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Abstract 

With the prime objective of learning from the fossil fuel based CO2 emissions-economic growth-

world crude price nexus of a leading economy, the underpinning nature of the relationship among 

them is investigated for the United States (US). Autoregressive distributed lag bounds testing 

approach to cointegration provides empirical evidence for the existence of a long-run equilibrium 

relationship with 1% growth in GDP being tied up with 3.2% growth in CO2 emissions in the US. 

Increase in crude price and technological progress, proxied by time trend, are associated with decline 

in CO2 emissions in the long-run, though by comparatively small magnitudes. Short-run dynamics 

restore 25% of any disequilibrium in a year. Owing to the structural breaks identified in the individual 

series by the unit root tests, the stability of the model coefficients over the sample period is tested 

using the cumulative sum of recursive residuals test and ascertained. Error-correction based Granger 

causality tests provide evidence for fluctuating world crude real price Granger causing fluctuations in 

CO2 emission, and fluctuating CO2 emission Granger causing the rise and fall of real GDP. Deviations 

from long-run equilibrium are seen to Granger cause changes in both the CO2 emissions and the real 

GDP in the US.  

 

Keywords: Carbon dioxide emissions; cointegration; crude oil price; forecast; Granger causality; 

gross domestic product; GDP; United States. 

 



Research r eport  subm it t ed to University of  Peraden iya upon the com plet ion of Gr ant  No. RG/ 2008/ 31/ E by Pr of. R. Shanthini 

 Page 2 of 30 

1.  Introduction 

A century after the pioneering work of Svante August Arrhenius [1], who studied the 

influence of atmospheric carbon dioxide (CO2) concentration upon global surface 

temperature, the Intergovernmental Panel on Climate Change (IPCC) concluded that fossil 

fuel use was responsible for significant increase in atmospheric concentrations of greenhouse 

gases (GHG), inclusive of CO2 [2]. A recent report of the IPPC [3] states that average global 

surface temperature is likely to rise 1.1 to 6.4°C during this century which has the potential to 

cause irreversible impact on ecosystems.  

With the intention of stabilizing atmospheric GHGs at levels that would slow down 

climate change, on 11th December 1997, world leaders adopted the Kyoto Protocol. In 

November 1998, the United States (abbreviated US henceforth) signed the Kyoto Protocol 

which required the US and other economically developed countries to reduce their GHG 

emissions from 1990 levels by specified amounts during 2008 to 2012. In March 2001, the 

US announced that it would not ratify the Protocol, and it still has not. Several countries that 

have ratified the Kyoto Protocol have amplified emission reduction targets to attain 

compliance with the Kyoto Protocol commitments before 2012. It must be noted, however, 

that the Kyoto Protocol is considered inadequate in slowing down the GHG-induced global 

warming and the resulting climate change by a number of researchers (see, for example 

[4,5]). 

In high income economies, such as the US, service sector dominates over manufacturing 

sector [6], and changes in electricity-mix take place [7,8]. These factors together with 

technological progress have led to the popular belief that environmental pollution, inclusive 

of GHG emissions, in a country might decrease with income once the country surpasses a 

threshold income [9,10]. This is known as the Environmental Kuznets Curve (EKC) 

hypothesis, and was introduced to the scientific pollution literature by the incipient research 

studies of Grossman and Krueger [11], Shafik and Bandyopadhyay [12], Panayotou [13], 

Selden and Song [14], and Holtz-Eakin and Selden [15], among others.  

In case of GHG emissions complying with the EKC hypothesis, emission reductions 

similar to those suggested by the Kyoto Protocol would have been welcomed as achievable 

by economically developed countries, and as plausible by economically developing countries. 

The reality was the opposite. Adhering to the provisions of the Kyoto Protocol was seen as 
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incompatible with achieving economic growth (US Congress [16]; Pravda [17]; 

Commonwealth of Australia [18]).  

A recent inventory of GHG emissions and sinks in the US from 1990 to 2008 [19] states 

CO2 emission from fossil fuel combustion has grown from 77% of total global warming 

potential-weighted emissions in 1990 to 80% in 2008, experiencing an 18% total increase 

over the last two decades. This increasing trend in emissions is attributed, by the US 

Environmental Protection Agency [19], to the generally growing domestic economy, energy 

price fluctuations, and technological changes. 

This paper investigates the existence or the absence of a long-run equilibrium relationship 

among fossil-fuel based CO2 emissions in the US, her economic growth proxied by real gross 

domestic product (GDP), and energy price proxied by world crude oil real price. A time trend 

term is included in the long-run model to represent technological progress and other fossil 

fuel-based CO2 emissions reduction strategies at work over time. Cointegration analysis, 

carried out in this study with annual data spanning the period 1950-2007, provides evidence 

for the existence of a long-run equilibrium relationship among the variables considered.  

Cointegration testing methodology used in this study is the autoregressive distributed lag 

(ARDL) bounds testing approach to cointegration (Pesaran and Shin [20]; Pesaran et al. [21]. 

Even though ARDL approach requires no pre-testing to identify the order of integration of 

the time series considered, asymptotic and finite-sample critical value bounds provided by 

Pesaran et al. [21] and Narayan [22], respectively, are valid for series with order of 

integration not exceeding unity.  It is therefore, the time series data used in this study are 

tested for unit roots using a recently developed nonlinear unit root test in the presence of a 

single structural break (Popp [23]), and a linear test in the presence of two structural breaks 

(Narayan and Popp,  [24]). 

Since the above tests establish that CO2 emissions, real GDP, and crude real price are I(1) 

series, and that they are cointegrated, direction of Granger causality among them are 

examined using the error-correction based Granger causality tests (Oxley and Greasley [25]; 

Ghosh [26]; Narayan and Singh [27]; Acaravci and Ozturk [28]). Granger causality results 

have immediate policy implications. For instance, if CO2 emission Granger causes GDP then 

reduction in emissions in the US could harm her economy as feared by the Byrd-Hagel 

Resolution [16] which was not in favour of the US being party to the Kyoto Protocol. On the 
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other hand, if GDP Granger causes CO2 emission then CO2 emission reduction is possible in 

the US without harming her economic growth. 

Prime objective of the above analyses is to learn from the economic development path 

followed by a leading high income economy of the world, since low and medium income 

economies tend to follow the established economic development path of high income 

economies such as the US. If the economic growth in the US is CO2 emission dependent then 

imitating such development path shall not be beneficial for developing countries in a world 

that is taking serious steps to curb CO2 and other GHG emissions.  

A brief review on the research literature on CO2 emission–economic growth nexus for the 

US is given in Section 2, data used are presented along with model rationale in Section 3, 

brief account of the econometric methodologies used is given in Section 4, and empirical 

results and discussion in Section 5. Fossil fuel based CO2 emissions projections till 2035 are 

presented in Section 6 along with the uncertainty analysis, and Section 7 concludes.        

2.  CO2 emission-economic growth literature review 

Past research studies on CO2 emission-economic growth nexus focused primarily upon 

the said relationship’s ability to describe an EKC model so that economic growth, by itself, 

may solve environmental problems [9,10]. While Shafik and Bandyopadhyay [12] and Shafik 

[29] found CO2 emissions per capita to increase with rising per capita income within the 

sample periods studied, Dijkgraaf and Vollebergh [30] and Schmalensee et al. [31] reported 

EKC-type relationships for CO2 emissions-income nexus. Carrying out a comprehensive 

survey of empirical evidence and possible causes of EKCs describing pollution-income 

nexus, Lieb [32] concluded that emission-income relationship monotonically rises for global 

pollutants, such as CO2. Perman and Stern [33] altogether negated the existence of EKC on 

the ground most of the EKC literature was devoid of testing for stochastic trends in the time 

series data used, and for spurious correlations of the models developed. 

Testing the time series concerned for stationarity and cointegration was first introduced to 

the emissions-income research literature by Friedl and Getzner [34] who found cointegration 

between Austrian yearly emissions and income time series during 1960-1999. Aldy [7] tested 

for cointegration among emissions, income, and income-squared state-specific time series for 

the US using state-level yearly data spanning 1960-1999. Aldy found evidence for 

cointegration in 8 of the 48 states for production-based CO2 emissions, and in 7 states for 
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consumption-based CO2 emissions. Dinda and Coondoo [35] carried out a panel data-based 

cointegration analysis for 88 countries with annual data in the range of 1960-1990. Their 

results showed null of no cointegration between per capita CO2 emission and per capita GDP 

could not be rejected for country groups such as North America, South America, Asia and 

Oceania. Therefore, they concluded long-run causality among the variables concerned was 

not probable for these country groups that included the US.  

Arguing that countries in a group need not have similar economic dynamics, Soytas et al. 

[36] investigated, for the US, Granger causality relationships among CO2 emissions, real 

GDP, energy consumption, labour, and investment in fixed capital using annual data during 

1960-2004. Using Toda and Yamamoto [37] procedure, they found no causality between real 

GDP and CO2 emissions and concluded that the US could reduce their carbon emissions 

without harming her economic growth. Causal relationship among CO2 emissions, economic 

growth and energy consumption has also been investigated for China [38], five OPEC 

countries [39], Turkey [40], India [41], and for 19 European countries [28], among others. 

Conclusions reached in these studies varied from one country to another.   

None of the above studies used energy price as an explanatory variable despite the local 

peaks experienced by CO2 emissions in the US in 1973 and in 1979 during the oil shock 

decade. It was Unruh and Moomaw [42] first showed, using phase diagrams, that per capita 

CO2 emissions trajectories of the US and another 15 high income economies reached their 

respective peaks during the oil shock decade. In modelling both short-term and long-term 

dynamics of emissions in Sweden since 1870, Lindmark [43] utilized a structural time series 

model with stochastic components having GDP and fuel prices as explanatory variables. 

Lindmark concluded that a combination of nuclear power, low economic growth, and 

increasing fuel prices had caused reduction in CO2 emissions since early 1970s in Sweden. In 

modelling CO2 emissions in Austria since 1960, Friedl and Getzner [34] pointed out that the 

sag in the N-shape (cubic) Austrian emissions versus income profile was caused by stringent 

environmental policies that came into effect following the oil shock decade. They also added 

that the upward trend found in the Austrian emissions in 1990s and in early 2000s could be 

explained as a ‘recovery-effect’ because the impact of the oil shock decade could have been 

much reduced in the 1990s and after.  

Lanne and Liski [44], working with data for the period 1870-1998 for 16 ‘early 

developed’ countries, inclusive of the US, observed that the downward sloping trends in per 
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capita CO2 emissions caused by the oil shock decade were not stable, except for United 

Kingdom and Sweden. They used the additive outlier modelling approach which assumes 

structural changes in emissions trajectories being the results of sudden breaks in the 

trajectories caused by external shocks.  

Huntington [45] found variations in fuel prices during 1890-1998 to have statistically 

insignificant impact upon CO2 emissions per capita in the US. He used econometric 

techniques fit for stationary time series, and concluded that 1% growth in real GDP per capita 

caused 0.9% growth in CO2 emissions per capita when holding technological progress, 

proxied by time trend, constant. When combined with the technological trend effects, he 

observed, CO2 emissions would decline only if real GDP per capita growth was maintained 

below 1.8%.  

Shanthini and Perera [46] exposed the role of crude real price fluctuations in accounting 

for structural changes in CO2 emissions versus income profiles of 17 high-income economies. 

They used a set of year-group dummy variables, the choice of which was solely guided by 

world crude real price fluctuations. A predictive model for Australia’s per capita CO2 

emissions with per capita real GDP and world crude real price as explanatory variables was 

developed by Shanthini and Perera [47] who used the ARDL bounds testing approach [20,21] 

for the first time to study the emissions-income-crude price nexus of a nation. A conditional 

equilibrium correction model (ECM) developed by them forecasted fossil fuel-based CO2 

emissions in Australia to grow by 36 to 40% in 2020 over the 2000 level even for per capita 

GDP growth rates as low as 0.7 to 1.4%. Their study also showed that world crude real price 

variations had very little influence on the emission-income nexus of Australia, which they 

attributed to Australia’s possession of rich fossil fuel reserves. Similar analyses have been 

carried out in this study for the US, the results of which show world crude oil real price have 

considerable impact on the CO2 emission-economic growth nexus of the US.  

3. Data used and model rationale 

Fig. 1 shows the variations in annual CO2 emissions stemming from fossil-fuel burning, 

cement manufacture and gas flaring in the US against her annual real GDP during 1950-2007. 

Historical CO2 emissions data (in MtCO2
1) are obtained from the Carbon Dioxide 

Information Analysis Center of the US Department of Energy [48] and real GDP data (in 

                                                
1 MtCO2 stands for megatonne (= 109 kg) of CO2 equivalent 
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billions of constant 2005$) are obtained from Bureau of Economic Analysis [49]. Time 

period chosen for the analysis covers the period of intense CO2 emissions growth and GDP 

growth in the US, which commenced in the 1950s (see Fig. 1). Choice of the end year as 

2007 was dictated by CO2 emissions data availability in the data source [48] used. 
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Fig. 1. Annual fossil fuel-based CO2 emissions in the United States against her annual real gross 

domestic product during 1950 to 2007. 

 

As seen in Fig. 1, CO2 emissions in the US increased sharply with increasing real GDP 

till 1973, which was followed by a sharp reduction in emissions till 1975. Consequent 

recovery of the growth in emissions once again experienced a sharp reduction in 1979. Since 

1982, CO2 emissions increased with real GDP. However, it must be noted that the rate at 

which CO2 emissions increased with real GDP since 1982 was much lower than the 

corresponding rate till 1973. It is therefore evident that statistical modelling of the 

relationship between CO2 emissions and real GDP requires the use of suitably selected 

dummy variables or yet another explanatory variable that could account for the 

aforementioned discontinuities experienced by the CO2 emission-real GDP relationship.  

Fig. 2 shows the annual variations in average world crude oil real price (British Petroleum 

[50]) in constant 2009$ per barrel. World crude real price experienced very little fluctuations 

till 1973, then a sharp increase during 1973 to 1974, and another increase during 1978 to 

1979. This decade of two major oil shocks was followed by a general decline in crude real 

price till 1986. Crude real price fluctuated about a near steady value till 2002 or so before 

setting up on an upward trend till 2007.  
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Fig. 2. Average world crude oil real price during 1950 to 2007. 

 

It is noteworthy that the decade of oil shocks, which is the 1970s, is nearly the same as 

the decade during which CO2 emissions-real GDP relationship in the US experienced 

discontinuities (Fig. 1). It is probable that abrupt increases experienced by crude real price 

during 1973 to 1974 and during 1978 to 1979 caused the breaks in emissions in 1973 and in 

1979, respectively (Fig. 1). It is therefore, I attempt to model CO2 emissions in the US using 

real GDP and world crude real price as explanatory variables. 

Inferring from the information presented above, I hypothesize, during the sample period 

1950 to 2007, CO2 emission time series of the US is strongly and positively correlated with 

her real GDP time series, and is negatively correlated with world crude oil real price. A time 

trend term is included in the model to explain any possible gradual reduction in emissions 

which could have been prompted by technological progress [45] and other emissions 

reductions policies and strategies which have evolved during the past half century. I 

hypothesize that the coefficient of the time trend is therefore negative. Since I am interested 

in the temporal growths of the variables concerned, I use natural logarithms of the variables 

for model development. The hypothetical model therefore takes the following form:  

)()()1950(0 tOtGtC(t) OGt ωωωω −+−−=         

where C, G and O represent the natural logarithms of fossil fuel-based CO2 emissions, real 

GDP and world crude oil real price, respectively, t represents the time in year, and the Greek 

letters represent the coefficients to be determined. 
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4. Econometric methodology 

4.1. Order of integration of the time series 

The time series considered in this study exhibit discontinuities (Fig. 1 and Fig. 2), and 

therefore augmented Dickey-Fuller and other conventional tests may not correctly identify 

the order of integration [51]. The series must therefore be tested for unit roots in the presence 

of structural breaks. To this effect, I employ the recently developed unit root testing 

methodologies of Popp [23] and Narayan and Popp [24]. A distinctive feature in these two 

unit root tests is that they allow for structural break(s) under both the null hypotheses of the 

presence of unit root and the alternative of stationary series. They were also shown, via 

Monte Carlo simulations, to have stable power and to identify the true break date(s) very 

accurately even for small breaks (Narayan and Popp [24,52]). Moreover, the unit root test of 

Popp [23] is novel in the sense the coefficients of the test equation are nonlinearly related to 

each other. Owing to the novelty of these tests, they have been elaborated below. 

The most general test equation underlying the abovementioned tests for a trending series 

is as follows: 

∑
=

+−∆+−+−++

−+−++++−=∆
k

j

tj

t

ejtytDTtDUtDB

tDTtDUtDBttyty

1

222222

1111110

)()1()1()(

)1()1()()1()(

ηξςθ

ξςθηηα
  (1) 

where ∆ is the first difference operator, y is the time series being tested, t is the time, DBi = 

1(t = TB,i +1), i=1,2, are the break dummies, TB,i, i=1,2, are the endogenously determined 

break years,  DUi = 1(t > TB,i), i=1,2, are the intercept dummies, DTi = 1(t > TB,i)(t - TB,i), 

i=1,2, are the slope dummies, k is the lag length, te ~ ),( 2
eoiid σ , and the Greek letters 

represent the coefficients to be determined.  

A time series is first tested for a single structural break using the following linear test 

equations [23]:   

M11B,L: Test equation for one break in the level of a trending series: 

Equation (1) with   0  ;0  ;0  ;0 2221 ==== ξςθξ                  (2)  

M21B,L: Test equation for one break in the level and slope of a trending series: 

Equation (1) with   0  ;0  ;0 222 === ξςθ                    (3)  

Ordinary least square (OLS) regression is used to solve Eq.(2), or Eq.(3), at a chosen TB,1 

using the ‘t-sig’ method ([53], p. 359). In this method, regression is started at a user specified 
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maximum value for k (denoted by kmax) and is repeated at values of k in the range of kmax to 1 

in an descending order until η k becomes significant at 10% level for the first time. Estimated 

break year, denoted by 1,
ˆ
BT , is the year in which absolute value of the t-statistic of 1θ̂  

becomes maximum. Having chosen the appropriate break year, unit root null will be tested 

using the following nonlinear equivalent of Eq.(2) and Eq.(3):  

M11B,NL: Eq.(1) with   0  ;0  ;0  ;0  ;  ; 222111 ====−=+= ξςθξαϕφςϕφθ     

M21B,NL: Eq.(1) with   0  ;0  ;0  ;  ;  ; 222111 ===−=−=+= ξςθαφξαϕφςϕφθ  

Nonlinear test regressions were carried out at 1,
ˆ
BT with appropriate lag k selected by the ‘t-

sig’ method using the nonlinear least square regression method. Resulting t-statistic 

corresponding to α̂ , denoted by )ˆ( 1,,ˆ BNL Ttα , is tested for unit root null against appropriate 

critical values [23]. This two-step procedure is recommended since it is claimed that the 

linear test regression identifies the break date more accurately than the corresponding 

nonlinear test, and that the nonlinear test offers a powerful unit root test even in finite sample 

([23], p. 7-8). 

Next, the trending time series is tested for two structural breaks using the following linear 

test equations [24]:   

M12B,L: Test equation for two breaks in the level of a trending series: 

Eq.(1) with   0  ;0  21 == ξξ                        (4) 

M22B,L: Test equation for two breaks in the level and slope of a trending series:  

Eq.(1) with all non-zero coefficients         

In the sequential procedure suggested by Narayan and Popp [24], starting with the already 

chosen first break date 1,
ˆ
BT , a second break date 2,

ˆ
BT (> 1,

ˆ
BT +2) is selected by solving Eq.(4), 

or Eq.(1), and by locating the maximum absolute t-statistic of 2θ̂  for Eq.(4), or Eq.(1). The t-

statistic corresponding to α̂ , denoted by )ˆ( 2,,ˆ BL Ttα , is tested for unit root null against 

appropriate critical values [24]. 

Order of integration of the time series are also tested using conventional unit root testing 

methodologies, namely augmented Dickey-Fuller test, GLS-detrended Dickey-Fuller test, 

Phillips-Perron test, and Kwiatkowski, Phillips, Schmidt and Shin test, abbreviated ADF, DF-

GLS, PP and KPSS, respectively. The first three tests have the null hypotheses that the time 

series tested contains a unit root, i.e. the series is non-stationary, and the KPSS test has the 
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null of the tested series being stationary. These tests, carried out using the built-in test 

routines available with the statistical package EViews 6 from Quantitative Micro Software 

LLC, are not elaborated here owing to their popular use in cointegration and Granger 

causality literature.  

4.2. ARDL cointegration analysis  

ARDL bound testing approach to cointegration [20,21] is used in this study since it is 

based on a single equation approach which is shown to be theoretically superior and efficient 

[54,55], among many other reasons (see, for example, [28]). First step in the ARDL approach 

is to estimate the following unrestricted ECM.   

ε(t)O(t-i) dG(t-i)bC(t-i)a

O(t)dG(t)b)(t)O(t)G(t)C(tC(t)

p

i

i

n

i

i

m

i

i ++++

++−+−+−+−+=

∑∑∑
===

ΔΔΔ

ΔΔ1950111Δ

111

0043210 βββββ
      (5)         

where β0 is the intercept, β1, β2, β3 and β4 are the parameters of the long-run equilibrium 

ensemble, ai, bi, and di are the short-run dynamic parameters with m, n and p specifying the 

optimum lag lengths selected based on Akaike’s Information Criterion (AIC) or Schwarz 

Criterion (SC), and ε(t) is white noise.   

Second step is to compute the F-statistic, at the selected optimum lag lengths, under the 

null hypothesis β1 = β2 = β3 = β4 = 0 (that is, no cointegration) against the alternative 

hypothesis that they are not. Computed F-statistic is then compared with the finite sample 

critical value bounds of Narayan [22]. If it lies above the upper bound critical value then the 

null of no cointegration is rejected. If it lies below the lower bound critical value then the null 

cannot be rejected. If it lies within the bounds, then no conclusive decision could be drawn 

without knowing the order of integration of the regressors involved. 

4.3. Long-run equilibrium and short-run dynamics  

If the null of no cointegration is rejected, then it is certain that the variables concerned are 

locked in a long-run equilibrium relationship, which is estimated starting from an ARDL 

model as the one given below:  

ARDL(m,n,p): ECT(t)O(t-k) G(t-j)C(t-i))(tC(t)
p

k

k

n

j

j

m

i

i ++++−+= ∑∑∑
=== 001

t0 1950 ρτγµµ   (6) 

where μ 0 is the constant term, μ t is the coefficient of the time trend, iγ , jτ and kρ  are the 

coefficients of the first-differenced series, m, n and p denote the optimum lag lengths selected 
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based on AIC/SC statistics, and ECT(t) are the serially uncorrelated residuals known as the 

equilibrium correction term.  

ARDL(m,n,p) model is estimated using OLS procedure, and the coefficients of the 

corresponding long-run equilibrium relationship along with the standard errors and t-statistics 

are estimated using the Delta method suggested in Pesaran and Shin [20]. Conditional ECM 

corresponding to the chosen ARDL(m,n,p) model paves the way for estimating the short-run 

dynamic equation governing the variables C, G and O. In the conditional ECM, first 

difference of C is regressed on its lagged terms, current and lagged first differences of G and 

O and a one period lag of ECT using OLS regression [21].  

Residuals of the conditional ECM are then tested for non-rejection of the null hypotheses 

of no residual serial correlation, no heteroskedasticity among the residuals, and normally 

distributed residuals. Stability of the estimated parameters are tested employing Ramsey 

regression specification error test (RESET), cumulative sum of recursive residuals (CUSUM) 

test and cumulative sum of squares of recursive residuals (CUSUMSQ) test.  

4.4. Granger causality analysis 

In case of cointegrated I(1) series, existence of Granger causality among them is tested 

using the following pair of equations [25,26,27,28]:           
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where iκ  (i=1,2,3) are the intercepts, kij,λ  (i=1,2,3; j=1,2,3; k=1,2,..p) are the coefficients of 

the lagged first-differenced variables, p is the optimum lag length selected based on AIC/SC, 

iπ  (i=1,2,3) are the coefficients of the lagged ECT, and iν  (i=1,2,3) are the zero mean, 

constant variance, independently and normally distributed residuals.   

Short-run (or weak) Granger causality tests are conducted by generating 2χ  statistic 

using the F-test of the lagged explanatory variable to establish rejection or non-rejection of 

the relevant null hypothesis, denoted by H0. For example, ∆G Granger causes ∆C in the short-
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run if H0: 0,122,121,12 ==== pλλλ K  is rejected. Long-run causality tests are conducted by 

assessing the significance of the t-statistics on the coefficients of the lagged ECT, which are 

iπ  (i=1,2,3).  

5. Empirical results and discussion 

5.1. Order of integration of the time series 

ADF, DF-GLS, PP and KPSS test statistics, obtained using EViews6, are tabulated in 

Table 1. First three test statistics do not reject the unit root null at level and reject the unit root 

null at first difference for all three variables. KPSS test statistics rejected the null of 

stationarity at level for all series but O. Therefore, I concluded that C and G are I(1) series. 

No conclusion could be reached in case of O. The contradictory results obtained with O 

called for the use of unit root testing methodologies incorporating structural breaks. Results 

obtained with such testing methodologies [23,24], outlined in Section 4.1, are tabulated in 

Tables 2 and 3.  

Since the primary interest is the unit root properties of the series tested, test statistics 

)ˆ( 1,,ˆ BNL Ttα  and )ˆ( 2,,ˆ BL Ttα , tabulated in Tables 2 and 3, are compared with the respective 5% 

critical values provided below the respective tables. Since none of the test statistics surpass 

the corresponding 5% critical values, null of unit root could not be rejected in any case 

studied, and therefore I concluded all three variables, inclusive of the crude oil real price, are 

I(1) series at 5% level of significance. This result contrasts that of Jalali-Naini and Asali [56] 

who reported crude real price cycles were both mean reverting and not shock-persistent. 

It is noteworthy to mention that all 12 models tested have highly significant coefficients 

of the break dummies, 1θ̂  and 2θ̂ . For crude real price, both M1 and M2 models identify the 

first and the second break years as 1973 and 1978, respectively, which correspond to the 

years of oil shocks, strongly supporting the model with two breaks in the levels (column 7 of 

Table 2). For real GDP, both models identify the first break year as 1981 and the second 

break year as 1990 or 1991. For CO2 emissions, M1 model identifies the first break year as 

1973 and M2 model identifies it as 1981. The second break year is identified as 1975 by M1 

and 1989 by M2. Statistical significance of the corresponding level and slope dummies, 

however, do not provide consistent evidence to conclude on the nature of structural break(s) 

in G and C. 
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Table 1. 
Conventional unit root test statistics  

Test C Δ C  G Δ G  O Δ O 

ADF -1.34ns -6.32***  -2.22ns -5.49***  -1.71ns -7.05** 

DF-GLS -1.32ns -6.42***  -1.97ns -6.20***  -1.75ns -7.13*** 

PP -1.25ns -6.32***  -2.52ns -7.93***  -1.99ns -7.06*** 

KPSS 0.15** 0.09 ns  0.16** 0.09 ns  0.09ns 0.09 ns 

Conclusion C is an I(1) series  G is an I(1) series  
KPSS test results 

contradict the other 
test results 

Note: Symbol Δ  denotes first difference. Symbols *** and ** indicate significance at the 1% and 5% levels, respectively. 
Symbol ns indicates non-significance even at the 10% level. Test statistics of DF-GLS tests are based on the automatically 
selected lag lengths using Hannan-Quinn Criterion with the user specified maximum lag of 10, and those of PP and KPSS 
tests are based on the automatically selected Newey-West bandwidth using Parzen kernel. The series tested is assumed to be 
trending with an intercept for all tests. 

 

Table 2. 
Test statistics of unit root tests with structural break(s) in the level (model M1).  

C G O) Parameter 
and test 
statistic 

M11B,L 
[M11B,NL] 

M12B,L 
M11B,L 

[M11B,NL] 
M12B,L 

M11B,L 
[M11B,NL] 

M12B,L 

kmax 15 15 15 15 15 20 

k 0 [0] 0 8 [8] 0 6 [6] 18 

1,
ˆ
BT  1973 1973 1981 1981 1973 1973 

2,
ˆ
BT   1975  1990  1978 

α̂  -0.0065 -0.0054 -0.1697 -0.2494 -0.2352 -2.3363 

)ˆ( 1,,ˆ BNL Ttα  [-0.145]  [-1.630]  [-2.389]  

)ˆ( 2,,ˆ BL Ttα   -0.119  -2.499  -4.281 

0η̂  0.069ns 0.061ns 1.3608* 1.9368** 0.5325* 5.702*** 

tη̂  0.0009ns 0.0009 ns 0.0051ns 0.0085** 0.0055ns 0.0145*** 

1θ̂  -0.072** -0.073** -0.072*** -0.058*** 1.1375*** 1.2735*** 

2θ̂   0.088**  0.0412**  0.8459*** 

1̂ς  -0.044*** -0.081*** 0.0012ns  -0.0026ns 0.0868ns 0.9145*** 

2ς̂   0.035ns  -0.0169ns  1.0233** 

Notes: *** and ** are 1% and 5% significance levels, respectively, and ns indicates non-significance even at 10% level. All 
other notations used are defined in section 4.1. Results of the non-linear model are given within the brackets. Critical values 

at 5% level of significance are -3.610 for )ˆ( 1,,ˆ BNL Ttα  and -4.514 for )ˆ( 2,,ˆ BL Ttα  for a sample size of 50, and are -3.498 

and -4.316 for a sample size of 100. They are obtained from table 3 of Popp [24] and table 3 of Narayan and Popp [25], 
respectively.  
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Table 3. 
Test statistics of unit root tests with structural break(s) in the level and slope (model M2).  

C G O Parameter 
and test 
statistic 

M21B,L 
[M21B,NL] 

M22B,L 
M21B,L 

[M21B,NL] 
M22B,L 

M21B,L 
[M21B,NL] 

M22B,L 

kmax 15 15 15 15 15 20 

k 6 [6] 10 6 [8] 13 6 [5] 18 

1,
ˆ
BT  1981 1981 1981 1981 1973 1973 

2,
ˆ
BT   1989  1991  1978 

α̂  -0.315 -1.318 -0.696 -1.6385 -0.2349 -2.4325 

)ˆ( 1,,ˆ BNL Ttα  [-0.717]  [-1.055]  [-2.399]  

)ˆ( 2,,ˆ BL Ttα   -3.649  -2.147  -4.831 

0η̂  2.439** 10.03*** 5.246*** 12.11** 0.525ns 4.007** 

tη̂  0.0078* 0.035*** 0.026*** 0.060* 0.0059ns 0.107** 

1θ̂  -0.098*** -0.113*** -0.094*** -0.098*** 1.134*** 1.036*** 

2θ̂   -0.073**  0.047**  1.029*** 

1̂ς  -0.029ns -0.079* -0.028* -0.013ns 0.084ns 0.934** 

2ς̂   -0.108***  0.013ns  1.308*** 

1ξ̂  -0.0050* -0.019* -0.004*** -0.015** -0.0005ns -0.192ns 

2ξ̂   0.0010ns  0.0059**  0.100ns 

Notes: Same as in table 1 except for the critical values which are -4.168 for )ˆ( 1,,ˆ BNL Ttα  and -5.181 for )ˆ( 2,,ˆ BL Ttα  for a 

sample size of 50, and are -3.953 and -4.937 for a sample size of 100. 

 

5.2. Cointegration  

As the next step, cointegration among C, G and O is tested using the ARDL bound 

testing procedure briefed in Section 4.2. Both AIC and SC statistics select the optimum lag 

lengths in Eq.(5) as m = 0, n = 3 and p = 0 starting with the maximum lag length of 4 in each 

case which is adequate for annual data [57]. Corresponding F-statistic is 10.107 for a sample 

size of 53 spanning 1955 to 2007. Since the upper bound critical value at 1% level of 

significance is 6.790 for a sample size of 50 and is 6.578 for a sample size of 55 ([22], p. 

1989), the null hypothesis β1 = β2 = β3 = β4 = 0 (no cointegration) is rejected at 1% level of 

significance when C is the dependent variable. When C and G are interchanged in Eq.(5), 
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both AIC and SC select m = 2, n = 1 and p = 1, and the F-statistic is 5.453 for a sample size 

of 53. Since the upper bound critical values at 5% level of significance are 5.030 for a 

sample size of 50 and 4.955 for a sample size of 55 ([22], p. 1989), null of no cointegration 

is rejected at 5% level of significance when G is the dependent variable. 

5.3. Long-run equilibrium  

Rejection of the null of no cointegration assures the variables concerned are locked in a 

long-run equilibrium relationship. Starting from ARDL(4,4,4), the following long-run 

equilibrium relationship based on AIC statistic is estimated using the procedure outlined in 

[20]:  

ARDL(1,4,1): ECT(t)tOtGtC(t) +−+−−−=
−−−

)(0776.0)(2028.3)1950(0899.02359.16
]82.2[]28.11[]68.9[]62.7[

    (8) 

where t-statistics, given within the brackets, are computed using the Delta method [20], and 

their numerical values render statistical significance to the corresponding estimated 

parameters. SC statistic chooses ARDL(1,3,0) model, the coefficients and the t-statistics of 

which are very similar to those of Eq.(8).  

Long-run equilibrium estimates in Eq.(8) show 1% growth in real GDP is associated with 

3.2% growth in CO2 emissions, when crude real price is frozen in time, and in the absence of 

progressive technological and policy-based CO2 emissions reduction strategies, proxied by 

time trend. Decline in CO2 emissions as a result of climbing crude real price, in the absence 

of technological and policy-based interventions, is realizable only if GDP growth is limited to 

a maximum of 2.4 (= 0.078/3.2) percent. These results also imply that technological and 

policy-wise interventions, under constant crude real price scenario, cause CO2 emissions to 

decline only if real GDP grow at a rate less than 2.8 (= 0.09/3.2) percent.  

5.4. Short-run dynamics 

Short-run dynamic equation is estimated from the conditional ECM corresponding to 

ARDL(1,4,1) using the OLS procedure. The general to specific procedure guided by 

minimising AIC statistic gave the following statistically significant short-run dynamic 

equation:  

)3(2861.0)2(4796.0

)1(3196.0)(9945.012529.00224.0

]12.2[]71.3[

]30.2[]65.8[]23.6[]71.2[

−∆−−∆−

−∆−∆+−−−=∆

−−

−−−

tGtG

tGtG)ECT(tC(t)

                        (9) 
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where ECT(t-1) is given by Eq.(8), and the statistical significance of the estimated parameters 

are testified by the corresponding t-statistics given within the brackets below the parameters 

concerned.  

Eq.(9) is estimated to have an adjusted R2 of 69%, and a Durbin Watson statistic of 2.13. 

Estimated chi-squared statistics of Breusch-Godfrey serial correlation LM test, Jarque-Bera 

normality test, and ARCH heteroskedasticity test are )4(2

SCχ = 5.34 [0.25], )2(2

Nχ = 3.92 

[0.14], and )1(2

H
χ = 0.02 [0.89], respectively. P-values of the given chi-squared statistics, 

provided within the brackets, testify non-rejection of the null hypotheses of no residual serial 

correlation, no heteroskedasticity among the residuals, and normally distributed residuals.  

Stability of the estimated parameters is assessed by the chi-squared statistic of RESET 

which is )1(2
FFχ = 0.03, and the corresponding P-value is 0.86. Null of no misspecification in 

the model such as non-inclusion of all relevant variables is therefore rejected. Plots of 

CUSUM and CUSUMSQ test results, shown in Fig. 3, confine themselves within the critical 

bounds of 5% significance. This implies the estimated coefficients of Eq.(9) are nearly 

constants from one sample period to the other, despite crude real price series experiencing 

two structural breaks within the sample period.  
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Fig. 3. Cumulative sum of recursive residuals (CUSUM) and cumulative sum of squares of 
recursive residuals (CUSUMSQ) of the ECM of Eq.(9). 

 

In interpreting Eq.(9), it must be noted that the coefficient of the equilibrium correction 

term ECT(t-1), known as the adjustment parameter, not only has the expected negative sign 

implying negative feedback mechanism but also is highly significant (with the t-statistic of -

6.23), which can be taken as further proof of the existence of a stable long-run equilibrium 

relationship [60]. Numerical value of the adjustment parameter reveals that any deviation 
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from the long-run equilibrium following a short-run disturbance is corrected by about 25% in 

a year. Coefficient of Δ G(t) reveals there is a 1:1 short-run dynamic relationship between 

GDP growth and CO2 emission growth in a given year.  

5.5. Granger causality  

Having estimated ECT by Eq.(8), the long-run and the short-run Granger causalities are 

analyzed using the procedure briefed in Section 4.4. SC selected an optimum lag length of 

one in Eq.(7) with the constant terms being replaced by the break dummies DB73 = 1(t = 

1974) and DB81 = 1(t = 1982) to account for the structural breaks in the variables (Section 

5.1). Other criterions such as AIC, Hannan-Quinn information criterion, and final prediction 

error selected the lag length to be six which is too large in comparison to the sample size of 

57, and therefore not considered. F-test results of the lagged first-differenced explanatory 

variables, coefficients of the lagged ECT, and the corresponding P-values are tabulated in 

Table 4.  

Table 4 shows, in the short-run, crude real price is significant at 5% level in the CO2 

emission equation whereas real GDP is not. In the real GDP equation, CO2 emission is 

significant at 1% level in the short-run whereas crude real price is not. In the long-run, lagged 

ECT is significant at 1% level in the CO2 emission equation and at 5% level in the real GDP 

equation. In both cases, coefficients of lagged ECT terms have the correct signs. In the crude 

real price equation, as anticipated, no term is statistically significant.  

 
Table 4.  
Results of error-correction based Granger causality tests.  

F-statistics of the explanatory variables Dependent 
variable ∆C(t)  ∆G(t)  ∆O(t) 

coefficients of ECT(t-1) 
 

∆C(t) -  0.023   5.332**  -0.1129*** 
   (0.871)  (0.017) (0.005) 

∆G(t) 6.457***  -  2.043  -0.0828** 
 (0.009)    (0.134) (0.018) 

∆O(t) 0.017   0.181    0.0263 
 (0.888)  (0.652)   (0.929) 

Notes: *** and ** are 1% and 5% significance levels, respectively. P-values are provided within the parenthesis. 

 

Empirical evidence, therefore, suggests, as could be visualized in Fig. 4, fluctuating world 

crude oil real price Granger causes fluctuations in CO2 emission, which in turn Granger 

causes the rise and fall of real GDP. Deviations from long-run equilibrium Granger cause 

changes in both CO2 emission and real GDP. Long-run causality results therefore corroborate 
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with the ARDL bounds test results presented in Section 5.1 which provide empirical evidence 

for cointegration with either C or G as dependent variable.   

In contrast to the results presented above, Granger causality results of Soytas et al. [36] 

provide no evidence for long-run causality (in any direction) between CO2 emissions and real 

GDP in the US. It must be noted that Soytas et al. approach did not include crude real price as 

one of the explanatory variables.  

 
 
 
 
 
 

  

 

 

 

 

 

 

 

 

 
Fig. 4 Granger causality dynamics. ∆C, ∆G and ∆O represent relative growths in CO2 emissions, 

real GDP and world crude oil real price, and ECT represent deviation from the long-run 
equilibrium among the three variables at level. 

 
 

It must be noted that the magnitude of the coefficient of the lagged ECT term in the CO2 

emission equation is -0.113 (Table 4) whereas it is -0.253 in the short-run dynamic equation, 

Eq.(9). Reason for this is the absence of the current real GDP in the Granger causality 

equation, Eq.(7), using which one assesses the impact of the past values of real GDP upon the 

current value of CO2 emissions. However, one year is too long a period to assume that real 

GDP of the current year may not have caused changes in current year’s CO2 emissions. While 

we bear with this limitation of the Granger causality analysis, ARDL bounds testing approach 

[20,21] overcomes this limitation by the use of current value of real GDP in estimating the 

short-run dynamic equation.  

5.6. Sufficiency of the model developed 

Results reported in the preceding sections are based on the assumption CO2 emissions in 

the US could sufficiently be explained by real GDP, crude real price, and time trend. As 

already pointed out elsewhere in this paper, time trend is used as a proxy for technological 

: Long-run Granger causality 

 
: Uni-directional short-run Granger causality 

ECT 
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progress and other emissions reductions policies and strategies which have evolved during 

the past half century. Since non-fossil fuel use in the US has increased by 5 folds between 

1950 and 2007 [49] and the energy intensity of economic activity has halved during this 

period [49], it is likely that they have been contributing towards the reduction of CO2 

emissions. I therefore extended the analysis to search for cointegration among CO2 

emissions, real GDP, crude real price, non-fossil fuel based energy consumption (denoted by 

ECNF), and energy consumption per real GDP (denoted by EC/GDP). Results obtained are 

tabulated in Table 5 and Table 6.  

 

Table 5.  
Cointegration test results with C as dependent variable for a sample of 1955-2007.  

Variables included in the 
cointegration test Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

C P  P  P  P  P  P  
G P  P  P  P  P  P  
O P   P   P   

ln(ECNF) P  P    P  P  
ln(EC/GDP) P  P  P  P    

Testing for cointegration with trend  
F-statistic  2.426 3.168 2.193 2.486 7.749 6.544 
Lower bound critical value  3.383 3.730 3.730 4.225 3.730 4.225 
Upper bound critical value  4.432 4.666 4.666 5.030 4.666 5.030 

Testing for cointegration without trend  
F-statistic 2.273 3.189 1.933 2.538 3.973 2.604 
Lower bound critical value  3.136 3.500 3.500 4.070 3.500 4.070 
Upper bound critical value  4.416 4.700 4.700 5.190 4.700 5.190 

Notes: ECNF and EC/G are the natural logarithms of annual non-fossil fuel based energy consumption in the US and the 
natural logarithms of annual energy consumption per real GDP. Critical values provided are at the 5% level of 
significance for a sample size of 50 [22]. 
 

 
Table 6.  
CO2 emissions long-run elasticities. 

Model Intercept Trend G O ln(ECNF) 

5 -7.251 -0.0504 (-4.12) 1.981 (5.25) -0.0857 (-3.06) 0.0356 (0.37) 
6 -13.563 -0.0776 (-6.05) 2.924 (7.45)  -0.1099 (-1.33) 

Note: Listed within the parenthesis are t-statistics. 

 
 

Table 5 lists the F-statistics computed with different combinations of the variables 

considered with and without the trend term, and the corresponding critical bounds. A closer 

look at the results reveals that the F-statistics are above the upper bound critical values for 

Model 5 and Model 6 with trend included. Therefore, I concluded that no cointegration can 
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be rejected among CO2 emissions, real GDP, ECNF, and trend with and without crude real 

price. In all other cases tabulated in Table 5, null of no cointegration cannot be rejected.  

Table 6 shows that long-run elasticity estimates of Model 5 and Model 6. They are 

statistically significant in all cases but in the case of ECNF. In the absence of crude price, 

however, long-run elasticity of ECNF at least takes the anticipated negative sign (Model 6) 

implying growth in ECNF is associated with reduction in emissions. Long-run elasticity of 

ECNF becomes positive once crude price is added (Model 5) implying the inappropriateness 

of ECNF in a long-run relationship consisting of CO2 emissions, real GDP, crude real price, 

and trend. in Model 5, long-run elasticity of crude price takes the correct sign, and it is 

statistically significant.  

 

It is therefore evident that either increasing non-fossil fuel use or improving energy 

intensity of economic activity does not make a significant contribution towards changes in 

CO2 emissions in the US. It is noteworthy that Sadorsky [58] also found no cointegration 

among non-conventional renewable energy consumption, real GDP, CO2 emissions and real 

oil price in the US. Moreover, his results showed that increasing oil price decreases non-

conventional renewable energy consumption in the US. Hamilton and Turton [59] has 

pointed out that the impressive progress made by the US in increasing its energy intensity of 

economic activity did not result in significant reduction in the emissions owing to her high 

population growth and large increase in the electricity consumption.  

6. Forecasting results  

6.1. Forecast equation 

Following Amarawickrama and Hunt [61], forecast equation is derived by substituting the 

long-run equilibrium relationship (Eq.8) into the short-run dynamic relationship (Eq.9) and 

then by simplifying it as follows:  

1285.4)1951(0227.0)1(0196.0)4(2861.0

)3(1935.0)2(1600.0)1(5041.0)(9945.0)1(7471.0)(

−−−−−−+
−+−−−−+−=

ttOtG

tGtGtGtGtCtC
    (10) 

Fig. 5 shows CO2 emissions obtained by dynamically simulating the above compound 

model, along with the actual CO2 emissions values used for developing the model. Dynamical 

simulation is carried out using the actual values of real GDP and crude real price with the 

actual value of CO2 emissions at 1953 as the initial input. As could be observed in Fig. 5, 
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compound model is able to closely predict the in-sample actual emissions, which is expected 

of the model considering the stability of the estimated coefficients of the ECM, reported in 

Section 5.4. 
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Fig. 5. Dynamically simulated CO2 emissions using Eq.(10) compared with the actual values.  

 

6.2. Forecast assumptions 

The above compound model is used in this study to forecast fossil fuel based CO2 

emissions in the US beyond 2007. Any such future projections are known to suffer from 

uncertainties and therefore it is customary to develop several scenarios for the explanatory 

variables covering their potential ranges of uncertainties [61,62]. For 2008 and 2009, actual 

values of real GDP and crude real price available in the respective data sources are used. 

Beyond 2009, assumptions are required for real GDP growth and crude real price growth. In 

line with the approaches taken in past studies on forecasting with cointegration models 

[61,62], annual growth rates projections of the explanatory variables are obtained from 

existing official sources. One such source is the Annual Energy Outlook 2010 (abbreviated 

AEO2010) published by the US Energy Information Administration [63], which presents 

three economic growth scenarios in the US till 2035, and three world crude real price growth 

scenarios till 2035.  

The economic growth scenarios of AEO2010 are based on various assumptions about 

labour force growth and productivity [64]. In all three scenarios, real GDP is assumed to 

decline by 0.9% from 2009 to 2010 reflecting the current economic recession. In the 

reference-economic-growth scenario, real GDP is assumed to grow by 3.0% from 2010 to 

2020 and by 2.5% from 2020 to 2035. In the high-economic-growth scenario, these growth 

rates are 3.8% and 3.0%, respectively. In the low-economic-growth scenario, these growth 
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rates are 2.3% and 1.8%, respectively. I used the above three scenarios for real GDP 

projections beyond 2009 till 2035, referring to them as ‘AEO2010-reference’, ‘AEO2010-

high’ and ‘AEO2010-low’, respectively.  

Forecast period is chosen to match that of AEO2010, and hence the upper limit is set at 

2035. Moreover, since sizable reductions in fossil fuel based CO2 emissions have taken 

central stage in today’s world and policies have been drawn up as well as being implemented 

to that effect globally, forecasts made for business as usual scenarios in studies such as this 

one would, and should, be far above the actual emissions in decades to come, and thereby the 

choice of a short forecast horizon is justified.   

In search of alternatives to the aforementioned real GDP growth rate scenarios, upon the 

recommendation of an anonymous reviewer, real GDP growth uncertainty is estimated using 

the following autoregressive integrated moving average (ARIMA) process developed with 

annual real GDP data in the range of 1929 to 2010 [65] using EViews 6:   

)(0300.0
]8.15[

tuG(t) +=∆  

)(9105.012291.04913.01

)(4382.015786.011314.01

12

]1.33[

8

]82.1[

4

]5.3[

12

]6.5[

4

]9.8[

4

]85.1[

tLLL

tuLLL

ε




 −





 −+=






 −





 +





 +

−−

−−
                     (11) 

where L is the lag operator, u(t) is the disturbance term, )(tε  is the innovation in the 

disturbance, and t-statistics are provided within the brackets below the estimated coefficients.  

Eq.(11) is estimated to have an adjusted R2 of 61%, a Durbin Watson statistic of 1.81, 

Estimated chi-squared statistics of Breusch-Godfrey serial correlation LM test, Ljung-Box Q-

statistic, Jarque-Bera normality test, and ARCH heteroskedasticity test are )4(2

SCχ = 1.85 

[0.76], )7(2

LB
χ = 2.70 [0.10], )2(2

Nχ = 1.29 [0.52], and )1(2

H
χ = 0.21 [0.64], respectively. P-

values of the given F-statistics and chi-squared statistics, provided within the brackets, testify 

non-rejection of the null hypotheses of no residual serial correlation, no heteroskedasticity 

among the residuals and normally distributed residuals. 

Dynamic forecast of G(t) is generated by the above ARIMA process from 2011 to 2035 

and the forecast standard errors are estimated. Dynamic forecast of G(t) is taken to describe 

the fourth economic growth scenario, termed as ‘ARIMA-reference’. Forecast boundaries 

enclosing the projected real GDP uncertainty are described by adding and subtracting twice 
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the estimated forecast standard errors to the dynamically forecasted G(t). These boundaries 

define ‘ARIMA-high’ and ‘ARIMA-low’ economic growth scenarios, respectively.  

Fig. 6 shows that real GDP projections along ARIMA scenarios are above their respective 

AEO2010 scenarios. The reason for this difference is real GDP is assumed to decline by 

0.9% from 2009 to 2010 in the AEO2010 scenarios, whereas ARIMA scenarios use the fact 

real GDP has grown by 2.8% during this period [65].  Real GDP at 2035 becomes 1.7 times 

its 2005 value along AEO2010-low scenario which defines the lower boundary of the 

uncertainty regime of real GDP projections. Real GDP at 2035 becomes 2.7 times its 2005 

value along ARIMA-high scenario which defines the upper boundary.   
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Fig. 6. Real GDP projections beyond 2009 for hypothetical economic growth scenarios considered. 

 

 In case of the world crude real price beyond 2009, this study uses the same three 

scenarios that are used in AEO2010 [66]. In all three scenarios, crude price is 70 constant 

2008$ in 2010. In 2020, crude prices are projected at 52, 108 and 185 constant 2008$ in the 

low-crude-price, reference-crude-price and high-crude-price scenarios, respectively. In 2035, 

they are 51, 133 and 209 constant 2008$, respectively. Owing to the structural breaks 

identified in the crude real price variable, and because of the comparatively low impact of 

crude real price on CO2 emissions, as in Eq.(10), no attempt is made in this study to develop 

additional crude real price growth scenarios.   
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6.3. Forecasts 

CO2 emissions forecasts made from 2008 till 2035 for the six economic growth scenarios 

considered, holding crude real price growth rate at its reference value, are shown in Fig. 7. It 

is noteworthy that fossil fuel based CO2 emission projection falls below its 1990 level and 

remains there till about 2020 in all cases except the ARIMA-high economic growth case. 

Percentage increases in CO2 emissions at 2035 from the 1990 emission level for all 18 

scenarios considered in this study are tabulated in Table 7. Results shown in Fig. 7 and Table 

7 reveal that the US could realize sizable reductions in its fossil-fuel based CO2 emissions 

from its 1990 emissions levels in AEO2010-low, ARIMA-low, and AEO2010-reference 

economic growth scenarios. Along AEO2010-high economic growth scenario, CO2 emission 

in the US in 2035 becomes 2%, 6%, or 13% above its 1990 level, for high-, reference-, or 

low-, crude-price scenarios, respectively. It must be noted that the long-term real GDP 

growth rate is set at 3% for the AEO2010-high economic growth scenario [64]. 

In case of real GDP growth rate in the US exceeding 3%, fossil fuel based CO2 emissions 

levels in the US reach levels that would be most unwelcome from the global warming point 

of view (Fig. 7 and Table 7). It must be borne in mind that the forecasts made in this study for 

quarter of a century ahead are meaningful only for a business as usual scenarios in which CO2 

emissions curbing technologies, life styles and policies are assumed to undergo no radical 

changes in the future.  
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Fig. 7. CO2 emissions forecasts using Eq.(10) for hypothetical economic growth scenarios beyond 

2009 while holding crude real price growth rate at AEO2010 reference-crude-price scenario. 
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Table 7.  
Percentage increases in CO2 emissions at 2035 from its 1990 level for 18 different hypothetical 
scenarios considered in this study. 

 AEO2010 crude real price growth rate scenarios since 2010 
Real GDP growth rate 
scenarios since 2010 

 
High-crude 

-price 
 

Reference-crude 
-price 

 
Low-crude 

-price 

ARIMA-high  59%  65%  77% 

ARIMA-reference  10%  14%  22% 

ARIMA-low  -24%  -21%  -15% 

AEO2010-high  2%  6%  13% 

AEO2010-reference  -33%  -30%  -25% 

AEO2010-low  -57%  -55%  -53% 

 

7. Conclusion 

Long-run equilibrium relationship is established in this study among fossil fuel based CO2 

emissions in the US, her real GDP, and world crude real price. The estimated long-run 

income elasticity of CO2 emission in the US is 3.2, and crude price elasticity is -0.08.  

Progressive technological and policy-based CO2 emissions reduction strategies, proxied by 

time trend, under constant crude real price scenario, cause CO2 emissions to decline in the US 

only if real GDP grow at a rate less than 2.8%.  

Error-correction based Granger causality analyses carried out in this study reveals 

fluctuating world crude real price Granger causes fluctuations in CO2 emissions, which in 

turn Granger cause the rise and fall of real GDP. Deviations from long-run equilibrium 

Granger cause changes in both CO2 emissions and the GDP so as to correct the deviations 

within a 4-year period. 

This study therefore provides empirical evidence for the fossil-fuel based CO2 emission-

dependence of the economic growth in the US, which requires technological as well as 

policy-wise intervention to eliminate the emissions dependence of economic growth in a 

post-Kyoto global environment. Fast-growing low and the middle income economies tend to 

adopt CO2 emissions intensive technological and policy solutions to attain high-income status 

trusting that CO2 emission reduction is plausible once the economy is grown to satisfactory 

levels (the familiar EKC hypothesis). The results of this study clearly demonstrate that it is 

the rate of economic growth and not the level of economy that decides the CO2 emission 

intensity of a high income economy such as the US. Thus, it is amply clear that investing on 
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CO2 emissions intensive policies and technologies might bring a country to a vulnerable 

status where she needs to decide between CO2 emissions reduction and economic growth, 

particularly in a world that is taking emissions reduction seriously. 
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