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Abstract

A special characteristic of the patent system is that it features
multiple patent-policy levers that can be employed by policymakers.
In this note, we develop an R&D-based growth model to analyze the
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breadth and (b) the division of pro�t in research joint ventures. Our
results can be summarized as follows. First, we analytically derive the
optimal mix of patent breadth and the pro�t-division rule. Then, we
calibrate the model to quantitatively evaluate the welfare gain from
optimizing both patent instruments as compared to optimizing only
one patent instrument. In summary, we �nd that the welfare gain can
be quantitatively signi�cant.
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1 Introduction

A special characteristic of the patent system is that it is a multi-dimensional
policy system in the sense that it features multiple patent-policy levers, such
as patent length and patent breadth, that can be employed by policymakers.
Given this notable feature of the patent system, we develop an R&D-based
growth model to analyze the optimal mix of patent-policy levers. In this
note, we consider two patent instruments, namely, patent breadth and a
pro�t-division rule in research joint ventures (RJVs). Our results can be
summarized as follows. In the theoretical analysis, we analytically derive
the optimal mix of patent breadth and the pro�t-division rule. Then, in
the quantitative analysis, we calibrate the model to numerically evaluate the
welfare gain from choosing both patent instruments optimally as compared
to choosing only patent breadth optimally given any pro�t-division rule. We
�nd that the welfare gain can be as large as 5% of consumption per year.
In this study, we analyze the optimal mix of patent breadth and the

pro�t-division rule in RJVs for the following reasons. First, patent breadth
is widely perceived to be an important patent-policy lever in both the micro-
economic patent-design literature and the macroeconomic patent-and-growth
literature.1 Second, the division of pro�t in RJVs is an important focus of a
recent patent-policy reform that we will discuss below.
Here we discuss �rst the importance of RJVs that have also been the

focus of some patent-policy reforms in the past. The importance of RJVs
was �rstly emphasized by Penrose (1959), who argues that forming RJVs is
a useful way for �rms to gain access to external complementary technolog-
ical resources for R&D. For example, in order to foster a more cooperative
research environment in the US, policymakers enacted the National Cooper-
ative Research Act of 1984 "to promote research and development, encourage
innovation, stimulate trade, and make necessary and appropriate modi�ca-
tions in the operation of the antitrust laws."2 Another example is the Third
Amendment to the Chinese Patent Law that was approved in December 2008
and came into e¤ect in October 2009.3 An important purpose of this patent
reform in China is to encourage the exploitation of jointly owned patents. For

1See Scotchmer (2004) and O�Donoghue and Zweimuller (2004) for a discussion.
2This act was subsequently expanded into the National Cooperative Research and

Production Act of 1993.
3See, for example, Yang and Yen (2010) for a review of the patent-policy changes in

this amendment.
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example, "Article 15 provides that the exploitation of patent rights between
co-owners should be determined by an agreement. Where an agreement is
not available, any co-owner may exploit the patent alone or grant general
licenses (i.e., non-exclusive licenses) to others to exploit the patent, and that
any licensing fee received shall be shared between the co-owners."4 In our
theoretical analysis, we model this patent-policy lever using a pro�t-division
rule in RJVs. In addition to encouraging the exploitation of jointly owned
patents, this patent reform also involves other policy changes, such as increas-
ing statutory damages and administrative �nes, and heightening patentabil-
ity requirement. In other words, this policy amendment involves the reform
of multiple patent-policy levers instead of a single patent-policy lever. One
purpose of the present study is to develop a quantitative dynamic general-
equilibrium (DGE) framework to demonstrate the welfare di¤erence between
optimizing multiple patent instruments and optimizing a single patent in-
strument.
This study relates to the patent-design literature. In his seminal study,

Nordhaus (1969) characterizes optimal patent length and shows that it bal-
ances between the social bene�t of innovation and the social cost of mo-
nopolistic distortion. However, Nordhaus only considers patent length as the
single patent-policy lever. Subsequent studies by Tandon (1982), Gilbert and
Shapiro (1990), Klemperer (1990) and Denicolo (1996) analyze the optimal
mix of patent instruments, such as patent length, patent breadth and com-
pulsory licensing.5 The present study complements these interesting partial-
equilibrium analyses by revisiting the optimal mix of patent instruments in
a quantitative DGE framework, which allows for an explicit consideration of
economic growth and social welfare.
In the literature on patent policy and economic growth, the seminal DGE

analysis on optimal patent length is Judd (1985), who shows that the op-
timal patent length can be in�nite in a speci�c environment. In contrast,
Futagami and Iwaisako (2007) show that the optimal patent length is usually
�nite in the Romer model. While these studies focus on patent length, other
studies analyze the growth and welfare e¤ects of other patent instruments
in R&D-based growth models. See, for example, Cozzi (2001) on intellec-
tual appropriability, Li (2001) on lagging patent breadth, O�Donoghue and
Zweimuller (2004) on leading patent breadth and patentability requirement,

4See Yang and Yen (2010, p. 8).
5See Scotchmer (2004) for a comprehensive review of this patent-design literature.
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Kwan and Lai (2003), Horii and Iwaisako (2007) and Furukawa (2007) on
patent protection against imitation, and Chu (2009) on blocking patents.
The present paper complements these studies by analyzing the optimal mix
of multiple patent instruments, which is often neglected in this literature.6

Finally, a recent study by Chu (2011) provides a quantitative analysis on the
welfare cost of one-size-�ts-all patent protection.
The rest of this note is organized as follows. Section 2 describes the model.

Section 3 de�nes the equilibrium and characterizes the equilibrium allocation.
Section 4 derives optimal patent policies and calibrates the model to provide
a quantitative analysis. Section 5 considers a number of extensions. The
�nal section concludes.

2 The model

To consider the optimal mix of patent-policy levers, we modify the Grossman-
Helpman (1991) quality-ladder model by incorporating into the model (a)
patent breadth that determines the markup and (b) competitive RJVs in
which the division of pro�t is subject to a pro�t-division rule. In their seminal
study, Kamien et al. (1992) de�ne a competitive RJV as an inter�rm arrange-
ment in which each �rm decides its own R&D investment taking the other
�rm�s R&D investment as given and the �rms share their innovation.7 We
adopt this setup to reformulate the R&D sector of the Grossman-Helpman
model.8 Given that the quality-ladder model has been well-studied, we brie�y
describe the familiar features to conserve space and discuss the new features
in more details.

6Some notable exceptions are Iwaisako and Futagami (2003) and Palokangas (2011) on
optimal patent length and breadth. However, their studies are qualitative in nature while
the present study also provides a quantitative analysis.

7See also Greenlee (2005) for an interesting analysis on competitive RJVs.
8See also Cozzi (1999) and Cozzi and Tarola (2006) for an interesting analysis on

cooperative RJVs in the R&D-based growth model.
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2.1 Households

There is a unit continuum of identical households. Their lifetime utility is
given by

U =

1Z

0

e��t lnCtdt, (1)

where � > 0 is discount rate, and Ct is the consumption of �nal goods at
time t. Households maximize utility subject to asset accumulation given by

:

At = RtAt +Wt � PtCt. (2)

Pt denotes the price of �nal goods at time t. Each household supplies one
unit of labor (chosen as the numeraire) to earn the wage Wt (normalized to
unity). At is the value of assets owned by households, and Rt is the nominal
rate of return. The familiar Euler equation is

:

Et=Et = Rt � �, (3)

where Et � PtCt is the nominal expenditure on consumption.

2.2 Final goods

Final goods are produced by a standard Cobb-Douglas aggregator over a unit
continuum of di¤erentiated intermediate goods Xt(i) indexed by i 2 [0; 1].

Yt = exp

0
@

1Z

0

lnXt(i)di

1
A . (4)

This sector is perfectly competitive, and �nal-goods �rms take both the out-
put and input prices as given. From standard cost minimization, the price
index of �nal goods can be expressed as

Pt = exp

0
@

1Z

0

lnPt(i)di

1
A , (5)

where Pt(i) is the price of Xt(i). The conditional demand curve for Xt(i) is

Xt(i) = PtYt=Pt(i). (6)
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2.3 Intermediate goods

There is a unit continuum of di¤erentiated intermediate goods indexed by
i 2 [0; 1]. Each intermediate goods i is produced by a monopolistic leader,
who holds a patent on the latest innovation. This industry leader dominates
the market temporarily until the arrival of the next innovation (i.e., the Arrow
replacement e¤ect).9 The production function for the leader of intermediate
goods i is

Xt(i) = z
qt(i)Lt(i). (7)

The parameter z > 1 is the step size of a productivity improvement, and qt(i)
is the number of productivity improvements that have occurred in industry i
as of time t. Lt(i) is the number of production workers employed in industry
i. Given zqt(i), the industry leader�s marginal cost of production is

MCt(i) = Wt=z
qt(i). (8)

We follow the standard approach in the literature to consider Bertrand
competition. Under Bertrand competition, the pro�t-maximizing price for
the current leader is a markup over the marginal cost.

Pt(i) = �tMCt(i), (9)

where �t = z
bt and bt is the level of patent breadth at time t.

10 Grossman and
Helpman (1991) assume complete patent protection against imitation (i.e.,
bt = 1). Li (2001) generalizes the patent regime to allow for incomplete patent
protection (i.e., bt 2 (0; 1]). Because of incomplete protection, the current
leader�s innovation enables the former leader to increase her productivity
by a factor of z1�bt without infringing the current leader�s patent. There-
fore, the limit-pricing markup for the current leader is zbt. O�Donoghue and
Zweimuller (2004) refer to bt 2 (0; 1] as lagging patent breadth (i.e., backward
protection against imitation), and they also consider leading patent breadth
bt 2 f2; 3; :::g, which captures forward protection against subsequent inno-
vations. We follow the formulation in O�Donoghue and Zweimuller (2004)
here.

9See Cozzi (2007) for a discussion on the Arrow e¤ect in the quality-ladder model.
10Li (2001) generalizes (4) to a CES aggregator, in which case, the markup is given by

minfzb; �=(1� �)g, where � 2 (1;1) is the elasticity of substitution between intermediate
goods. In the case of a Cobb-Douglas aggregator (i.e., � ! 1), zb < �=(1 � �) always
holds. As for the case of a CES aggregator, so long as zb < �=(1� �), the e¤ect of patent
breadth on the markup is the same as in the case of a Cobb-Douglas aggregator.
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In the presence of leading breadth, a pro�t-sharing arrangement between
generations of patentholders is needed, and we consider the optimal front-
loading pro�t-sharing arrangement that is to allow the most recent innovator
to obtain all the pro�ts.11 Combining lagging breadth and leading breadth
with the frontloading pro�t-sharing arrangement, bt 2 (0;1) simply becomes
a continuous variable. Let�s consider an example of bt = 1:5 for illustration.
In this case, the integer 1 refers to the degree of leading breadth, and the
decimal 0.5 refers to the degree of lagging breadth. A leading breadth of
degree one implies that the most recent innovator infringes the patent of the
second-most recent innovator, and they consolidate their market power giv-
ing rise to a markup of z2 if lagging breadth were complete. However, an
incomplete lagging breadth of 0.5 implies that the third-most recent innova-
tor is able to imitate half of the innovation owned by the second-most recent
innovator, and the resulting Bertrand competition between the third-most
recent innovator and the coalition (formed by the most recent innovator and
the second-most recent innovator) limits the markup to z1:5.12

In summary, a larger patent breadth enables the current leader to charge
a higher markup, and the resulting increase in pro�t improves incentives
for R&D. For the rest of this study, we use �t to denote patent breadth
for convenience and consider changes in �t coming from changes in bt only.
Finally, the amount of monopolistic pro�t is

�t(i) =

�
�t � 1

�t

�
Pt(i)Xt(i) =

�
�t � 1

�t

�
PtYt (10)

for i 2 [0; 1], and the second equality of (10) follows from (6).

11In the present study, it is appropriate to consider the frontloading pro�t-sharing
arrangement because our focus is on optimal patent policies. The frontloading pro�t-
sharing arrangement is optimal because it maximizes the incentives for R&D for a given
level of patent breadth. See O�Donoghue and Zweimuller (2004) and Chu (2009) for a
more detailed discussion.
12In a policy environment in which the consolidation of market power through collusion

is restricted by antitrust policies, the markup � would have an upper bound of z (i.e.,
any degree of patent breadth above 1 cannot yield a larger markup due to the violation of
antitrust policies). In this case, patent breadth would not be an e¤ective policy instrument
in helping policymakers to achieve the socially optimal allocation if the optimal markup
happens to be greater than z. Therefore, in Section 5, we consider R&D subsidies as
an alternative policy instrument that can be coordinated with the pro�t-division rule to
achieve the socially optimal allocation.
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2.4 R&D joint ventures

Denote Vt(i) as the value of the latest innovation in industry i. Because
�t(i) = �t for i 2 [0; 1] from (10), Vt(i) = Vt in a symmetric equilibrium that
features an equal arrival rate of innovation across industries.13 The familiar
no-arbitrage condition for Vt is

RtVt = �t +
:

V t � �tVt, (11)

which equates the interest rate to the asset return per unit of asset. The
asset return is the sum of (a) the pro�t �t received by the patentholder,

(b) the potential capital gain
:

V t, and (c) the expected capital loss due to
creative destruction �tVt, where �t is the industry-level Poisson arrival rate
of innovation.
Greenlee (2005) provides a survey of empirical evidence to show that �rms

in RJVs tend to behave competitively rather than cooperatively. Therefore,
we consider competitive RJVs and assume that a successful innovation results
from two types of entrepreneurial activities, which we label as type-1 R&D
and type-2 R&D.14 Type-1 R&D is performed by type-1 �rms, and type-
2 R&D is performed by type-2 �rms. This formulation is consistent with
the empirical evidence summarized in Greenlee (2005) that "�rms perceive
gaining access to complementary knowledge as the single most important
objective in research consortia." In the economy, there is a unit continuum
of each type of �rms. For simplicity, we consider a Cobb-Douglas functional
form for the arrival rate e�t of innovation in each RJV.15 ;16

e�t = '(H1;t)�(H2;t)1��, (12)

where � 2 (0; 1) is the relative factor share of the two types of R&D activi-
ties. H1;t and H2;t denote R&D labors employed by type-1 and type-2 �rms
respectively.
In the case of a successful innovation, the two �rms sell the patent to a

manufacturer, and they share the value of the patent according to a pro�t-
division rule st 2 (0; 1). A type-1 �rm receives stVt while a type-2 �rm

13We follow the standard approach in the literature to focus on the symmetric equilib-
rium. See Cozzi et al. (2007) for a theoretical justi�cation for the symmetric equilibrium
in the quality-ladder model.
14For example, type-1 R&D may be basic R&D, and type-2 R&D may be applied R&D.
15In Section 5, we consider optimal patent policies under a more general CES form.
16In equilibrium, e�t = �t.
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receives (1 � st)Vt. This division of pro�t can be viewed as a bargaining
outcome, and the bargaining power of each side can be in�uenced by patent
policy. Therefore, it is reasonable to treat st as a policy variable. For exam-
ple, if we treat H1;t and H2;t as basic R&D and applied R&D respectively,
then a change in st captures a change in the relative bargaining power be-
tween basic and applied researchers, which has been witnessed in the US.17

The expected return to R&D for a type-1 �rm is

�1;t = stVte�t �WtH1;t, (13)

and the expected return to R&D for a type-2 �rm is

�2;t = (1� st)Vte�t �WtH2;t. (14)

In equilibrium, the �rst-order conditions for H1;t and H2;t become

�stVt�t = WtH1;t, (15)

(1� �)(1� st)Vt�t = WtH2;t. (16)

Equations (15) and (16) imply that the R&D sector generates positive pro�ts,
which are transferred back to the households.18 Combining (15) and (16)
yields the equilibrium ratio of H1;t to H2;t given by

H1;t
H2;t

=
st

1� st

�
�

1� �

�
. (17)

3 Decentralized equilibrium

The equilibrium is a time path fCt; Yt; Xt(i); Lt; H1;t; H2;t;Wt; Rt; Vt; Pt; Pt(i)g,
t � 0. Also, at each instant of time,

� households maximize utility taking fRt; Pt;Wtg as given;

� competitive �nal-goods �rms produce fYtg to maximize pro�t taking
fPt; Pt(i)g as given;

17See Cozzi and Galli (2009) for a discussion on the strengthening of intellectual property
protection for basic research relative to the protection for applied research.
18Therefore, households� assets include patents and the ownership of R&D enterprises.
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� monopolistic intermediate-goods �rms produce fXt(i)g and choose fPt(i)g
to maximize pro�t taking fWtg as given;

� R&D �rms choose fH1;t; H2;tg to maximize expected pro�t taking fWt; Vtg
as given;

� the labor market clears such that Lt +H1;t +H2;t = 1; and

� the goods market clears such that Yt = Ct.

3.1 Equilibrium allocation

Proposition 1 shows that given a stationary path of patent breadth � and
pro�t-division rule s, the economy is on a stable and unique balanced-growth
path, along which the equilibrium allocation of labor inputs is stationary.

Proposition 1 Given constant � and s, the economy always jumps to a
unique and stable balanced-growth path.

Proof. See Appendix A.

Imposing balanced growth on (11) yields Vt = �t=(� + �). Equation
(10) implies that the wage income of production labor is WtLt = PtYt=�.
Substituting these two conditions along with (10) and (12) into (15) yields

�+ '(H1)
�(H2)

1�� = �s(�� 1)'

�
H2
H1

�1��
L. (18)

Combining (17), (18) and the labor-market-clearing condition yields the equi-
librium allocation of labor inputs given by

L =
�=['s�(1� s)1����(1� �)1��] + 1=[s� + (1� s)(1� �)]

(�� 1) + 1=[s� + (1� s)(1� �)]
, (19)

H1 =

�
s�

s� + (1� s)(1� �)

�
(1� L), (20)
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H2 =

�
(1� s)(1� �)

s� + (1� s)(1� �)

�
(1� L). (21)

To ensure the non-negativity of R&D labors, we impose a lower bound on
R&D productivity ', which we label as Condition R.

' >
�=(�� 1)

s�(1� s)1����(1� �)1��
. (R)

It is useful to note that Condition R implies L < 1.
Substituting (7) into (4) yields Yt = ZtLt, where the aggregate level of

technology is de�ned as

Zt � exp

0
@

1Z

0

qt(i)di ln z

1
A = exp

0
@

tZ

0

��d� ln z

1
A , (22)

where the second equality can be obtained by appealing to the law of large
numbers. Finally, di¤erentiating the log of (22) with respect to t yields the

growth rate of technology given by gt �
:

Zt=Zt = �t ln z.

4 Optimal mix of patent instruments

Before we derive the optimal mix of patent breadth and the pro�t-division
rule, we �rstly derive the �rst-best allocation of labor inputs. Given the
balanced-growth behavior of the economy, the lifetime utility of households
in (1) can be re-expressed as

U =
1

�

�
lnC0 +

g

�

�
, (23)

where g = � ln z and C0 = Z0L. Maximizing (23) subject to L+H1+H2 = 1
yields the �rst-best allocations fL�; H�

1 ; H
�

2g.

L� =
1

��(1� �)1��

�
�

' ln z

�
, (24)

H�

1 = �(1� L
�), (25)

H�

2 = (1� �)(1� L
�). (26)
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To achieve this �rst-best allocation of labor inputs in the decentralized
economy, one can consider the use of patent levers as policy instruments.
In our model, patent breadth serves the purpose of optimizing the relative
allocation of production labor L and R&D labors fH1; H2g. It is useful
to note that a larger patent breadth increases H1 and H2 but decreases
L. As for the pro�t-division rule, it serves the purpose of optimizing the
relative allocation of R&D labors. An increase in s changes the incentives
of type-1 and type-2 R&D �rms giving rise to an increase in H1 relative to
H2. Therefore, we need both patent instruments to achieve the �rst-best
allocation.
When both patent instruments are chosen optimally, the optimal pro�t-

division rule is
s� = 0:5 (27)

regardless of the value for �. Equations (25) and (26) show that H�

1=H
�

2 =
�=(1 � �), which can be satis�ed in (17) if and only if s = 0:5. Intuitively,
the optimal H�

1=H
�

2 is solely determined by the relative input share �=(1 �
�) whereas the market-equilibrium allocation is determined by the relative
division of pro�t s=(1�s) in addition to the relative input share. Therefore, to
achieve the optimal allocation, the e¤ect of s=(1�s) in the market equilibrium
should be eliminated by setting s=(1�s) = 1. As for optimal patent breadth,
equating (19) and (24) and setting s� = 0:5 yields

�� = 2

�
��(1� �)1��

'

�
+ 1

�
ln z � 1. (28)

Proposition 2 When both patent instruments are chosen optimally, the op-
timal pro�t-division rule is s� = 0:5 and optimal patent breadth is given by
�� in (28). Also, �� increases in ' and z but decreases in �:

Proof. See (27) and (28). At s� and ��, the equilibrium labor allocations in
(19) to (21) coincide with the �rst-best labor allocations in (24) to (26).

Intuitively, an increase in ' or z strengthens the positive e¤ect of R&D on
economic growth, so that �� is increasing in ' and z. In contrast, an increase
in � reduces the bene�t of a higher growth rate on social welfare, so that �� is

12



decreasing in �. Substituting s� and �� into g = (' ln z)(H1)
�(H2)

1�� yields
the �rst-best growth rate given by

g� = (' ln z)��(1� �)1�� � �. (29)

4.1 Optimal patent breadth

In this section, we derive optimal patent breadth for any given s. Using (20)
and (21), we can rewrite (23) as

U =
1

�

�
lnL+

' ln z

�

�
s�(1� s)1����(1� �)1��

s� + (1� s)(1� �)

�
(1� L)

�
, (30)

where Z0 is normalized to unity, and L is given by (19). Di¤erentiating (30)
with respect to � yields

@U

@�
=
1

�

�
1

L

@L

@�
�
' ln z

�

�
s�(1� s)1����(1� �)1��

s� + (1� s)(1� �)

�
@L

@�

�
, (31)

where
@L

@�
= �

L

(�� 1) + 1=[s� + (1� s)(1� �)]
. (32)

Substituting (32) into (31) and setting @U=@� = 0 yield ���, which denotes
the optimal patent breadth for any given s.

L�� � Lj�=��� =
s� + (1� s)(1� �)

s�(1� s)1����(1� �)1��

�
�

' ln z

�
. (33)

Substituting (20), (21) and (33) into g = (' ln z)(H1)
�(H2)

1�� yields the
second-best growth rate given by

g�� � gj�=��� = (' ln z)�
�(1� �)1���� �, (34)

where � � s�(1� s)1��=[s�+ (1� s)(1� �)] � 1 is a composite parameter.
Comparing (29) and (34) shows that g�� � g�. Intuitively, without the opti-
mal pro�t-division rule, the economy allocates too much labor to production
(i.e., L�� � L�) and fails to achieve the optimal allocation of R&D labors. As
a result of the suboptimal allocation of R&D labors, the economy exhibits a
lower growth rate than under the �rst-best allocation.
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Proposition 3 Suppose that only the patent breadth is chosen optimally.
Then, the equilibrium growth rate would be lower than the case in which both
patent instruments are chosen optimally.

Proof. Comparing (29) and (34) shows that g�� � g� because � � 1, which
becomes a strict inequality unless s = s� = 0:5 or �! f0; 1g.

As for social welfare, we can derive the welfare di¤erence �U � U��U��,
where U�� � U j�=��� .

�U =
1

�

�
ln � +

(' ln z)��(1� �)1��

�
(1� �)

�
� 0, (35)

where � = s�(1�s)1��=[s�+(1�s)(1��)] � 1 as de�ned before; therefore,
ln � � 0 and 1�� � 0. It can be shown that � is an inverted U-shape func-
tion in s and reaches its maximum of one at s = 0:5. As for the relationship
between �U and �, di¤erentiating (35) with respect to � shows that

@�U

@�
� 0, � �

1

��(1� �)1��

�
�

' ln z

�
, (36)

where the second inequality can be re-expressed as

1 �
s� + (1� s)(1� �)

s�(1� s)1����(1� �)1��

�
�

' ln z

�
= L��, (37)

which is guaranteed to hold by Condition R. Therefore, �U is an U-shape
function in s and reaches a minimum of zero at s = s� = 0:5.

4.2 Quantitative analysis

In this section, we calibrate the model to demonstrate quantitatively the
welfare gain from choosing both patent instruments optimally as compared
to choosing only patent breadth optimally. Substituting (29) into (35) yields

�U =
1

�

�
ln � +

�
1 +

g�

�

�
(1� �)

�
, (38)

where �(s; �) = s�(1 � s)1��=[s� + (1 � s)(1 � �)]. Therefore, we need to
assign value to three parameters f�; s; �g and the optimal growth rate g� in

14



order to evaluate �U . For the discount rate �, we consider a conventional
value of 0.04. For the pro�t-division rule s, we consider a range of values s 2
[0:20; 0:80] around the optimal rule s� = 0:5.19 For the relative factor share �
of R&D activities, we report our results for � 2 [0:05; 0:95]; but we consider
� = 0:5 as our benchmark because empirical evidence suggests that RJVs
tend to be formed among symmetric �rms of similar sizes; see for example
Roller et al. (2007). Finally, we choose the empirical long-run growth rate
of 1.5% as a conservative lower bound for the optimal growth rate g�. Given
the empirical �nding of R&D underinvestment, see for example Jones and
Williams (1998, 2000), the socially optimal level of R&D investment is higher
than the market equilibrium level implying that the optimal growth rate
should be higher than the equilibrium growth rate observed in the data.
In summary, we consider f�; �; g�g = f0:04; 0:5; 0:015g as our benchmark

parameter values and quantify the growth and welfare e¤ects as s deviates
from s� = 0:5. For sensitivity analysis, we will also discuss how the numerical
results change when g� and � vary. For easier interpretation, we express
the welfare di¤erence in terms of equivalent variation in consumption �ow
denoted by � � exp(��U) � 1. More formally, � is de�ned as U(C�0 ; g

�) =
U(C��0 (1 + �); g

��).

Table 1: E¤ects of s on economic growth g��

�=s 0:2 0:3 0:4 0:5 0:6 0:7 0:8
0:05 1:33% 1:43% 1:48% 1:50% 1:48% 1:38% 1:13%
0:20 0:90% 1:24% 1:43% 1:50% 1:42% 1:14% 0:54%
0:35 0:59% 1:11% 1:40% 1:50% 1:39% 1:04% 0:36%
0:50 0:40% 1:04% 1:39% 1:50% 1:39% 1:04% 0:40%
0:65 0:36% 1:04% 1:39% 1:50% 1:40% 1:11% 0:59%
0:80 0:54% 1:14% 1:42% 1:50% 1:43% 1:24% 0:90%
0:95 1:13% 1:38% 1:48% 1:50% 1:48% 1:43% 1:33%

Table 1 shows that the second-best growth rate g�� is lower than the �rst-
best growth rate g� unless the pro�t-division rule is set to its optimal value
s� = 0:5. As s deviates from s� in either direction, g�� decreases and the
magnitude of this reduction in growth is the most dramatic at � = 0:5 (i.e.,

19For some values of s outside the range s 2 [0:20; 0:80], g�� = (g� + �)�� � from (34)
and (29) becomes negative, which in turn imply that Condition R is violated.
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a symmetric factor share of R&D activities). As � decreases or increases
from 0.5, the reduction in growth in response to a change in s becomes less
dramatic. In fact, as � approaches zero or one, the reduction in growth
approaches zero because the model becomes a conventional quality-ladder
model with one type of R&D activity, in which optimal patent breadth alone
is su¢cient for achieving the �rst-best optimal growth rate.

Table 2: E¤ects of s on social welfare �
�=s 0:2 0:3 0:4 0:5 0:6 0:7 0:8
0:05 1:1% 0:5% 0:1% 0:0% 0:2% 0:8% 2:3%
0:20 3:5% 1:7% 0:4% 0:0% 0:5% 2:2% 4:9%
0:35 4:8% 2:4% 0:7% 0:0% 0:7% 2:8% 5:4%
0:50 5:3% 2:8% 0:7% 0:0% 0:7% 2:8% 5:3%
0:65 5:4% 2:8% 0:7% 0:0% 0:7% 2:4% 4:8%
0:80 4:9% 2:2% 0:5% 0:0% 0:4% 1:7% 3:5%
0:95 2:3% 0:8% 0:2% 0:0% 0:1% 0:5% 1:1%

Table 2 shows that going from optimizing only patent breadth to opti-
mizing both patent instruments can lead to a welfare gain of as large as 5%
of consumption per year. The second-best level of social welfare U�� is lower
than the �rst-best level U� unless the pro�t-division rule is set to its optimal
value s� = 0:5. As s deviates from s� in either direction, the welfare di¤erence
� increases. Although the rise in � is the most dramatic at our benchmark
� = 0:5, the welfare di¤erences are also signi�cant at other values of � except
for � close to zero or one (in which case, the model behaves like a conven-
tional quality-ladder model with one type of R&D). The welfare di¤erences
reported in Table 2 corresponds to fg�; �g = f0:015; 0:04g, which is a conser-
vative set of parameter values. If the optimal growth rate g� is higher than
the empirical growth rate (which is likely to be case due to R&D underinvest-
ment), the welfare di¤erences become even more signi�cant. For example, if
g� increases to 2%, the mean of the welfare di¤erences reported in Table 2
would increase from 1.8% to 2.6% with the upper bound increasing from 5.4%
to 8.2%. Similarly, (38) implies that the welfare di¤erence is decreasing in
the discount rate �. Suppose we consider a lower discount rate of 3% (which
is still within the conventional range) and the benchmark optimal growth
rate g� of 1.5%. In this case, the mean of the welfare di¤erences reported
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in Table 2 would also increase from 1.8% to 2.6% with the upper bound in-
creasing from 5.4% to 8.2% because g�=� increases from 0.375 to 0.5 in both
cases. In summary, our numerical results imply a quantitatively signi�cant
welfare gain from choosing both patent instruments optimally as compared
to choosing only patent breadth optimally given a suboptimal pro�t-division
rule.

5 Extensions

In this section, we discuss the implications of the following extensions (a) a
CES innovation function, (b) R&D subsidies, and (c) the removal of scale
e¤ects. In what follows, we consider these extensions one at a time. In
summary, our main result that the socially optimal allocation can be achieved
by appropriately coordinating the policy instruments continues to hold under
these extensions.

5.1 CES innovation function

Suppose we consider a CES generalization of (12) given by

e�t = '
�
�H

("�1)="
1;t + (1� �)H

("�1)="
2;t

�"=("�1)
, (39)

where " 2 (0;1) is the elasticity of substitution between the two types of
R&D activities. Our Cobb-Douglas speci�cation corresponds to the special
case of "! 1. For this more general CES speci�cation, one can also analyti-
cally derive optimal patent policies.20 We �nd that the optimal pro�t-division
rule continues to be s� = 0:5 whereas optimal patent breadth becomes

�� = 2

�
[�" + (1� �)"]1=("�1)

'

�
+ 1

�
ln z � 1. (40)

In other words, the �nding of a symmetric optimal pro�t-division rule is
robust to generalizing the innovation function to a CES form.

20The derivations are relegated to an unpublished appendix available upon request from
the authors.
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5.2 R&D subsidies

In this section, we consider the case in which patent breadth is exogenously
given and derive the optimal coordination between �scal policy (in the form
of an R&D subsidy) and patent policy (in the form of a pro�t-division rule).
Given the R&D subsidy rate � < 1, (13) and (14) become

�1;t = stVte�t � (1� �)WtH1;t, (41)

�2;t = (1� st)Vte�t � (1� �)WtH2;t. (42)

In the case of �nancing the R&D subsidy with non-distortionary taxes, such
as a lump-sum tax and a labor-income tax,21 the equilibrium allocation of
production labor becomes22

L =
�=['s�(1� s)1����(1� �)1��] + 1=[s� + (1� s)(1� �)]

(�� 1)=(1� �) + 1=[s� + (1� s)(1� �)]
, (43)

whereas the equilibrium allocation of R&D labors are (20) and (21) as before.
Comparing these conditions with the optimal allocations in (24) - (26),

the optimal pro�t-division rule s� continues to be 0.5, and the optimal R&D
subsidy is characterized by

�� 1

1� ��
= 2

�
��(1� �)1��

'

�
+ 1

�
ln z � 2. (44)

As in the case of optimal patent breadth, the optimal R&D subsidy �� is
increasing in ' and z and decreasing in �. Furthermore, �� is decreasing in
patent breadth �. In fact, there is a one-to-one mapping between optimal
R&D subsidy and optimal patent breadth implying that these two policy
instruments are perfectly substitutable in enabling policymakers to achieve
the socially optimal allocation. However, this equivalence result relies on the
presence of non-distortionary taxes.

21In our model, a labor-income tax is non-distortionary due to inelastic labor supply.
22The derivations are relegated to an unpublished appendix available upon request from

the authors.
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5.3 Scale e¤ects

In this section, we discuss the implications of scale e¤ects. Our model belongs
to the class of �rst-generation R&D-based growth models, such as Romer
(1990), Grossman and Helpman (1991) and Aghion and Howitt (1992), in
which scale e¤ects are present.23 Scale e¤ects refer to the properties that (a)
a larger population implies faster technological progress and (b) a growing
population implies a rising growth rate rather than a constant growth rate
on the balanced growth path. Whether these scale e¤ects are counterfactual
is an empirical question. Jones (1995a) shows that scale e¤ects are inconsis-
tent with time-series evidence based on modern data in a number of OECD
countries. However, Kremer (1993) considers pre-historic data and shows
that scale e¤ects of endogenous growth models are not necessarily inconsis-
tent with empirical evidence when one considers economic growth in the very
long run.
Given that our focus is on the e¤ects of intellectual property rights on

innovation in the modern era characterized by a balanced growth path, it
would be useful for us to explore our results in a scale-invariant version of
the model. In our model, we have normalized the supply of labor to unity,
so that population size does not appear in the equilibrium growth rate and
it is the share of labor in R&D that determines equilibrium growth. This
property is consistent with the second-generation R&D-based endogenous
growth models.24 Here we consider a semi-endogenous growth version of the
quality-ladder model with population growth as in Segerstrom (1998).25

With population growth, the lifetime utility of households becomes

U =

1Z

0

e�(��n)t lnCtdt, (45)

where n 2 (0; �) is the exogenous rate of population growth. Population

size evolves according to
:

N t = nNt, and the labor-market-clearing condition
becomes Lt + H1;t + H2;t = Nt. To achieve semi-endogenous growth, we

23See Jones (1999) for a discussion on scale e¤ects in R&D-based growth models.
24See for example Young (1998) and Peretto (1998) for early contributions in the scale-

invariant R&D-based endogenous growth model that combines quality improvement and
variety expansion.
25See Jones (1995b) for an early contribution in the variety-expanding semi-endogenous

growth model.
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follow Segerstrom (1998) to consider increasing complexity of innovation.
Speci�cally, we assume that R&D productivity is decreasing in aggregate
technology Zt such that (12) becomes

e�t = 't(H1;t)�(H2;t)1�� =
'

Zt
(H1;t)

�(H2;t)
1��, (46)

where 't = '=Zt decreases as Zt increases. With these modi�cations (while
keeping the rest of the model as before), the steady-state growth rate of
technology becomes exogenously determined by the population growth rate.

g = � ln z = (' ln z)

�
H1;t
Zt

���
H2;t
Zt

�1��
= n. (47)

In this case, the steady-state equilibrium allocations are26

Lt =

�
1 + [s� + (1� s)(1� �)]

�
(�� 1)�

�� n+ �

��
�1

Nt, (48)

H1;t = s�

�
(�� 1)�

�� n+ �

�
Lt, (49)

H2;t = (1� s)(1� �)

�
(�� 1)�

�� n+ �

�
Lt. (50)

where the steady-state arrival rate of innovation � = n= ln z is determined
by exogenous parameters fn; zg.
To derive the optimal allocation, the social planner chooses a time path of

fLt; H1;t; H2;tg to maximize (45) subject to (a)
:

Zt = (' ln z)(H1;t)
�(H2;t)

1��,
(b) Ct = ZtLt=Nt, and (c) Lt + H1;t + H2;t = Nt. From standard dynamic
optimization, the optimal allocations on the balanced growth path are27

L�t =

�
1 +

n

�

�
�1

Nt, (51)

H�

1;t =
�n

�
L�t , (52)

26The derivations are relegated to an unpublished appendix available upon request from
the authors.
27The derivations are relegated to an unpublished appendix available upon request from

the authors.
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H�

2;t =
(1� �)n

�
L�t . (53)

Comparing (48) - (50) with (51) - (53), we �nd that the optimal pro�t-division
rule s� continues to be 0.5 whereas optimal patent breadth is

�� = 2

�
(�� n) ln z + n

�

�
+ 1. (54)

In this case, optimal patent breadth �� is increasing in z as before. Fur-
thermore, if ln z < 1, then �� would be increasing in n and decreasing in
�; otherwise, �� would be decreasing in n=�. To understand the intuition
behind the comparative statics of �� with respect to n=�, we combine (48)
and (51) to express

Lt
L�t
=

1

s� + (1� s)(1� �)

�
(1� n=�) ln z + n=�

�� 1

�
. (55)

An increase in n=� has both positive and negative e¤ects on Lt=L
�

t . When
the positive e¤ect dominates (which occurs if ln z is smaller than one), a
larger n=� makes it more likely for the market economy to allocate too much
labor to production (i.e., Lt > L

�

t ) or equivalently, too little labor to R&D. In
this case, optimal patent breadth must increase in order to o¤set this e¤ect.

6 Conclusion

In this note, we have developed a simple R&D-based growth model to analyze
the optimal mix of patent instruments. Even in our simple model, we �nd
that optimizing a single patent instrument is insu¢cient for the economy to
achieve the socially optimal allocation of factor inputs. Therefore, in the
more complicated real world, it is unlikely that optimizing a single patent
instrument would be su¢cient for achieving the social optimum. This �nding
suggests that future studies on optimal patent protection may want to further
explore the multiple dimensionality of the patent system in order for their
analysis to be more suitable for policy applications.
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Appendix A

Proof of Proposition 1. Substituting (17) into (15) yields

�Vt = Wt, (A1)

where � � 's�(1�s)1����(1��)1�� is a composite parameter. Normalizing

Wt to unity implies that
:

V t = 0 for all t. Consequently, (11) becomes

Rt =
�t
Vt
� �t. (A2)

Combining (10) and (A1) yields

�t
Vt
= �

�
�� 1

�

�
Et. (A3)

Substituting (17) into (12) yields

�t = '

�
H2;t
H1;t

�1��
H1;t = '

�
(1� s)(1� �)

s�

�1��
H1;t. (A4)

Substituting (17) into the labor-market-clearing condition yields

1 = Lt +H1;t +H2;t = Lt +

�
s� + (1� s)(1� �)

s�

�
H1;t. (A5)

Using the production-labor share of output (i.e., WtLt = Et=�), we have

Lt = Et=�. (A6)

Substituting (A2) - (A6) into (3) yields
:

Et
Et
=
�

�

�
�� 1 +

1

s� + (1� s)(1� �)

�
Et�

�

�s+ (1� �)(1� s)
��. (A7)

Equation (A7) implies that the dynamics of Et is characterized by saddle-
point stability such that Et always jumps to its interior steady-state value
given by

E = �

�
�=� + 1=[�s+ (1� �)(1� s)]

(�� 1) + 1=[s� + (1� s)(1� �)]

�
. (A8)

Otherwise, Et = �Lt approaching zero violates the utility maximization of
households while Et = �Lt approaching � violates the pro�t maximization
of R&D �rms. Equation (A6) implies that the stationarity of Et ensures the
stationarity of Lt, which in turn ensures the stationarity of H1;t and H2;t.
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