ by
first computing one for under the assumption of normality, and then expo-
nentiating to transform that interval back to the original scale for σ (Figure
4b).

4.3 Method of Block Maxima

We now apply the block maxima method to our daily return data. The
calendar naturally suggests periods like months, quarters, etc. We choose
weekly periods. Thus our sample has been divided into 345 non-overlapping
sub-samples, each of them containing the daily returns of the successive cal-
endar weeks. The absolute value of the minimum return in each of the blocks
constitutes the data points in the sample of minima which are used to esti-
mate the generalized extreme value distribution (GEV). The standard GEV
is the limiting distribution of normalized extrema. The log-likelihood esti-
mates we obtain are (̂ξ) = 0.1672 (̂σ) = 0.0104, (̂µ = 0.0170). In Figure
5a, we give the plot of the sample distribution and the corresponding fitted
GEV distribution. In practice the quantities of interest are not the parame-
ters themselves, but the quantiles, also called return levels, of the estimated
GEV. The return level Rk is the level we expect to be exceeded in one out
of k one year periods:

Rk = H−1
ξ,σ,µ

(
1−

1

k

)

Substituting the parameters ξ, σ and µ by their estimates we get

R̂k =

{
û− σ̂

ξ̂

(
1−

(
− log

(
1− 1

k

))
−ξ
)

if ξ 6= 0

û− σ̂log
(
− log

(
1− 1

k

))
if ξ = 0

(4)

Taking for example k = 10, we obtain for our data R10 = 0.0455, which
means that the maximum loss observed during a period of one week will ex-
ceed 4.55% in one out of ten weeks on average. We could compute confidence
limits for R10 using asymptotic approximations, but those may not be valid.
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(a) (b)

Figure 5: (a) Sample distribution of weekly maxima and corresponding fitted
GEV distribution and (b) Relative Profile log-likelihood function and 95%
confidence interval for R10.

Table 2: Point estimates and 95% maximum likelihood (ML) and bootstrap
(BS) confidence intervals for the GEV method.

Lower bound Point estimate Upper bound
BS ML ML ML BS

ξ̂ 0.089 0.075 0.167 0.259 0.249
σ̂ 0.009 0.009 0.010 0.011 0.011

R̂10 0.041 0.042 0.045 0.050 0.052

Instead, we will use a likelihood-based method to compute confidence limits.
This method often produces more accurate results than one based on the
estimated covariance matrix of the parameter estimates. The relative profile
log-likelihood and is plotted in the Figure 5b. For α = 0.05 the interval es-
timate for R10 is [0.0407; 0.0502]. We also generated 1000 bootstrap samples
and computed the bootstrap confidence intervals for GEV parameters and
R10 (Table2).

5 Conclusion

We presented some methods of EVT to analyze financial data also with the
scope of illustrating how powerful these methods are. We also compared
V aR estimated with the POT method with the V aR proposed by the Basel
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accord. Assuming the normal distribution for the observations until 1989,
the 1% lower quantile is 1.95. Multiplying this value by 3 gives 5.86, whereas
in our calculation the upper bound for V aR is 4.93 (Table 1). Clearly the
POT method provides more accurate information. This analysis is a good
starting point and it demonstrated that EVT could play an important role
in the field of risk management.
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