
Munich Personal RePEc Archive

Generalization of regression analysis to

the spatial context

Mishra, SK

North-Eastern Hill University, Shillong

12 April 2004

Online at https://mpra.ub.uni-muenchen.de/2970/

MPRA Paper No. 2970, posted 26 Apr 2007 UTC



����������	�
��
���������
�����������	
�	������	�����
�	��	����������	�
��
���������
�����������	
�	������	�����
�	��	����������	�
��
���������
�����������	
�	������	�����
�	��	����������	�
��
���������
�����������	
�	������	�����
�	��	����

��������	�


�����������������

��������������������	�

1. Introduction: The conventional (linear) regression analysis assumes that the dependent

variable (regressand), y , is a linear function of 1 2( , ,..., )
m

X x x x= such that .y X β= The

(regression) parameters, 1 2( ... )
m

β β β β ′= , may be visualized as ; 1, 2,..., .j

j

y
j m

x
β

∂
= =

∂
In

the population, however, y may be influenced by many other variables uncorrelated with

1 2( , ,..., )
m

X x x x= . Hence, if we draw a sample (consisting of n individuals, n m> ) and we

describe our sample as ( [ ], [ , ])y n X n m , no β (howsoever we choose them) will exactly satisfy

the relationship .y X β= A discrepancy vector 1 2( ... )
n

u u u u ′= will make up the equality

relationship such that .y X uβ= + Fixing the [ , ]X n m matrix, if we draw g repeated samples,

we will obtain g number of discrepancy vectors, (1) (2) ( ), ,..., .gu u u The conventional regression

analysis assumes that (1) (2) ( )( , ,..., ) 0 1, 2,..., .g

i i i
E u u u i n= ∀ = Here (.)E is the expectation of (.).

Moreover, it assumes that 2( ) [ ] , 1,2,...,i jE u u i j nσ′ = ∀ = is a diagonal matrix with strictly

positive diagonal elements all equal. Additionally, it assumes that [ , ]X n m is non-stochastic and

of full rank m . Under these (Gauss-Markov) assumptions, β is estimated by the Least Squares

method, which gives us 1ˆ ( )
OLS

X X X yβ −′ ′= and this ˆ
OLS

β is the best linear unbiased estimator of

the population parameter vector, .β

If we measure the variate values of y and each column of X as a (signed) deviation from

their respective (arithmetic) mean values, we may obtain 1ˆ [ ]OLS XX XyV Vβ −= where
XX

V is the

variance-covariance matrix of X (with itself) and
Xy

V is the vector of covariances of .X and y

If
rs

v , an element of the variance-covariance matrix
XX

V , is the co-variance of
r s

x and x X∈ ,

it is given by
1 1

1
( )( ) (1/ )

n n

rs ir r is s ir is r s

i i

v x x x x n x x x x
n = =

= − − = −� � . If ,r s= then
rs rr ss

v v v= = is

called the variance (of
r s

x or x ). The covariance of
r

x and y also is defined in the similar

manner. This is the conventional view of variance and covariance.

The point of our concern here is that conventionally variance is visualized as the

expectation of (squared) deviations of the individual variate values from the mean value of the

variate. Similarly, covariance (of any two variates) is visualized as the expectation of the product

of deviations of the variates concerned from their respective mean values. That is, the

variance
1

( )( ) ( )( )
n

rr r r r r r r r r i

i

v E x x x x x x x x p
=

= − − = − −� and, in the similar manner, covariance

1

( )( ) ( )( )
n

rs r r s s r r s s i

i

v E x x x x x x x x p
=

= − − = − −� . It is assumed that the probabilities of the

occurrence of the squared deviations (as well as the product of deviations) are uniformly
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constant, or 1/ 1,2,..., .
i

p n i n= ∀ = These are the bits of a commonplace knowledge in

statistics.

2. Variance as the Expectation of the Product of Inter-individual Differences: Let us look at

the variance (and covariance) slightly unconventionally. Covariance of
r

x and
s

x may be

obtained as
2

1 1

1
( )( ) .

2

n n

rs ir jr is js

i j

v x x x x
n = =

� �
= − −� �

� �
�� By expanding the RHS we get

2
1 1

1
( )

2

n n

rs ir is jr js ir js jr is

i j

v x x x x x x x x
n = =

� �
= + − −� �

� �
��

=
2

1 1 1 1

1
( )

2

n n n n

ir is jr js ir js is jr

i j j j

nx x x x x x x x
n = = = =

� �
+ − −� �

� �
� � � �

2
1 1 1 1 1 1

1

2

n n n n n n

ir is jr js ir js is jr

i j i j i j

n x x n x x x x x x
n = = = = = =

� �
= + − −� �

� �
� � � � � �

1

1 n

ir is r s

i

x x x x
n =

� �
= −� �
� �
� .

Analogous to the expectation interpretation of arithmetic mean =
1 1

1 n n

i i i

i i

x x x p
n = =

= =� � :

1/ 1, 2,...,
i

p n i n= ∀ = , we may reinterpret .
is

v Denoting the joint probability of occurrence of

( )( )
ir jr is js

x x x x− − by
ij

p and assigning a value of 21 (2 )n to it (uniformly for all , 1, 2,...,i j n= )

we may consider the covariance of the variates
r

x and
s

x , (
rs

v ), as the expectation of

( )( )
ir jr is js

x x x x− − =
1 1

( )( ) .
n n

ir jr is js ij

i j

x x x x p
= =

− −�� Further, if r s= , the same interpretation applies

to the variance of
r

x (or
s

x ) as well.

To think aloud, it is not necessary to assign the value of 21 (2 )n to all
ij

p uniformly. As it

is done in the case of weighted average where we obtain
1 1

: 1
n n

i i i

i i

x x w w
= =

= =� � (and wherein

i i
w p= ), we may assign different values to

ij
p with the constraints that 0

ij
p ≥ and

1 1

1.
n n

ij

i j

p
= =

=��

If 21/(2 ) , 1,2,...,ijp n i j n= ∀ = we obtain variance (as well as covariance) as obtained by the

conventional methods (in the conventional sense). However, if
ij

p is different than 21/(2 )n we

obtain differently weighted variance (as well as covariance).

There is an additional but very important point to be noted. When variance (or

covariance) is computed in the conventional sense, permutation of individuals in the sample does

not effect on the numerical value of variance (or covariance). This is so due to identical or

location-indifferent weight, (
ij

p = 21/(2 )n ), assigned to each and every inter-individual difference

such as ( )( )
ir jr is js

x x x x− − and ( )( )
ir jr i j

x x y y− − . Thus, the order of the individuals in the

sample is immaterial. However, when
ij

p are not assigned identical weights throughout, the value

of covariance (or variance) is not impervious to permutation (or reshuffling) of individuals in the
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sample. The order relationship among the individuals in the sample matters and is important.

However, time series data have one-way order and matters are different. In spatial data that

characterize two-way order, the matters are much more different.

3. The Spatial Context: Our day-to-day experience suggests that certain variables are local in

their effects. The influence of such variables is limited within the boundaries of the spatial entity

(district) where they are physically located. In contrast, the effects of some other variables are

percolating or pervasive in nature. They permeate through the district boundaries or sometimes

grossly transcend the local borders. The intensity of influence of such variable often decreases

with an increase in the distance traversed, though the rate of such decay may be slow or rapid.

Therefore, the value of the dependent variable observed in district i (say,
i

y ) may be influenced

by the value of an explanatory variable
r

x in the district j (say, jrx i j≠ ).

In the spatial context, therefore, contiguity (interactivity or connectedness) is very

important. Any two spatial entities (or districts) are said to be contiguous (to each other) if they

have a common boundary or common vertex (or both). In this sense, a spatial entity is always

contiguous to itself. In the most simple case we may assign a value of unity to
ij

c if the spatial

entities i and j are contiguous, else 0.
ij

c = Here ( , )
ij

c C n n∈ , the contiguity matrix that

describes the contiguity relationship among the n different spatial entities under consideration.

Accordingly,
1 1

/ .
n n

ij ij ij

i j

p c c
= =

= ��
In the real world, ‘connectedness’ (interactivity or contiguity) is not a simple binary

relationship that may capture the openness of the spatial entities to each other. One may

discriminate among the instances of ‘interactivity’ or ‘connectedness’ arising due to common

vertex and common boundary segments of different magnitudes. There can be several other

criteria to measure ‘interactivity’ or ‘connectedness.’ In any case,
ij

c may be assigned a

numerical value and accordingly,
1 1

/
n n

ij ij ij

i j

p c c
= =

= �� may be obtained. Once
ij

p have been

obtained, one may compute
1 1

( )( ) ; , 1, 2,...,
n n

rs ir jr is js ij

i j

v x x x x p r s m
= =

= − − =�� constituting the

contiguity (connectedness) weighted variance-covariance matrix with regard to X and,

similarly, the contiguity (connectedness) weighted co-variance vector of .X and y

At this juncture it is pertinent to note that
ij

p need not be constant across the variables. It

may be perfectly justified to use different
ij

p for different variables or couplets, such as ( , )
r s

x x

or ( , )
r

x y . It depends on the nature of variables, since some variables are local and others are

pervasive in their effects.

For sake of discrimination now we would denote the contiguity (connectedness) weighted

variance-covariance matrix of X by *

XX
V and similarly, the co-variance vector of X and y will

be denoted by * .XyV Explicitly,

* * 2

1 1

( )( ) 1/(2 ) .
n n

rs XX ir jr is js ij ij

i j

v V x x x x p for p n uniformly
= =

∈ = − − ≠��
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C MAIN PROGRAM ==============================================

DOUBLE PRECISION X(100,10),Y(100),E(100),Y0(100),A0(10),A(10)

DOUBLE PRECISION TMP1,TMP2,XX(10,10),XY(10),V(10,10),W(10,10)

DOUBLE PRECISION RAND

INTEGER *2 C(100,100)

CHARACTER *11 FIL

C -----------------------------------------------------------

WRITE(*,*)'DECIDE VALUES OF N, M AND FILE'

WRITE(*,*)’N=NO. OF OBSERVATIONS; M=NO. OF EXPLANATORY VARIABLES’

WRITE(*,*)’FIL IS THE NAME OF FILE STORING X(N), y(N) AND C(N,N)’

C -----------------------------------------------------------

READ(*,*) N,M,FIL

OPEN(7,FILE=FIL)

DO 1 I=1,N

READ(7,*)(C(I,J),J=1,N)

1 CONTINUE

DO 2 I=1,N

READ(7,*) Y(I),(X(I,J),J=1,M)

2 CONTINUE

CLOSE(7)

100 DO 99 IZ=1,2

ICI=IZ-1

DO 7 J=1,M

XY(J)=0.0

DO 8 JJ=1,M

XX(J,JJ)=0.0

DO 8 I=1,N

DO 8 II=1,N

TMP1=X(I,J)-X(II,J)

TMP2=X(I,JJ)-X(II,JJ)

TMP=TMP1*TMP2

IF(ICI.EQ.1) TMP=TMP*C(I,II)

XX(J,JJ)=XX(J,JJ)+TMP

8 CONTINUE

DO 7 I=1,N

DO 7 II=1,N

TMP1=X(I,J)-X(II,J)

TMP2=Y(I)-Y(II)

TMP=TMP1*TMP2

IF(ICI.EQ.1) TMP=TMP*C(I,II)

XY(J)=XY(J)+TMP

7 CONTINUE

DO 20 J=1,M

DO 21 JJ=1,M

21 XX(J,JJ)=XX(J,JJ)/(N**2)

20 XY(J)=XY(J)/(N**2)

NN=1

C To invert XX Cayley-Hamilton method is used (see Froberg, 1964)

CALL EIGEN(XX,M,NN,V)

DO 9 J=1,M

DO 9 JJ=1,M

IF(J.NE.JJ) XX(J,JJ)=0.0

IF((J.EQ.JJ).AND.(XX(J,JJ).GT.1.0D-99)) THEN

XX(J,JJ)=1.0/XX(J,JJ)

ELSE

XX(J,JJ)=0.0

ENDIF



6

9 CONTINUE

DO 10 J=1,M

DO 10 JJ=1,M

W(J,JJ)=0.0

DO 10 I=1,M

W(J,JJ)=W(J,JJ)+V(J,I)*XX(I,JJ)

10 CONTINUE

DO 11 J=1,M

DO 11 JJ=1,M

XX(J,JJ)=0.0

DO 11 I=1,M

XX(J,JJ)=XX(J,JJ)+W(J,I)*V(JJ,I)

11 CONTINUE

DO 12 J=1,M

A(J)=0

DO 12 JJ=1,M

A(J)=A(J)+XX(J,JJ)*XY(JJ)

12 CONTINUE

WRITE(*,*) 'ICI= ',ICI

WRITE(*,*)’Coefficients = ‘,(A(J),J=1,M)

99 CONTINUE

END

C ----------------------------------------------------------------

SUBROUTINE EIGEN(A,N,NN,V)

C Adapted from Krisnamurthy & Sen (1976)

DOUBLE PRECISION A(10,10),V(10,10),W(10,10),P(10)

DOUBLE PRECISION PMAX,EPLN,TAN,SIN,COS,AI,TT,TA,TB

DIMENSION MM(10)

C ------------ INITIALISATION -------------------------

C WRITE(*,*)'ENTERS EIGEN'

DO 50 I=1,N

DO 51 J=1,N

V(I,J)=0.0

51 W(I,J)=0.0

P(I)=0.0

50 CONTINUE

PMAX=0

EPLN=0

TAN=0

SIN=0

COS=0

AI=0

TT=0

EPLN=1.0D-310

C ------------------------------------------------------

IF(NN.NE.0) THEN

DO 3 I=1,N

DO 3 J=1,N

V(I,J)=0.0

IF(I.EQ.J) V(I,J)=1.0

3 CONTINUE

ENDIF

2 NR=0

5 MI=N-1

DO 6 I=1,MI

P(I)=0.0

MJ=I+1
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DO 6 J=MJ,N

IF(P(I).GT.DABS(A(I,J))) GO TO 6

P(I)=DABS(A(I,J))

MM(I)=J

6 CONTINUE

7 DO 8 I=1,MI

IF(I.LE.1) GOTO 10

IF(PMAX.GT.P(I)) GOTO 8

10 PMAX=P(I)

IP=I

JP=MM(I)

8 CONTINUE

C EPLN=DABS(PMAX)*1.0D-09

IF (PMAX.LE.EPLN) THEN

C WRITE(*,*)'PMAX EPLN',PMAX, EPLN

C PAUSE'CONVERGENCE CRITERION IS MET'

GO TO 12

ENDIF

NR=NR+1

C WRITE(*,*)'PMAX, EPLN',PMAX,EPLN

13 TA=2.0*A(IP,JP)

TB=(DABS(A(IP,IP)-A(JP,JP))+

1DSQRT((A(IP,IP)-A(JP,JP))**2+4.0*A(IP,JP)**2))

C WRITE(*,*) 'TA TB = ',TA,TB

TAN=TA/TB

C WRITE(*,*) 'TAN = ',TAN

IF(A(IP,IP).LT.A(JP,JP)) TAN=-TAN

14 COS=1.0/DSQRT(1.0+TAN**2)

SIN=TAN*COS

AI=A(IP,IP)

A(IP,IP)=(COS**2)*(AI+TAN*(2.0*A(IP,JP)+TAN*A(JP,JP)))

A(JP,JP)=(COS**2)*(A(JP,JP)-TAN*(2.0*A(IP,JP)-TAN*AI))

A(IP,JP)=0.0

IF(A(IP,IP).GE.A(JP,JP)) GO TO 15

TT=A(IP,IP)

A(IP,IP)=A(JP,JP)

A(JP,JP)=TT

IF(SIN.GE.0) GO TO 16

TT=COS

GO TO 17

16 TT=-COS

17 COS=DABS(SIN)

SIN=TT

15 DO 18 I=1,MI

IF(I-IP) 19, 18, 20

20 IF(I.EQ.JP)GO TO 18

19 IF(MM(I).EQ.IP) GO TO 21

IF(MM(I).NE.JP) GO TO 18

21 K=MM(I)

TT=A(I,K)

A(I,K)=0.0

MJ=I+1

P(I)=0.0

DO 22 J=MJ,N

IF(P(I).GT.DABS(A(I,J))) GO TO 22

P(I)=DABS(A(I,J))

MM(I)=J
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22 CONTINUE

A(I,K)=TT

C WRITE(*,*)'IN LOOP 18'

18 CONTINUE

P(IP)=0.0

P(JP)=0.0

DO 23 I=1,N

IF(I-IP) 24, 23, 25

24 TT=A(I,IP)

A(I,IP)=COS*TT+SIN*A(I,JP)

IF(P(I).GE.DABS(A(I,IP))) GO TO 26

P(I)=DABS(A(I,IP))

MM(I)=IP

26 A(I,JP)=-SIN*TT+COS*A(I,JP)

IF(P(I).GE.DABS(A(I,JP))) GO TO 23

30 P(I)=DABS(A(I,JP))

MM(I)=JP

GO TO 23

25 IF(I.LT.JP) GO TO 27

IF(I.GT.JP) GO TO 28

IF(I.EQ.JP) GO TO 23

27 TT=A(IP,I)

A(IP,I)=COS*TT+SIN*A(I,JP)

IF(P(IP).GE.DABS(A(IP,I))) GO TO 29

P(IP)=DABS(A(IP,I))

C SEE THIS IS ONE OR I

MM(IP)=I

29 A(I,JP)=-TT*SIN+COS*A(I,JP)

IF(P(I).GE.DABS(A(I,JP))) GO TO 23

GO TO 30

28 TT=A(IP,I)

A(IP,I)=TT*COS+SIN*A(JP,I)

IF(P(IP).GE.DABS(A(IP,I))) GO TO 31

P(IP)=DABS(A(IP,I))

MM(IP)=I

31 A(JP,I)=-TT*SIN+COS*A(JP,I)

IF(P(JP).GE.DABS(A(JP,I))) GO TO 23

P(JP)=DABS(A(JP,I))

MM(JP)=I

23 CONTINUE

IF(NN.EQ.0) GOTO 7

DO 32 I=1,N

TT=V(I,IP)

V(I,IP)=TT*COS+SIN*V(I,JP)

V(I,JP)=-TT*SIN+COS*V(I,JP)

32 CONTINUE

GO TO 7

12 RETURN

END


