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Abstract

China has becoming in 2006 the world’s largest emitter of greenhouse gases

(GHG), responsible for one-fifth of world’s emissions from power generation. And

further strong growth in this sector is to be expected. To provide these additional

power generation capacities substantial investments in China’s energy infrastruc-

ture are necessary. But the potential investors are confronted with uncertainty in

the design of China’s future climate policy, which might affect the profitability of

GHG emitting power plants. It is the aim of this paper to investigate the role of

uncertainty in China’s climate policy on investments in the electricity sector and

its consequences for GHG emissions. We analyze the topic with a stochastic dy-

namic computable general equilibrium model with an extended energy sector and

calibrated with Chinese data. The results show that uncertainty about the timing

and extent of China’s climate policy lowers emissions compared to a world with

perfect information. Uncertainty lowers the present value of coal-fired electricity in

pre-policy periods and has so a positive effect for the environment.
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1 Introduction

China has becoming the worlds second-largest energy consumer in less than one gener-

ation. Just the increase in China’s energy demand between 2002 and 2005 is equivalent

to Japan’s current annual energy use (IEA 2007). One of the main drivers of this de-

velopment is the increasing demand for electricity. As Peters et al. (2007) demonstrate

about one third of the Chinese growth of CO2 emissions in in the Nineteen Nineties is

caused by an increase in electricity production. For the future, the International Energy

Agency (IEA 2007) expects that power generation in China will further grow with an

average annual rate of 4.9 per cent. They estimate that the installed capacity will reach

1775 GW by 2030, nearly as high as the current installed capacity of the United States

and the European Union combined.

However, since China produces about 80 percent of its electricity with fossil fuel-fired

technologies, it has becoming in 2006 the world’s largest emitter of greenhouse gases

(GHG), responsible for about one-fifth of total emissions from energy production. This

increases the necessity that the Chinese government has to enforce policy measures to

reduce CO2 emissions from energy production. The government has already set carbon

efficiency targets in their “11th Five Year Plan for the Economic Development”, but

has not yet formulated any measures to reach these targets. Hence, with a significant

probability the government of China will introduce at someday emission caps, a tax

on GHG emissions, or other policy instruments to reduce GHG emissions. Obviously,

this must have consequences on the profitability of investments on CO2-emitting power

plants.

Policy uncertainty in general and uncertainty about carbon prices in particular are

one of the major concerns raised by firms about the implementation of climate policies.

Uncertainty about the future profitability of an investment project affects the expected

net present value of the project. Most investment projects have an irreversible character.

Once when the investors learns that the project is not profitable, the investment decision

cannot reversed without substantial costs. Therefore, it might be beneficial to postpone

the decision to invest, even when the investors looses returns in the meantime, and wait

in order to learn about future states of the environment in which the investment takes

place. Since most additional information is evolving and revealing along the time line,

time itself becomes a value.

In a traditional neo-classical model where a perfectly competitive firm accumulates

capital such that the marginal product is equal to the real rate of interest, expectations

do not matter for investment decisions. It means that decisions over the optimal level

of capital to be held at any instant in time is myopic and independent of future devel-

opments. It was pointed out by Arrow (1968) that such a consideration of investment

decisions neglects the irreversibility of most types of investments in the real world.

After the pioneering development of a tool to value financial options by Black and

Scholes (1973) and Merton (1973), Dixit and Pindyck (Pindyck (1991), Dixit (1992),

Dixit and Pindyck (1994)), transformed this framework to investment in ’real’ projects.
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If we suppose that investments are irreversible, which seems to be a plausible assumption,

especially in the energy sector, and if we allow to choose the timing of the investment,

then standard cost benefit analysis is not an adequate tool for decision making in case

of ignorance of the future, as it was pointed out by Dixit and Pindyck. The possibility

to wait and learn about the evolution of China’s energy and climate policy has a value

and influences investment decisions. And since time itself becomes an option value, we

rather have to apply tools valuing these “real options”.

This paper investigates the role and consequences of uncertainty about the Chinese

climate policy for investments into power plants by applying a real option approach in

a general equilibrium framework. We investigate how uncertainty affects the share of

different renewables of China’s energy mix and thus the consequences for China’s GHG

emission path.

In recent years, several contributions have analyzed the role of policy uncertainty

for decision-making in electricity planning. Using a real options model, Laurikka and

Koljonen (2006) examine the uncertainty from government regulations regarding the

allocation of EU-ETS allowances and show that this has a significant effect in an in-

vestments appraisal of fossil fuel-fired power plants. Blyth et al. (2007) apply a similar

framework to investigate the decisions to investment in coal- and gas-fired power plants

and carbon capture and storage (CCS) technologies if an investor is confronted with

uncertainty in the carbon price. Their results show that the option to retrofit existing

plants with CCS acts as hedge against high future carbon prices and could so acceler-

ate investment in coal-fired power plants. Fuss et al. (2008) show that uncertainty on

future climate policy leads investors to wait and postpone the investments into CCS,

since the option value of waiting exceeds the value of the technology. Patiño-Echeverri

et al. (2009) demonstrate that uncertainties and delays in the announcement of CO2

emission regulations can cause higher costs of electricity generation on the one hand

and higher emissions on the other. Their results show that it is not only rational for

electricity consumers but also for public utilities to lobby for stringent GHG emission

regulations in order to minimize the risk of wrong investment decisions. Focusing on

China’s power sector and the opportunities of CCS if confronted with climate policy

uncertainty, Zhou et al. (2010) apply also a real option model. Their analysis shows

that CCS has especially under highly uncertain scenarios a high option value, since the

possibility to retrofit existing fossil fuel power plants with CCS helps to save investments

in these technologies. However, since CCS is itself very energy and cost intensive, the

introduction of this technology is only profitable if investors face very high potential

CO2 prices.

All this contributions show that uncertainty about climate policy measures substan-

tially affect investments in the power sector. However, all the applied models examine

the consequences of uncertainty for individual projects. In contrast, we adopt a macro

perspective and investigate how the policy uncertainty affects the emission path of the

whole Chinese power sector. We do this by means of a stochastic computable general
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equilibrium model, which allows us to incorporate several different electricity production

technologies and to study the consequences for the economy as a whole.

The results show that perfect information on the magnitude and timing of the pol-

icy implementation causes an overshooting of the emissions path in pre-policy periods

compared to the case where everybody knows that no policy will be implemented. The

knowledge about the future regulation increases the value of coal-fired energy in pre-

policy periods. Since the agent knows that the policy will be implemented, it is optimal

to use as much and as long as possible the cheap energy that coal-fired power plants

can provide. Adding uncertainty if and when such a emission reduction policy will be

implemented, let the expected value of the unregulated cheap energy source decline,

which leads to less emissions. Hence, our model illustrates that policy uncertainty might

be good for the environment. The incentive to exploit cheap energy as long as possible

always dominates potential hedging investments in renewable energy technologies.

The remain of this paper is organized as follows: In the next section we will give

a brief overview about the current composition of China’s power sector. Section 3 de-

scribes the structure of the model, the incorporation of uncertainty, the calibration of

the model and explains the possible climate policy scenarios and their attached proba-

bility of realization. In section 4 we present the results of our simulations and section 5

concludes.

2 A Short Overview on China’s Power Sector

The rise of China as one of the largest and fastest growing emerging economies comes

along with an even higher growth in energy consumption. China’s annual growth rates

in primary energy consumption for the period 2002 - 2008 was as high as 16.8 percent

(BP 2009). The increase from 2002 to 2005 only is equivalent to Japan’s current annual

energy use.

China is the second largest energy consumer and the largest emitter of greenhouse

gases from energy production. The main cause of China’s recent strong increase in CO2

emissions is the heavy reliance on coal. Over 60 percent of the country’s primary energy

is produced with coal (IEA 2007).

Power generation depends even more on coal: 78 percent of the electricity is produced

in coal-fired power plants. Since China has the world’s second largest reserves (BP 2009)

and the extraction is relatively cheap, coal is the “natural” fossil energy source for China.

Coal-fired power plants produce over 2500 TWh electricity per year. Due to its heavy

reliance on coal, the electricity and heat sector is responsible for about 50 percent of

China’s CO2 emissions from fuel combustion (IEA 2010).

Although China was an oil net exporter until the early nineties, it has become world’s

third-largest oil importer. However, oil and natural gas play only minor roles in the power

sector. Both fuels are not competitive under current market conditions for producing

electricity. Hence, only 2 (1) percent of China’s electricity is produced with oil (gas),
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respectively.

Far more important is hydroelectricity. China is the world’s largest producer of

hydroelectricity, generating over 397 TWh per year, which contributes 16 percent to

the total annual electricity production. The country has also world’s highest potential

for hydro power. Other renewables play still a negligible role in the energy system.

Wind energy provides about a half percent and biomass less than a tenth of a percent

to the total electricity production. Nuclear power plants becoming more important. In

2005, nuclear power plants provided 53 TWh, which is 2.1 percent of the total electricity

generation.

Today, China has the second-largest electricity sector in the world. In the past

twenty years, China has achieved an impressive development of its electricity generation

capacities increased from 66 GW in 1985 to 517 GW in 2006. In 2006 only over 100 GW

of new capacity were added.

For the future, IEA (2007) expects that power generation in China will further grow

on average with a rate of 4.9 percent annually. Until 2030 the IEA estimates that

generation investments will lead to capacity additions of 1’312 GW, more than the

current installed capacity in the United States. According to the IEA, the installed

capacity will reach 1775 GW by 2030, nearly as high as the current installed capacity of

the United States and the European Union combined.

3 A Stochastic General Equilibrium Model with a Bottom-

Up Energy System

To study this growth and investigate the role of policy uncertainty in China’s energy

investments and the consequences for the country’s GHG emission path we present a

stochastic dynamic computable general equilibrium (CGE) model. The model is based

on the 123 modeling framework (Devarajan and Go 1998), a simple general equilibrium

representation of an open economy with one country, two producing sectors (exports

and a domestic good), and three goods (imports, exports, and a domestic good). There

is only one good-producing sector, but this good can be transformed in either an export

good or a good for domestic consumption. This macro good Ys,t produced through a

nested constant elasticity of substitution (CES) production function which combines

labor Ls,t, capital Ks,t and energy Ej,t,s inputs :

Ys,t =



θY (
∑

j

Ej,s,t)
ρY + (1 − θY )

(

θLL
ρL

s,t + (1 − θL)KρL

s,t

)

ρY
ρL





1

ρY

, (1)

where s and t refer to the state of the world and year, respectively. Ej,s,t denotes the

production of energy with technology j. The parameters ρY and ρL denote elasticity

parameter, whereas θY and θL describe the value shares.

The macro good Ys,t can be either used domestically (Ds,t) or exported (Xs,t). Equa-

tion (2) describes this transformation.
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Ys,t =
(

θXX
ρX

s,t + (1 − θX)DρX

s,t

)
1

ρX . (2)

The consumption good is a Armington good and composites the domestic used good

and imports (Ms,t),

As,t =
(

θMM
ρM

s,t + (1 − θM )DρM

s,t

)
1

ρM . (3)

An overview about all parameter values and all equations of the model can be found

in the Appendix. How energy is produced is described in more detail in the next section.

3.1 Modeling the Energy System

Since we are mainly interested how investments in the power sector are influenced by

policy uncertainty, we extend the basic model by a more detailed electricity sector. Elec-

tricity can be produced with six different technologies. Coal-fired electricity is produced

with capital and labor only1:

EC,s,t =
(

θCKE
ρE

C,s,t + (1 − θC)LEρE

s,t

)
1

ρE , (4)

where KEC,s,t denotes the Coal-fired technology-specific capital stock and LEs,t the

amount of labor used in coal-fired electricity production. Coal-fired electricity is the

technology with the cheapest production costs. Apart from coal, we captured nuclear,

gas-fired power plants, wind, hydroelectricity and solar power, which are more expensive

in production. The output of these technologies is a function of the technology-specific

capital stocks.

El,s,t = KEl,s,t, (5)

where l is a subset of j and encloses all the energy-production technologies without

coal-fired power plants.

The technologies differ in three characteristics: (a) their marginal production costs,

(b) their maximum annual capacity growth, and (c) the maximum possible capacity at

the end of the time horizon. Table 1 shows the characteristics of the different tech-

nologies. The data for maximal annual growth rate and maximum capacity in 2050 are

based on data of the Energy Information Agency (2009). Additionally, we assume that

with strong political support from the government growth rates can be 30 % higher,

respectively a 50 % higher maximum capacity in 2050 than in the EIA (2009) scenario

is possible.

To integrate those technological details in the general equilibrium model as described

above, we coupled this bottom-up representation of the energy system with a top-down

model of the macroeconomic environment in a complementarity framework, as it was

developed by Böhringer and Rutherford (2008).

1For simplicity we neglect coal as an input factor. Since China has such large resources, the supply of

this fossil fuel depends probably only to a minor extent on non-renewable resource extraction strategies.
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Technology Plant Generating

Costs in US Cents

per kWh

Initial Capacity

in GW

Max. Annual

Growth Rate in

percent *

Max. Capacity

in 2050 in GW

**

Coal 2.8 691 4.2 1425

Nuclear 4.4 7 12 81

Gas 6.2 26 3.6 73.5

Wind 4.6 1 31.4 180

Hydro 4.8 117 5.6 477

Solar 14 1 7.6 6

Table 1: Energy data. Based on data from the World Energy Outlook 2007 (IEA 2007)

and International Energy Outlook 2009 (EIA 2009). *Growth rates from IEO (2009)

plus 30 per cent. **Installed Capacity from IEO (2009) plus 50 per cent.

3.2 Modeling of Uncertainty

Investing in most long term projects such as power generation plants is beset with

a substantial degree of uncertainty in the political framework. We incorporate these

uncertainties through a stochastic decision problem. A single representative agent, which

supplies labor and capital to the firms and is reimbursed with wage and capital income,

maximizes expected utility,

max
Cs,t

E[U(Cs,t)], (6)

s.t. state-contingent market constraints such as:

As,t = Cs,t +Gs,t + Is,t +
∑

j

IE
j,s,t. (7)

As,t is the available amount of the Armington good, Cs,t refers to consumption, Gs,t

is demand of the government, whereas Is,t denotes the investment in non-energy capital

and IE
j,s,t refers to the investment into energy technology j in year t and state of the

world s.2

Depending on expectations about the profitability, investors invest into the different

technologies and build technology specific capital stocks. The technology specific capital

stocks plus the capital stock used for the rest of the production in the economy are the

state variables in our problem.

Once a investment is made in an specific technology this investment is irreversible.

This provides a necessary condition for a proper modeling of the investment-under-

uncertainty process. But not the whole amount invested is added to the capital stock. To

depict a more realistic picture of investment decisions, which incorporate information-

and transactions costs, we assume a distinction between net and gross investment as

proposed by Uzawa (1969) in his quadratic adjustment cost formulation. To implement

2All equations of the model can be found in the Appendix.
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2012 2020 2030 2040

2012

2030

never

Figure 1: Stochastic event tree

the stochastic elements of the model, we use a set of new tools provided by Meeraus and

Rutherford (2005).

The uncertainties that arise for the investor are depending on the actions of the

government. Potential investors are uncertain if China’s government will, and if yes,

when, introduces policy measures to reduce GHG emissions from power generation. We

discuss the potential climate policy scenarios more in detail below.

Since the model has a finite time horizon but should be able to replicate the char-

acteristics of an infinite horizon equilibrium we have to implement appropriate terminal

conditions for the state variable and apply the strategy proposed by Lau, Pahlke, and

Rutherford (2002).

3.3 Scenario Construction

Further necessary conditions to analyze the consequences of uncertainty are the oppor-

tunity to time the investment and, obviously, uncertainty in future cash flows from the

investment. Hence, recourse play a central role. The model is formulated as a decisions

tree structure where we specify discrete probabilities of the events at every node in the

decision tree.

Figure 1 shows the event tree. The future climate policy of China could take a con-

tinuum of different forms. Along this continuum some architectures are more probable

than others. Taking all different possible policy scenarios into account would obviously

lead to a problem with very high dimensionality. We reduce the dimensionality of the

model without a qualitative effect on our results and focus on three different potential

policy scenarios. We could hence not capture the whole complexity of the problem and

also the probability assumptions are chosen ad-hoc and do not depend on an elaborate

analysis of the policy process. Since we are more interested in the fundamental mechanics

of policy uncertainty we let these questions open for future research.

With a specified probability we assume that China does not commit to an emission

reduction policy in the next forty years at all. We call this scenario “Never”. Without

uncertainty, China’s emissions would in this case further growth and investors in the

power sectors do not have to cope with costs from any climate policy measures. Under

uncertainty we interpret current signals from China’s behavior in international climate

policy negotiations on the one hand and the necessity to act at some point the future
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and reduce the emissions of greenhouse gases on the other, which let us conclude that

the probability of this scenario might be around one third and assume PNever = 0.35.

The two explicit climate policy scenarios are based on the two different policy archi-

tectures examined in the Energy Modeling Forum (EMF) 22 modeling exercise (Clarke

et al. (2009)). In the first climate policy scenario, called “2012”, roughly corresponding

to the “full participation” scenario in Clarke et al. (2009), it is assumed that China

joins a Post-Kyoto agreement and instantaneous participates in the efforts to stabilize

emissions on the 450 ppm level to reach the two degree goal. In this case has China to

reduce his emissions until 2020 by 22 per cent compared to the baseline. Most observers

of China’s climate policy and of international climate negotiations judge the probabil-

ity of an breakthrough in the negotiations as rather low. We attach a probability of

P2012 = 0.15 to this scenario.

The second policy architecture is softer in the transition to a global low carbon

society. It respects the differentiated responsibilities in reducing emissions and enables

China to delay the participation in a global climate agreement. This roughly corresponds

to the policy architecture in the second EMF scenario, which stabilizes the atmospheric

level of CO2 on 550 ppm. Under this scenario China has to start with its abatement

activities in 2030 and stabilize emissions ten percent below baseline in 2040. We call

this scenario “2030” and deem it as rather probable. Hence, we attach a probability of

P2030 = 0.5 to this scenario.

3.4 Data

The micro-consistent social accounting matrix in Table 4 in the Appendix is based

on data from the National Bureau of Statistics of China (2008). Information about

growth capacities of the Chinese energy sector are taken from the International Economic

Outlook 2009 of the Energy Information Agency. Data about cost structures and the

current state of the Chinese energy sector are based on information from the World

Energy Outlook 2007 from IEA (see Table 1).

To calibrate the dynamics of the model we use the parameters depicted in Table 6

in the Appendix. Assumption about the exogenous economic growth rate is based on

calculations of the Energy Information Agency (2009).

4 Policy Simulations

4.1 The Consequences of Policy Uncertainty for the GHG Emission

Path

Studying the CO2 emission path of the China’s power sector shows that without any

emission reduction policy GHG emissions would steadily increase and produce almost

four gigatones of CO2 in 2040. This is almost four times the actual amount of emissions

and would probably cancel out most of the abatement efforts in all other countries willing
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to reduce their emissions. It shows the important role that China has if the problem of

climate change should be solved.

If China starts in 2030 reducing the emissions in the electricity sector, it could

stabilize the emissions below two gigatones, which is still two times today’s amount.

Starting already in 2012 would China allow to stabilize emissions approximately on the

current level. But let us focus on the periods in advance of these key dates. Figure 2

depicts the emission path of China for all the discussed scenarios.
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Annual Emissions of GHG in the Electricity Sector

2012, Deterministic
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2030, Deterministic
2030, P=0.5

Never, Deterministic
Never, P=0.35

Figure 2: GHG emission path in the power sector.

To examine the role of policy uncertainty we compare the outcome regarding emis-

sions under perfect foresight, where the representative agent is perfectly informed on

future climate policy decisions, with the outcome resulting from uncertainty of the way

China’s government wants to deal with climate policy.

If we take a closer look on the emission path in the deterministic case, where the

agent knows that emission reduction measures are implemented from “2030” onwards,

we observe a substantial deviation to the emission path in the no-policy case. Relative to

the outcome of the scenario “Never” emissions are significantly higher in periods before

the policy implementation. Since the agent knows that the policy will be implemented,

it is optimal to use as much as possible of the cheap energy, which coal provides as

long its consumption is not regulated. During this pre-policy period, depending on the

intertemporal elasticity of substitution, China is emitting between 12 and 14 % more

than in the absence of any climate policy in later periods. Note that this difference due

to the strong economic growth of china is tremendous.

The certain knowledge on the future scarcity of this source of energy increases its

net-present value and even causes an increase in investments in this sector in pre-policy
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Figure 3: Sum of GHG emissions between 2007 and 2030.

periods. But let us now analyze the outcome under an uncertain implementation of

climate policy. Studying the path in the stochastic case shows that after the policy

implementation, emissions follow quickly the same path as in the deterministic cases.

But in periods before the agent learns if the policy is implemented, GHG emissions are

significantly lower than in the deterministic case. With only fifty percent change that

in 2030 an abatement policy would be implemented and that the supply of cheap, coal-

fired, energy might reduced, the pre-policy coal-fired energy becomes less valuable than

in the deterministic case. The emissions are therefore due to the simple existence of

uncertainty lower than under perfect information.

A further point supporting this argument is the observation that for higher intertem-

poral elasticities of substitutions emissions are decreasing since it puts more weight on

the expected consumption in the future in which maybe no reduction policy would take

place. But the fact that the emissions in the stochastic cases are always higher than

in “Never” indicates that the argument of exploiting cheap energy always dominates

potential hedging investments in renewable energy technologies. If substantial hedging

against the potential outcome of a stringent emission reduction policy would take place,

emissions would be lower than in the deterministic case.

This results shows that uncertainty about policy introduction might be good for the

environment, even if one possible outcome is that never a policy will be implemented.

It seems that adding uncertainty reduces the exploitation of cheap energy in pre-policy

time periods. The uncertainty about the policy outcome reduces investments in emitting

sectors and hence emissions. It seems clear that the uncertainty causes less economic

welfare and has costs since the possibility of cheap energy in pre-policy periods can not

be exploited in the same manner, but for the environment this uncertainty is beneficial.

Figure 3 shows this result again in summarizing the emissions for the years from 2007

to 2030 for different probabilities of a regulation.
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Figure 4: Energy mix along the stochastic event tree

4.1.1 Effects on the Technological Composition in the Power Sector

The amount of GHG emissions is obviously a function of the composition of the electricity

sector. Figure 4 shows how the composition is evolving along the stochastic event tree.

As the figures show, the composition does almost not react in advance of stochastic

event nodes. Hence, the benefits from hedging against a potential regulation are smaller

than the costs of this more expensive technologies. Changes in the composition starts

only after the the introduction of binding emission reduction measures. In this case,

the share of coal-fired power plants quickly decreases and hydro-electricity and to a

smaller degree, nuclear and wind power increases their share. However, the transition

in the energy sector takes only about ten to fifteen years, depending on the scenario.

This might be a rather small period and obviously underestimates the long lead times for

building, which are characteristic for most power plant projects. We let the consideration

oft the “time to build” open for further research and concentrate us now on the evolving

of composition of energy production.

We study the difference in energy production per technology under uncertainty com-

pared to the situation where the agent knows with certainty that in 2030 an emission

reducing policy will be implemented. Figure 5 shows the results of this comparison. We

learn that even if there is a significant risk that no climate policy will be implemented,

production in renewables is significantly higher and production of coal-fired electricity is

lower compared to this case in pre-policy periods. So we see less exploiting of the cheap
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Figure 5: Changes in energy production per technology under uncertainty relative to

the case where the implementation in 2030 is deterministic.

energy source, which reduces the emissions and more investments in renewables.

But as already mentioned the increased investment in renewable energy technologies

is not driven by an hedging rationale as we can see in Figure 6. Comparing the energy

production under uncertainty with the energy production portfolio under the outcome

with perfect knowledge that never a policy takes place shows that in this scenario invest-

ments in renewables in pre-policy periods are lower and production of coal-fired power

is higher. As this two comparisons show the incentive to maximize the potential utility

from the cheapest energy source as long and intense as possible is clearly dominating any

hedging rationale, which would lead to additional investment in clean energy sources.

4.2 Sensitivity Analysis

To check the robustness of the results, a comprehensive sensitivity analysis of all crucial

parameter values was carried out. Obviously, one of the central parameter which should

affect the emission path in pre-policy periods is the probability distribution. We changed

the subjective probability the representative agent had on the implementation of the

scenario “2030”. Figure 7 shows the sum of emissions for different probabilities on

scenario “2030”. Compared to the case where the probability of that event is equal to

one, the sum of emissions in the electricity sector between 2012 and 2030 is always lower.

However, in cases where the probability is between 0.5 and 0.6 emissions are significantly

higher.

A further parameter which could be crucial for the outcome of the model is the

assumption of the constant relative risk aversion parameter in the utility function. Figure

8 plots the sum of GHG emissions in 2012 - 2030 for different values of the constant

relative risk aversion. As the Figure shows the sum of emissions is almost invariant,
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Figure 6: Changes in energy production per technology under uncertainty relative to

the case where the agent knows that no climate policy will be implemented.
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regardless of the assumed risk aversion value.

5 Concluding Remarks

China is becoming the most important single energy market. The implementation of

carbon abatement measures in China is therefore very important for the future success

of any international climate agreement. But from the perspective of an investor, the

signals from policy makers are not clear and he does not know if and when China will

implement GHG emission reduction measures.

We study the role of this policy uncertainty for the investment in different energy

technologies in China by the means of a stochastic general equilibrium model with an

extended energy sector, which captures the most important characteristics of renewable

and clean backstop technologies.

We see that under the assumption of perfect knowledge on the timing of the policy

implementation, it becomes optimal for the representative agent to emit in pre-policy

periods even more than in the absence of any policy intervention. The certain knowledge

of the future scarcity of this source of energy makes it today more valuable and even

causes an increase in investments in this sector in pre-policy periods.

Adding uncertainty about the if-and-when of the policy implementation dampens

the expected present value of the cheap, but GHG emitting, coal-fired energy. Hence,

emissions are in pre-policy periods lower than in the deterministic case of a certain policy

implementation, but higher than in deterministic case where never such a policy takes

place. The incentive to use cheap energy as long as possible does also dominate any

hedging strategy.

This results show that although policy uncertainty hampers investment decisions in

general, this kind of uncertainty is beneficial for the environment. If we neglect the

15



benefits or the avoided damages in the environment for the utility of the representative

agent, uncertainty causes obviously a decrease in welfare. But if we would incorporate

environmental and climate damages in the utility or production function it could be

possible to construct scenarios where such a policy uncertainty might be even welfare

improving.

Since climate policy deals with long time horizons and is per se a complex issue

compared to other policy fields, uncertainty for policy makers as well as for investors

and consumers plays a crucial role. Further research in this evolving field is therefore

necessary.
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Appendix

A Calibration

A.1 Parameters

Elasticities Values

Elasticity of transformation (D versus X) ηX 4

Elasticity of substitution (D versus M) σM 4

Elasticity of substitution (K versus L) σL 0.7

Elasticity of substitution (E versus KL) σY 0.4

Elasticity of substitution (E supply) σE 0.5

Elasticity of substitution (C versus LS) σC 0.4

Table 2: Elasticities of transformation and substitution, respectively.

Parameter Values

Benchmark Interest Rate r0 0.05

Depreciation Rate δ 0.07

Growth Rate σ 0.04

Adjustment Costs Intensity φ 0.3

Intertemporal Elasticity of Substitution σT 0.5

Constant Relative Risk Aversion σR 1.1

Table 3: Parameter for dynamics. Growth rate from EIA(2009)
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B Equations in the Model

B.1 Zero Profit Conditions

Zero profit in the macro good production:

ΠY
s,t(θ

ZpX
t,s

(1+ηx)
+ (1 − θZ)pD

t,s

(1+ηx)
)

1

1+ηx −

(

θYKL
1−σY
t,s + (1 − θY )pE

t,s

1−σY
)

1

1−σY = 0,

(8)

where KLt,s =
(

θKw
1−σK
t,s + (1 − θK)rk1−σK

t,s

)
1

1−σK .

Zero profit in consumption good:

ΠA
s,t = pA

t,s −

(

θMp
M
t,s

1−σM
+ (1 − θM )pD

t,s

1−σM
)

1

1−σM = 0. (9)

Zero profit in coal-fired power generation:

ΠC
s,t = pE

t,s −

(

θE
Cw

1−σE
t,s + (1 − θE

j )rkE
C,t,s

1−σK
)

1

1−σE ) + ψCp
CO2

s,t + p
QI
C,t,s = 0, (10)

where ψj denotes the greenhouse gas emission coefficient per technology j.

Zero profit in backstop technologies:

ΠB
s,t = pE

s,t +
∑

sw

νl,t+1,sw(1 + γl) − θB
l rk

E
j,t,s + θ

Q
l p

Q
l,t,s + θ

Q
l νl,t,s + ψlp

CO2 = 0. (11)

Zero profit in the capital markets:

pK
t,s =

∑

sow

pK
tt+1,sow(1 − δ) + rktt,s + pKA

tt,s (12)

pKE
t,s =

∑

sow

pKE
tt+1,sow(1 − δ) + rkE

tt,s + pKA
tt,s (13)

(14)

Zero profit for investments:

ΠI
s,t =

∑

sw

pK
t+1,sw − pA

t,s + 2(pkA
t,s

0.5
+ pA

t,s

0.5
) = 0 (15)

ΠIE
j,s,t =

∑

sw

pKE
j,t+1,sw − pA

t,s + 2(pkA
t,s

0.5
+ pA

t,s

0.5
) = 0 (16)

Zero profit for the final consumption good including consumption - leisure choice:

ΠLS
s,t =

∑

sw

pC
t,sw −

(

θCp
A
t,s

1−σ
+ (1 − θc)w

1−σ
t,s

)
1

1−σ
= 0 (17)

B.2 Market Clearing Conditions

Market clearing for the consumption good:

At,s = Gt,s + Ct,s + It,s +
∑

j

IEj,t,s (18)
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Demand Supply Nonr.Energy Ren.Energy Government Households Investments

Armingtion good 36390.983 -4530.083 -17335.827 -14525.0722

Domestic output -24207.523 24764.448 -556.925

Energy output -2531.477 1974.551 556.925

Current account -12183.459 9553.841 2629.618

Wage rate -12457.024 -921.124 13378.148

Return to capital -14246.271 -1053.428 15299.699

Savings -14525.072 14525.072

Taxes -5083.517 5083.517

Transfers -3183.053 3818.053

Table 4: Micro consistent Social Accounting Matrix. Depends on data from the Statistical Yearbook of China 2008 of the Chinese National Bureau

for Statistics and from the International Energy Outlook of EIA 2009. All values are 100 Millions of US Dollars 2008
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Us Utility from state s

Ct,s Consumption in time t and state s

Yt,s Goods production in time t and state s

At,s Armington good in time t and state s

Mt,s Imports in time t and state s

Xt,s Exports in time t and state s

Ej,t,s Electricity from technology j in time t and state s

Bj,t,s Backstop technology j in time t and state s

Kt,s, Conventional capital stock in time t and state s

KEj,t,s Capital stock for energy j in time t and state s

It,s Investment in conventional capital stock in time t and state s

IEj,t,s Investment in energy capital stock of tech. j in time t and state s

Table 5: List of the activity levels

pU
s Price of utility from state s

pC
t,s Price of consumption good in time t and state s

pGC
t,s Shadow price of gross consumption in time t and state s

pD
t,s Domestic Price of output in time t and state s

pA
t,s Price of Armington good in time t and state s

pM
t,s Import price index in time t and state s

pX
t,s Export price in time t and state s

pE
j,t,s Price of Energy in time t and state s

pL
t,s Wage rate index in time t and state s

rK
t,s Rental rate index in time t and state s

rKE
j,t,s Rental rate for energy capital j in time t and state s

pK
t,s Purchase price of capital in time t and state s

pKE
j,t,s Purchase price of energy capital j in time t and state s

pAK
t,s Premium for Capital adjustment costs in time t and state s

pF
t,s Foreign exchange rate

pCO2
t,s Carbon price in time t and state s

νj,t,s Shadow price of growth limit of tech. j in time t and state s

p
Q
j,t,s Shadow price of quota limit of tech. j in time t and state s

Table 6: List of the price indices
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Market clearing in the goods market:

∂ΠY
s,t

∂pD
s,t

=
∂ΠA

s,t

∂pD
s,t

(19)

Market clearing for the import good:

Mt,s =
∂ΠA

s,t

∂pM
s,t

(20)

Market clearing for the export good:

∂ΠY
s,t

∂pY
s,t

= Xt,s (21)

Market clearing in the energy market:

∂ΠY
s,t

∂pE
s,t

=
∑

j

Ej,t,s +
∑

l

Bl,t,s (22)

Market clearing capital markets

Kt,s =
∂ΠY

s,t

∂rks,t
(23)

KEj,t,s =
∂ΠC

s,t

∂rkE
C,s,t

+Bj,t,s (24)

Capital accumulation

Kt−1,s(1 − δ) + It−1,s = Kt,s (25)

KEj,t−1,s(1 − δ) + IEj.t−1,s = KEj,t,s (26)

Market clearing carbon market

CO2s,t =
∑

j

ψj(Ej,t,s +Bj,t,s), (27)

whereas CO2s,t describes the cap on CO2 emissions in state s at time t.

Market clearing labor market

Ls,t =
∂ΠY

s,t

∂ws,t
(28)

Income household

HH =
∑

s

∑

t

(

wt,s + pK
0,sK0,s + pKE

j,0,sKEj,0,s + pCO2

t,s CO2s,t

)

(29)

Terminal capital constraints

Itl,s

Itl−1,s

=
Atl,s

Atl−1,s

∀t > T (30)

IEj,tl,s

IEj,tl−1,s

=
Atl,s

Atl−1,s

∀t > T, (31)

(32)

where T denotes the final period.
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