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1 Introduction

In their recent, widely cited article, Stock and Watson (2007, SW henceforth) argued

that while U.S. inflation in general has become easier to forecast after 1983, it has

also become more difficult to improve upon univariate models by means of backward-

looking Phillips curve (PC) forecasts. Specifically, they claim that before 1983, PC

models were superior to the univariate autoregressive (AR) model, but after 1984, the

situation has reversed.We argue that SW’s benchmark model is not the appropriate

univariate model, especially in the 1970—1983 period, but, in fact, inflation dynamics

are better captured by a noncausal, instead of a conventional causal AR model. This

claim is backed up by the findings of Lanne and Saikkonen (2008) and Lanne et al.

(2009) for the CPI inflation and Lanne et al. (2010) for the GDP price inflation.

Also, in contrast to SW, we do not force a unit root in the inflation process.

Our results show that once the noncausal AR benchmark is adopted, the changes

in the forecastability of U.S. GDP inflation are minor, and mainly confined to the

two-year forecast horizon. As to the other inflation measures (personal consumption

expenditure deflator for core items (PCE-core) and all items (PCE-all), and the con-

sumer price index (CPI-U)) considered by SW, the PC forecasts very rarely beat the

noncausal AR forecast in either forecast period.

Causal and noncausal AR models are both univariate and not discernible under

Gaussian errors. However, as shown by Lanne and Saikkonen (2008), and Lanne et

al. (2009, 2010), the errors of AR models estimated for U.S. inflation series are not

well characterized as Gaussian, but exhibit excess kurtosis. In those papers, Student’s

t-distribution is assumed for the errors and it turns out to provide a good fit. Under
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this distributional assumption, noncausality can be checked, and a noncausal AR

model indeed proves superior for U.S. inflation series based on the GDP deflator and

the consumer price index. Moreover, it is the purely noncausal AR model without

lagged inflation that, in general, yields the most accurate forecasts, and, therefore,

we employ that model as well.

The plan of the paper is as follows. In Section 2, we present the noncausal AR

model, and discuss estimation and forecasting. Section 3 presents the forecasting

results and comparisons to SW’s findings. Finally, Section 4 concludes.

2 Noncausal AR Model

Let us consider the following noncausal AR model for inflation πt (t = 0,±1,±2, ...),

ϕ
(
B−1

)
φ (B) πt = εt, (1)

where φ (B) = 1− φ1B − · · · − φrB
r, ϕ (B−1) = 1−ϕ1B

−1− · · · −ϕsB
−s, and εt is a

sequence of independent, identically distributed (continuous) random variables with

mean zero and variance σ2 or, briefly, εt ∼ i.i.d. (0, σ2). Moreover, B is the usual

backward shift operator, that is, Bkπt = πt−k (k = 0,±1, ...), and the polynomials

φ (z) and ϕ (z) have their zeros outside the unit circle so that

φ (z) 6= 0 for |z| ≤ 1 and ϕ (z) 6= 0 for |z| ≤ 1. (2)

This formulation was recently suggested by Lanne and Saikkonen (2008). We use the

abbreviation AR(r, s) for the model defined by (1). If ϕ1 = · · · = ϕs = 0, model (1)

reduces to the conventional causal AR(r) model.
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The conditions in (2) imply that πt has the two-sided moving average representa-

tion

πt =

∞∑

j=−∞

ψjεt−j, (3)

where ψj is the coefficient of z
j in the Laurent series expansion of φ (z)−1 ϕ (z−1)

−1 def
=

ψ (z). Note that this implies that past observations can be used to predict future

errors. From (1) one also obtains the representation

πt = φ1πt−1 + · · ·+ φrπt−r + vt, (4)

where vt = ϕ (B−1)
−1
εt =

∑
∞

j=0 βjεt+j with βj the coefficient of z
j in the power series

expansion of ϕ (B−1)
−1
. This representation can be used to obtain forecasts. Taking

conditional expectations conditional on past and present inflation of (4) yields

πt = φ1πt−1 + · · ·+ φrπt−r + Et

(
∞∑

j=0

βjεt+j

)

,

which shows that in a noncausal AR model, future errors are predictable by past

values of inflation.

A well-known feature of noncausal autoregressions is that a non-Gaussian error

term is required to achieve identification. Therefore, following Lanne and Saikkonen

(2008), we specify Student’s t-distribution for εt. In addition to these authors, also

Lanne et al. (2009, 2010) have shown this distribution to fit U.S. inflation series well.

Under this assumption, the noncausal AR model can be estimated by maximizing the

approximate likelihood function proposed by Lanne and Saikkonen (2008).

To compute forecasts based on representation (4), simulation methods are called

for. Let ET (·) signify the conditional expectation operator given the observed data
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vector π = (π1, ..., πT ). From (4) it is seen that the optimal predictor of πT+h (h > 0)

based on π satisfies

ET (πT+h) = φ1ET (πT+h−1) + · · ·+ φrET (πT+h−r) + ET (vT+h) .

Thus, if we are able to forecast the variable vT+h, we can compute forecasts of inflation

recursively. In the purely noncausal case of particular interest in this paper, the

optimal forecast of πT+h reduces to ET (vT+h). To calculate vT+h in practice we use

the approximation vT+h ≈
∑M−h

j=0 βjεT+h+j,where the integer M is supposed to be so

large that the approximation error is negligible for all forecast horizons h of interest.

To a close approximation we then have

ET (πT+h) ≈ φ1ET (πT+h−1) + · · ·+ φrET (πT+h−r) + ET

(
M−h∑

j=0

βjεT+h+j

)

. (5)

Lanne et al. (2010) show how to generate by simulation the conditional density of fu-

ture errors needed in the computation of the conditional expectation of
∑M−h

j=0 βjεT+h+j.

Following their recommendations based on simulation experiments, we set M = 50,

and the number of replications, N , in the simulation procedure equals 100 000.

3 Forecast Results

We focus on quarterly GDP price index inflation, but also present results for a num-

ber of other inflation measures. All data are downloaded from Mark Watson’s web

page. In addition to the univariate causal and noncausal AR models, random walk

forecasts of Atkeson and Ohanian (2001) and moving average forecasts are consid-

ered. The PC forecasts are calculated using autoregressive distributed lag models with

various activity variables and potentially gap variables based on them as additional
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regressors (SW’s equation (3)). The specifications PC-∆u, PC-∆y, PC-∆CapUtil and

PC-∆Permits omit gap variables. For detailed variable definitions, see SW.

The noncausal AR models are estimated recursively, with data from 1960:I—

1969:IV used for initial parameter estimation. Following SW, forecast results are

presented separately for the periods 1970:I—1983:IV and 1984:I—2004:IV. Unlike SW,

we only consider iterated multistep forecasts that SW found quantitatively quite sim-

ilar to their direct forecasts. Lanne and Saikkonen (2008) propose a model selection

procedure that was employed in forecasting by Lanne et al. (2010). However, in this

paper all noncausal forecasts are based on the recursively estimated fixed AR(0,4)

model that should be adequate for quarterly data. SW mainly rely on the Akaike

information criterion (AIC) in model selection, i.e., they recursively select the order

of the AR model (denoted AR(AIC) below). However, they also show that the fixed

AR(4,0) model produces similar results.

Table 1 reproduces the root mean squared forecast errors (RMSFE) of the AR(AIC)

forecast and the relative mean squred forecast errors (MSFE) of a number of alter-

native models in relation to that model from SW’s Tables 1 and 4. Compared to the

benchmark AR(AIC) model, the predictive performance of virtually all PC models is

inferior in the latter compared to the former subsample period at all horizons. This

is even more clearly seen in the left panel of Table 3 that presents the percentage

changes of the relative MSFEs. There are only two negative entries, both of which

are small in absolute value compared to the positive percentage changes. Moreover,

while in the 1970—1983 period, the relative MSFEs in Table 1 are, in general, less

than unity, indicating the superiority of the PC models, the situation is reversed in
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the 1984—2004 period. This evidence warrants SW’s claim that since the mid-1980s,

it has been difficult for inflation forecasts to improve on univariate models.

If the purely noncausal AR(0,4) model is used as the benchmark, the results are

drastically different. As the figures in Table 2 show, the PC forecasts are, in general

inferior to this univariate benchmark model. In contrast to Table 1, this is the case

also in the 1970—1983 period, while the performance of the AR(AIC) and AR(0,4)

models is similar in the 1984—2004 period. As a result, the changes in predictive

accuracy of the PC models are, in general, much smaller than SW’s results in Table 1

lead one to believe. Moreover, the right panel of Table 3 shows that in many cases, the

predictive performance of these models has improved, especially at horizons of four

quarters or less, and in case of relative deterioration, it is much lesser than suggested

by SW. Particularly noteworthy is the result that the model with the change in

building permits as the predictor (PC-∆Permits) is the only model that beats the

AR(0,4) benchmark at all horizons in the latter subsample period, and shows great

improvement in predictive accuracy over the 1970—1983 period.

In addition to the PC forecasts, SW also considered the random walk forecasts

(AO) of Atkeson and Ohanian (2001) and first-order integrated moving average (IMA(1,1))

forecasts proposed in the previous literature. As to the former, our conclusion is sim-

ilar to SW’s: these forecasts improve upon the AR(0,4) and PC forecasts at the one-

and two-year horizons in the 1984—2004 period but not at other horizons or in the

first subsample period. SW interpret this finding as evidence in favor of inflation

following an IMA(1,1) process, and this model indeed is superior to the AR(AIC)

and PC forecasts. However, with the exception of the two-year horizon in the latter
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subsample period, the noncausal AR(0,4) model either beats the IMA(1,1) forecasts

or produces very similar accuracy. Hence, the simple AR(0,4) model seems to provide,

in general, a better description of the inflation process in both subsample periods at

least in terms of predictive accuracy.

According to SW, inflation dynamics are well characterized by an IMA(1,1) process

with time-varying parameters. They present forecast results with the moving average

(MA) parameter θ equal to 0.25 and 0.65, in the first and second subsample periods,

respectively. For the AR(AIC) model, these results are reproduced in Table 1, whereas

Table 2 shows the corresponding figures related to the AR(0,4) model. While the

IMA(1,1) model with θ = 0.25 produces more accurate forecasts in the 1970—1983

period compared to the AR(AIC) model, it is clearly inferior to the AR(0,4) model at

the one- and two-year horizons. In the 1984—2004 period, the IMA(1,1,) model with

θ = 0.65 is clearly superior to both of these models. These findings undermine the

alleged superiority of the time-varying IMA model as a description of U.S. inflation

dynamics.

Following SW, we also considered other inflation measures (PCE-core, PCE-all and

CPI-U) besides the GDP price inflation. The results (not shown) are similar to those

discussed above in that the differences in accuracy of the PC forecasts between the two

subsample periods are minor vis-à-vis the AR(0,4) benchmark. With the exception of

the one-quarter horizon, the noncausal AR(0,4) model, in general, turned out to be

more accurate. Interestingly, also for both PCE inflation measures, the PC-∆Permits

model is the only model to show substantial improvement in predictive accuracy in

the latter compared to the first subsample period.1

1The detailed results are available upon request.
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4 Conclusion

In this note, we have shown that compared to the noncausal AR benchmark model,

U.S. inflation has hardly become more difficult to forecast by means of backward-

looking PC models since the mid-1980s, contrary to the claims of SW, who used the

causal autoregression as the benchmark. At least the differences are much smaller

than SW found, and in one case (the change in building permits as the predictor in the

PC model), inflation forecasts even seem to have improved. Based on the findings in

the previous literature, U.S. inflation dynamics are better described by a noncausal

than a causal AR model, and hence, the noncausal model should be taken as the

benchmark model against which the PC forecasts are judged. These findings are

reinforced by the fact that the noncausal AR(0,4) model also consistently produces

more accurate forecasts than the causal AR(4,0) or AR(AIC) models in the 1970—1983

period and has comparable accuracy in the 1984—2004 sample. Our results show that

compared to this univariate benchmark, the PC models provide poor forecasts both

before and after the mid-1980s. We also find some evidence against U.S. inflation

being well characterized as a time-varying IMA(1,1) process, as these forecasts can

be clearly inferior to the AR(0,4) forecasts in the 1970—1983 period.

The question why the noncausal AR model seems to forecast U.S. inflation better

than causal AR or PC models, remains unanswered in this note. One potential

explanation that we are working on, is related to the predictability of the errors of

the noncausal AR model pointed out in Section 2. We conjecture that these errors are

able to approximate information that is missing in the simple autoregressive model,

and because they are predictable, part of this information is made use of in forecasting.
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Table 1: Pseudo out-of-sample forecasting results for GDP inflation with the AR(AIC)
model as the benchmark.

1970:I—1983:IV 1984:I—2004:IV
h = 1 h = 2 h = 4 h = 8 h = 1 h = 2 h = 4 h = 8

AR(AIC) RMSFE 1.72 1.75 1.89 2.38 0.78 0.68 0.62 0.73
Relative MSFEs
AR(AIC) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AO 1.95 1.57 1.06 1.00 1.22 1.10 0.89 0.84
PC-u 0.85 0.92 0.88 0.61 0.95 1.11 1.48 1.78
PC-∆u 0.87 0.87 0.86 0.64 1.06 1.27 1.83 2.21
PC-ugap1-sided 0.88 0.99 0.98 0.87 1.06 1.29 1.84 2.39
PC-∆y 0.99 1.06 0.93 0.58 1.05 1.06 1.23 1.53
PC-ygap1-sided 0.94 0.97 0.99 0.78 0.97 0.97 1.25 1.55
PC-CapUtil 0.85 0.88 0.79 0.55 0.95 1.01 1.35 1.52
PC-∆CapUtil 1.02 1.00 0.87 0.64 1.03 1.10 1.30 1.51
PC-Permits 0.93 1.02 0.98 0.78 1.08 1.23 1.31 1.52
PC-∆Permits 1.02 1.04 0.99 0.86 1.00 1.00 1.00 1.02
AR(4,0) 0.95 1.08 1.05 0.93 0.93 0.96 0.99 0.94
IMA(1,1) 0.82 0.83 0.87 0.89 1.01 1.03 0.98 0.89
IMA(1,1), θ = 0.25 0.79 0.80 0.82 0.87 1.05 1.11 1.05 0.93
IMA(1,1), θ = 0.65 0.97 0.94 0.96 0.90 0.90 0.87 0.89 0.82
AR(0,4) 0.87 0.81 0.75 0.66 1.03 1.02 1.01 1.07

The table reproduces results in Stock and Watson’s (2007) Tables 1 (top panel) and 4 (middle
panel) and presents our results based on the noncausal AR(0,4) model (bottom panel). The first
row reports the root mean squared forecast errors of the causal AR(AIC) benchmark forecast.
The rest of the entries are the relative mean squared forecast errors relative to the AR(AIC)
benchmark.
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Table 2: Pseudo out-of-sample forecasting results for GDP inflation with the AR(0,4)
model as the benchmark.

1970:I—1983:IV 1984:I—2004:IV
h = 1 h = 2 h = 4 h = 8 h = 1 h = 2 h = 4 h = 8

AR(0,4) RMSFE 1.60 1.58 1.64 1.93 0.79 0.69 0.62 0.76
Relative MSFEs
AR(0,4) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AO 2.25 1.93 1.41 1.51 1.19 1.08 0.88 0.78
PC-u 0.98 1.14 1.18 0.93 0.92 1.09 1.46 1.66
PC-∆u 1.00 1.07 1.15 0.96 1.03 1.25 1.82 2.06
PC-ugap1-sided 1.01 1.21 1.31 1.32 1.04 1.27 1.82 2.23
PC-∆y 1.14 1.30 1.25 0.88 1.02 1.04 1.22 1.43
PC-ygap1-sided 1.09 1.20 1.33 1.18 0.94 0.96 1.24 1.44
PC-CapUtil 0.98 1.08 1.06 0.84 0.93 0.99 1.34 1.41
PC-∆CapUtil 1.18 1.23 1.16 0.97 1.00 1.08 1.29 1.41
PC-Permits 1.08 1.25 1.31 1.19 1.05 1.21 1.29 1.42
PC-∆Permits 1.18 1.28 1.32 1.30 0.97 0.98 0.99 0.95
AR(4,0) 1.10 1.33 1.34 1.51 0.97 0.98 0.99 0.93
IMA(1,1) 0.95 1.02 1.17 1.35 0.98 1.01 0.97 0.83
IMA(1,1), θ = 0.25 0.91 0.98 1.10 1.32 1.02 1.09 1.04 0.87
IMA(1,1), θ = 0.65 1.12 1.16 1.29 1.36 0.88 0.86 0.88 0.76

The first row reports the root mean squared forecast errors of the AR(0,4) benchmark fore-
cast. The rest of the entries are the relative mean squared forecast errors relative to the AR(0,4)
benchmark.

11



Table 3: Percentage changes in the relative MSFE in relation to the AR(AIC) model
(left panel) and the AR(0,4) model (right panel) between the 1970—1983 and 1984—
2004 periods.

Benchmark Model
AR(AIC) AR(0,4)

h = 1 h = 2 h = 4 h = 8 h = 1 h = 2 h = 4 h = 8
AO —46.3% —35.7% —17.6% —17.0% —63.5% —57.8% —47.8% —65.4%
PC-u 11.3% 18.1% 51.6% 106.7% —5.8% —4.1% 21.3% 58.3%
PC-∆u 20.2% 38.3% 76.3% 124.2% 3.1% 16.2% 46.1% 75.8%
PC-ugap1-sided 19.4% 26.6% 63.0% 100.6% 2.2% 4.4% 32.8% 52.2%
PC-∆y 6.1% 0.3% 27.6% 96.4% —11.0% —21.9% —2.6% 48.0%
PC-ygap1-sided 2.7% 0.0% 23.8% 68.1% —14.5% —22.2% —6.4% 19.7%
PC-CapUtil 11.9% 13.4% 53.2% 100.8% —5.3% —8.8% 23.0% 52.4%
PC-∆CapUtil 0.0% 9.5% 40.2% 86.3% —17.1% —12.7% 10.0% 37.9%
PC-Permits 14.6% 18.5% 28.6% 66.3% —2.5% —3.7% —1.6% 17.9%
PC-∆Permits —2.4% —4.3% 1.5% 16.9% —19.5% —26.5% —28.7% —31.5%
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