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Abstract

Mechanism design, a reverse problem of game theory, is an important branch of eco-
nomics. Nash implementation is the cornerstone of the theory of mechanism design.
The well-known Maskin’s theorem describes the sufficient conditions for Nash im-
plementation when the number of agents are at least three. A recent work [H. Wu,
Quantum mechanism helps agents combat “bad” social choice rules. International

Journal of Quantum Information, 2010 (accepted) http://arxiv.org/abs/1002.4294
] shows that when an additional condition is satisfied, the Maskin’s theorem will
no longer hold by using a quantum mechanism. Although quantum mechanisms are
theoretically feasible, agents cannot benefit from them immediately due to the re-
striction of current experimental technologies. In this paper, we will go beyond the
obstacle of how to realize quantum mechanisms, and propose an algorithmic mecha-
nism which leads to the same results as quantum mechanisms do. Consequently, the
sufficent conditions for Nash implementation are amended not only in the quantum
world, but also in the real world.

Key words: Quantum computing; Mechanism design; Nash implementation.

1 Introduction

Quantum computing has been a fascinating field for physicists and computer
scientists for decades. There are two famous quantum algorithms: Shor’s al-
gorithm for integer factorization [1,2] and Grover’s algorithm for fast search
[3,4]. Compared with classical algorithms, Shor’s algorithm yields an expo-
nential speed-up and Grover’s algorithm leads to a square root speed-up. In
terms of runtime, these promising advantages are helpful when the cases are
large-scale. For small-scale cases, the speed-up advantages of the two quantum

∗ Wan-Dou-Miao Research Lab, Shanghai, 200051, China.
Email addresses: hywch@mail.xjtu.edu.cn, Tel: 86-18621753457 (Haoyang

Wu).



algorithms are not significant. In terms of the final outcome, the two quantum
algorithms just generate the same results as their classical counterparts do,
no matter whether the scale of case is large or small.

In 1999, Eisert et al [5] proposed a quantum model of two-player Prisoner’s
Dilemma and showed a novel quantum Nash equilibrium, in which two agents
reached a Pareto-efficient outcome, and hence escaped the traditional dilemma.
Unlike Shor’s and Grover’s algorithms, quantum games do not aim to accel-
erate the classical games, but to enlarge the strategy space of agents and
generate new results which do not exist in classical game theory.

As a reverse problem of game theory, the theory of mechanism design con-
cerns the following question: given some desirable outcomes, can we design a
game that produces them? Maskin found that monotonicity and no-veto are
sufficient conditions for Nash implementation when the number of agents are
at least three [6]. In 2010, Wu generalized the theory of mechanism design
to the quantum domain [7]. Similar to quantum games, quantum mechanisms
do not aim to accelerate the classical mechanisms either, but to yield a novel
result: when an additional condition is satisfied, monotonicity and no-veto are
no longer the sufficient conditions for Nash implementation. For n agents, the
time and space complexity of quantum mechanisms are both O(n), therefore
quantum mechanisms are theoretically feasible.

Despite these interesting results, there exists an obstacle for agents to use
quantum mechanisms immediately: They need a quantum equipment to work,
but so far the experimental technologies for quantum information are not com-
mercially available [8]. As a result, quantum mechanisms may be viewed only
as “toys” to the real world. In this paper, we will circumvent this obstacle and
propose an algorithmic mechanism which leads to the same results as quantum
mechanisms do. Hence the sufficient conditions for Nash implementation are
amended in the real world. The rest of the paper is organized as follows: Sec-
tion 2 recalls preliminaries of classical and quantum mechanisms from Refs.
[7,9]; Section 3 is the main part of this paper. Section 4 draws conclusions.

2 Preliminaries

2.1 The classical theory of mechanism design

Let N = {1, · · · , n} be a finite set of agents with n ≥ 2, A = {a1, · · · , ak} be a
finite set of social outcomes. Let Ti be the finite set of agent i’s types, and the
private information possessed by agent i is denoted as ti ∈ Ti. We refer to a
profile of types t = (t1, · · · , tn) as a state. Let T =

∏
i∈N Ti be the set of states.
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At state t ∈ T , each agent i ∈ N is assumed to have a complete and transitive
preference relation ºt

i over the set A. We denote by ºt= (ºt
1, · · · ,ºt

n) the
profile of preferences in state t, and denote by ≻t

i the strict preference part
of ºt

i. Fix a state t, we refer to the collection E =< N, A, (ºt
i)i∈N > as an

environment. Let ε be the class of possible environments. A social choice rule

(SCR) F is a mapping F : ε → 2A\{∅}. A mechanism Γ = ((Mi)i∈N , g)
describes a message or strategy set Mi for agent i, and an outcome function
g :

∏
i∈N Mi → A. Mi is unlimited except that if a mechanism is direct,

Mi = Ti.

An SCR F satisfies no-veto if, whenever a ºt
i b for all b ∈ A and for all

agents i but perhaps one j, then a ∈ F (E). An SCR F is monotonic if
for every pair of environments E and E ′, and for every a ∈ F (E), when-
ever a ºt

i b implies that a ºt′

i b, there holds a ∈ F (E ′). We assume that
there is complete information among the agents, i.e., the true state t is com-
mon knowledge among them. Given a mechanism Γ = ((Mi)i∈N , g) played in
state t, a Nash equilibrium of Γ in state t is a strategy profile m∗ such that:
∀i ∈ N, g(m∗(t)) ºt

i g(mi,m
∗
−i(t)),∀mi ∈ Mi. Let N (Γ, t) denote the set of

Nash equilibria of the game induced by Γ in state t, and g(N (Γ, t)) denote
the corresponding set of Nash equilibrium outcomes. An SCR F is Nash im-

plementable if there exists a mechanism Γ = ((Mi)i∈N , g) such that for every
t ∈ T , g(N (Γ, t)) = F (t).

Maskin [6] provided an almost complete characterization of SCRs that were
Nash implementable. The main results of Ref. [6] are two theorems: 1) (Neces-

sity) If an SCR is Nash implementable, then it is monotonic. 2) (Sufficiency)
Let n ≥ 3, if an SCR is monotonic and satisfies no-veto, then it is Nash im-
plementable. In order to facilitate the following investigation, we briefly recall
the Maskin’s mechanism published in Ref. [9] as follows:

Consider the following mechanism Γ = ((Mi)i∈N , g), where agent i’s message
set is Mi = A × T × Z+, where Z+ is the set of non-negative integers. A
typical message sent by agent i is described as mi = (ai, ti, zi). The outcome
function g is defined in the following three rules: (1) If for every agent i ∈ N ,
mi = (a, t, 0) and a ∈ F (t), then g(m) = a. (2) If (n − 1) agents i 6= j send
mi = (a, t, 0) and a ∈ F (t), but agent j sends mj = (aj, tj, zj) 6= (a, t, 0),
then g(m) = a if aj ≻t

j a, and g(m) = aj otherwise. (3) In all other cases,
g(m) = a′, where a′ is the outcome chosen by the agent with the lowest index
among those who announce the highest integer.
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2.2 Quantum mechanisms

In 2010, Wu [7] combined the theory of mechanism design with quantum
mechanics and found that when an additional condition was satisfied, mono-
tonicity and no-veto are not sufficient conditions for Nash implementation in
the context of a quantum domain. Following Section 4 in Ref. [7] and Eq4 in
Ref. [10], two-parameter quantum strategies are drawn from the set:

ω̂(θ, φ) ≡



eiφ cos(θ/2) i sin(θ/2)

i sin(θ/2) e−iφ cos(θ/2)


 , (1)

Ω̂ ≡ {ω̂(θ, φ) : θ ∈ [0, π], φ ∈ [0, π/2]}, Ĵ ≡ cos(γ/2)Î⊗n + i sin(γ/2)σ̂x
⊗n,

where γ is an entanglement measure, and Î ≡ ω̂(0, 0), D̂n ≡ ω̂(π, π/n), Ĉn ≡
ω̂(0, π/n).

Without loss of generality, we assume that:
1) Each agent i has a quantum coin i (qubit) and a classical card i. The basis
vectors |C〉 = (1, 0)T , |D〉 = (0, 1)T of a quantum coin denote head up and
tail up respectively.
2) Each agent i independently performs a local unitary operation on his/her
own quantum coin. The set of agent i’s operation is Ω̂i = Ω̂. A strategic
operation chosen by agent i is denoted as ω̂i ∈ Ω̂i. If ω̂i = Î, then ω̂i(|C〉) =
|C〉, ω̂i(|D〉) = |D〉; If ω̂i = D̂n, then ω̂i(|C〉) = |D〉, ω̂i(|D〉) = |C〉. Î denotes
“Not flip”, D̂n denotes “Flip”.
3) The two sides of a card are denoted as Side 0 and Side 1. The message
written on the Side 0 (or Side 1) of card i is denoted as card(i, 0) (or card(i, 1)).
A typical card written by agent i is described as ci = (card(i, 0), card(i, 1)).
The set of ci is denoted as Ci.
4) There is a device that can measure the state of n coins and send messages
to the designer.

A quantum mechanism ΓQ = ((Ŝi)i∈N , Ĝ) describes a strategy set Ŝi = Ω̂i×Ci

for each agent i and an outcome function Ĝ : ⊗i∈N Ω̂i ×
∏

i∈N Ci → A. We use
Ŝ−i to express ⊗j 6=iΩ̂j ×

∏
j 6=i Cj, and thus, a strategy profile is ŝ = (ŝi, ŝ−i),

where ŝi ∈ Ŝi and ŝ−i ∈ Ŝ−i. A Nash equilibrium of a quantum mechanism
ΓQ played in state t is a strategy profile ŝ∗ = (ŝ∗1, · · · , ŝ∗n) such that for any
agent i ∈ N and ŝi ∈ Ŝi, Ĝ(ŝ∗1, · · · , ŝ∗n) ºt

i Ĝ(ŝi, ŝ
∗
−i). The setup of a quantum

mechanism ΓQ = ((Ŝi)i∈N , Ĝ) is depicted in Fig. 1. The working steps of the
quantum mechanism ΓQ are given as follows (with slight differences from Ref.
[7]):

Step 1: The state of every quantum coin is set as |C〉. The initial state of the
n quantum coins is |ψ0〉 = |C · · ·CC〉︸ ︷︷ ︸

n

.
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Step 2: Given a state t, if two following conditions are satisfied, goto Step 4:
1) There exists t̂ ∈ T , t̂ 6= t such that â ºt

i a (where â ∈ F (t̂), a ∈ F (t)) for
every i ∈ N , and â ≻t

j a for at least one j ∈ N ;

2) If there exists t̂′ ∈ T , t̂′ 6= t̂ that satisfies the former condition, then â ºt
i â′

(where â ∈ F (t̂), â′ ∈ F (t̂′)) for every i ∈ N , and â ≻t
j â′ for at least one

j ∈ N .
Step 3: Each agent i sets ci = ((ai, ti, zi), (ai, ti, zi)) (where ai ∈ A, ti ∈ T ,
zi ∈ Z+), ω̂i = Î. Goto Step 7.
Step 4: Each agent i sets ci = ((â, t̂, 0), (ai, ti, zi)). Let n quantum coins be
entangled by Ĵ . |ψ1〉 = Ĵ |C · · ·CC〉.
Step 5: Each agent i independently performs a local unitary operation ω̂i on
his/her own quantum coin. |ψ2〉 = [ω̂1 ⊗ · · · ⊗ ω̂n]Ĵ |C · · ·CC〉.
Step 6: Let n quantum coins be disentangled by Ĵ+. |ψ3〉 = Ĵ+[ω̂1 ⊗ · · · ⊗
ω̂n]Ĵ |C · · ·CC〉.
Step 7: The device measures the state of n quantum coins and sends card(i, 0)
(or card(i, 1)) as a message mi to the designer if the state of quantum coin i
is |C〉 (or |D〉).
Step 8: The designer receives the overall message m = (m1, · · · ,mn) and let
the final outcome be g(m) using rules (1)-(3) of the Maskin’s mechanism.
END.

3 Main results

3.1 Matrix representations of quantum states

In quantum mechanics, a quantum state can be described as a vector. For a
two-level system, there are two basis vectors: (1, 0)T and (0, 1)T . The matrix
representations of quantum states |ψ0〉, |ψ1〉, |ψ2〉 and |ψ3〉 are given as follows.
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|C〉 =



1

0


 , Î =



1 0

0 1


 , σ̂x =



0 1

1 0


 , |ψ0〉 = |C · · ·CC〉︸ ︷︷ ︸

n

=




1

0

· · ·
0




2n×1

(2)

Ĵ = cos(γ/2)Î⊗n + i sin(γ/2)σ̂⊗n
x (3)

=




cos(γ/2) i sin(γ/2)

· · · · · ·
cos(γ/2) i sin(γ/2)

i sin(γ/2) cos(γ/2)

· · · · · ·
i sin(γ/2) cos(γ/2)




2n×2n

(4)

For γ = π/2,

Ĵπ/2 =
1√
2




1 i

· · · · · ·
1 i

i 1

· · · · · ·
i 1




2n×2n

(5)

|ψ1〉 = Ĵ |C · · ·CC〉︸ ︷︷ ︸
n

=




cos(γ/2)

0

· · ·
0

i sin(γ/2)




2n×1

(6)
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Following formula (1), we define:

ω̂1 =



eiφ1 cos(θ1/2) i sin(θ1/2)

i sin(θ1/2) e−iφ1 cos(θ1/2)


 , · · · , ω̂n =



eiφn cos(θn/2) i sin(θn/2)

i sin(θn/2) e−iφn cos(θn/2)


 ,

(7)

The dimension of ω̂1 ⊗ · · · ⊗ ω̂n is 2n × 2n. Since only two values in |ψ1〉 are
non-zero, it is not necessary to calculate the whole 2n × 2n matrix to obtain
|ψ2〉. Indeed, we only need to calculate the leftmost and rightmost column of
ω̂1 ⊗ · · · ⊗ ω̂n to derive |ψ2〉 = [ω̂1 ⊗ · · · ⊗ ω̂n]Ĵ |C · · ·CC〉︸ ︷︷ ︸

n

.

Ĵ+ =




cos(γ/2) −i sin(γ/2)

· · · · · ·
cos(γ/2) −i sin(γ/2)

−i sin(γ/2) cos(γ/2)

· · · · · ·
−i sin(γ/2) cos(γ/2)




2n×2n

(8)

|ψ3〉 = Ĵ+|ψ2〉 (9)

3.2 An algorithm that simulates the quantum operations and measurements

Based on the aforementioned matrix representations of quantum states, in the
following we will propose an algorithm that simulates the quantum operations
and measurements in Step 4-7 of the quantum mechanism given in Section
2.2. Since the entanglement measurement γ is just a control factor, γ can
be simply set as its maximum π/2. For n agents, the inputs and outputs of
the algorithm are illustrated in Fig. 2. The Matlab program is given in Fig.
3(a)-(d).

Inputs:
1) θi, φi, i = 1, · · · , n: the parameters of agent i’s local operation ω̂i, θi ∈
[0, π], φi ∈ [0, π/2].
2) card(i, 0), card(i, 1), i = 1, · · · , n: the information written on the two sides
of agent i’s card, where card(i, 0) = (ai, ti, zi) ∈ A × T × Z+, card(i, 1) =
(a′

i, t
′
i, z

′
i) ∈ A × T × Z+.

Outputs:
mi, i = 1, · · · , n: the agent i’s message that is sent to the designer, mi ∈
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A × T × Z+.

Procedures of the algorithm:
Step 1: Reading two parameters θi and φi from each agent i ∈ N (See Fig.
3(a)).
Step 2: Computing the leftmost and rightmost columns of ω̂1 ⊗ ω̂2 ⊗ · · · ⊗ ω̂n

(See Fig. 3(b)).
Step 3: Computing the vector representation of |ψ2〉 = [ω̂1⊗· · ·⊗ω̂n]Ĵπ/2|C · · ·CC〉.
Step 4: Computing the vector representation of |ψ3〉 = Ĵ+

π/2
|ψ2〉.

Step 5: Computing the probability distribution 〈ψ3|ψ3〉 (See Fig. 3(c)).
Step 6: Randomly choosing a “collapsed” state from the set of all 2n possible
states {|C · · ·CC〉, · · · , |D · · ·DD〉} according to the probability distribution
〈ψ3|ψ3〉.
Step 7: For each i ∈ N , the algorithm sends card(i, 0) (or card(i, 1)) as a
message mi to the designer if the i-th basis vector of the “collapsed” state is
|C〉 (or |D〉) (See Fig. 3(d)).

Remark 1: Although the time and space complexity of the algorithm is ex-
ponential, i.e., O(2n), when the number of agents is not very large (e.g., less
than 20), the algorithm works well. For example, the runtime of the algorithm
is about 0.5s for 15 agents, and about 12s for 20 agents (MATLAB 7.1, CPU:
Intel (R) 2GHz, RAM: 3GB).

3.3 An algorithmic version of the quantum mechanism

In the quantum mechanism ΓQ = ((Ŝi)i∈N , Ĝ), the key parts are quantum
operations and measurements, which are restricted by current experimental
technologies. In Section 3.2, these parts are replaced by an algorithm which
can be easily run in a computer. Consequently, the quantum mechanism ΓQ =
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((Ŝi)i∈N , Ĝ) shall be updated to an algorithmic mechanism Γ̃ = ((S̃i)i∈N , G̃),
which describes a strategy set S̃i = [0, π] × [0, π/2] × Ci for each agent i
and an outcome function G̃ : [0, π]n × [0, π/2]n × ∏

i∈N Ci → A. We use S̃−i

to express [0, π]n−1 × [0, π/2]n−1 × ∏
j 6=i Cj, and thus, a strategy profile is

s̃ = (s̃i, s̃−i), where s̃i = (θi, φi, ci) ∈ S̃i and s̃−i = (θ−i, φ−i, c−i) ∈ S̃−i.
A Nash equilibrium of an algorithmic mechanism Γ̃ played in state t is a
strategy profile s̃∗ = (s̃∗1, · · · , s̃∗n) such that for any agent i ∈ N , s̃i ∈ S̃i,
G̃(s̃∗1, · · · , s̃∗n) ºt

i G̃(s̃i, s̃
∗
−i).

Working steps of the algorithmic mechanism Γ̃:

Step 1: Given an SCR F and a state t, if two following conditions are satisfied,
goto Step 3:
1) There exists t̂ ∈ T , t̂ 6= t such that â ºt

i a (where â ∈ F (t̂), a ∈ F (t)) for
every i ∈ N , and â ≻t

j a for at least one j ∈ N ;

2) If there exists t̂′ ∈ T , t̂′ 6= t̂ that satisfies the former condition, then â ºt
i â′

(where â ∈ F (t̂), â′ ∈ F (t̂′)) for every i ∈ N , and â ≻t
j â′ for at least one

j ∈ N .

Step 2: Each agent i sets card(i, 0) = (ai, ti, zi), and sends card(i, 0) as the
message mi to the designer. Goto Step 5.

Step 3: Each agent i sets card(i, 0) = (â, t̂, 0) and card(i, 1) = (ai, ti, zi), then
submits θi, φi, card(i, 0) and card(i, 1) to the algorithm.

Step 4: The algorithm runs in a computer and outputs messages m1, · · · ,mn

to the designer.

Step 5: The designer receives the overall message m = (m1, · · · ,mn) and let
the final outcome be g(m) using rules (1)-(3) of the Maskin’s mechanism.
END.

3.4 Amending sufficient conditions for Nash implementation

As shown in Ref. [7], in the quantum world the sufficient conditions for Nash
implementation are amended by virtue of a quantum mechanism. However,
this result looks irrelevant to the real world because currently the experi-
mental technologies are not commercially available, and people usually feel
quantum mechanics is far from macro disciplines such as economics. Interest-
ingly, according to the foregoing algorithm and the algorithmic mechanism,
the sufficient conditions for Nash implementation are amended in the real
world too.

Following Ref. [7], given n (n ≥ 3) agents, let us consider the payoff to the
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n-th agent. We denote by $C···CC the expected payoff when all agents submit
θ = φ = 0 (the corresponding “collapsed” state is |C · · ·CC〉), and denote by
$C···CD the expected payoff when the n-th agent chooses θn = π, φn = π/n
and the first n − 1 agents choose θ = φ = 0 (the corresponding “collapsed”
state is |C · · ·CD〉). $D···DD and $D···DC are defined similarly.

Now we define condition λπ/2 as follows:

1) λ
π/2

1 : Given an SCR F and a state t, there exists t̂ ∈ T , t̂ 6= t such that
â ºt

i a (where â ∈ F (t̂), a ∈ F (t)) for every i ∈ N , â ≻t
j a for at least one

j ∈ N , and the number of agents that encounter a preference change around
â in going from state t̂ to t is at least two. Denote by l the number of these
agents. Without loss of generality, let these l agents be the last l agents among
n agents.

2) λ
π/2

2 : If there exists t̂′ ∈ T , t̂′ 6= t̂ that satisfies λ
π/2

1 , then â ºt
i â′ (where

â ∈ F (t̂), â′ ∈ F (t̂′)) for every i ∈ N , and â ≻t
j â′ for at least one j ∈ N .

3) λ
π/2

3 : Consider the payoff to the n-th agent, $C···CC > $D···DD, i.e., he/she
prefers the expected payoff of a certain outcome (generated by rule 1 of the
Maskin’s mechanism) to the expected payoff of an uncertain outcome (gener-
ated by rule 3 of the Maskin’s mechanism).

4) λ
π/2

4 : Consider the payoff to the n-th agent, $C···CC > $C···CD cos2(π/l) +
$D···DC sin2(π/l).

Proposition 1: For n ≥ 3, given a state t and an SCR F that is monotonic
and satisfies no-veto:
1) If condition λπ/2 is satisfied, then F is not Nash implementable.
2) If condition λπ/2 is not satisfied, then F is Nash implementable. Put dif-
ferently, the sufficient conditions for Nash implementation are updated as
monotonicity, no-veto and no-λπ/2.

Proof : 1) Given a state t and an SCR F , since condition λ
π/2

1 and λ
π/2

2 are
satisfied, then the two conditions in Step 1 of Γ̃ are also satisfied. Hence, the
mechanism Γ̃ enters Step 3, i.e., each agent i sets ci = (card(i, 0), card(i, 1)) =
((â, t̂, 0), (ai, ti, zi)), then submits θi, φi, card(i, 0) and card(i, 1) to the algo-
rithm. Let c = (c1, · · · , cn).

Since condition λ
π/2

3 and λ
π/2

4 are satisfied, then according to Proposition 2
in Ref. [7], if the n agents choose s̃∗ = (θ∗, φ∗, c), where θ∗ = (0, · · · , 0︸ ︷︷ ︸

n

),

φ∗ = (0, · · · , 0︸ ︷︷ ︸
n−l

, π/l, · · · , π/l︸ ︷︷ ︸
l

), then s̃∗ ∈ N (Γ̃, t). In Step 6 of the algorithm,

the corresponding “collapsed” state of n quantum coins is |C · · ·CC〉. Hence,
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in Step 7 of the algorithm, mi = card(i, 0) = (â, t̂, 0) for each agent i ∈ N .
Finally, in Step 5 of the mechanism Γ̃, G̃(s̃∗) = g(m) = â /∈ F (t), i.e., F is not
Nash implementable.

2) If condition λπ/2 is not satisfied, then no matter whether Γ̃ enters Step 2 or
Step 3, the aforementioned novel Nash equilibrium which leads to a Pareto-
efficient outcome â will no longer exist. Hence, the algorithmic mechanism Γ̃ is
reduced to the traditional Maskin’s mechanism. Since the SCR F is monotonic
and satisfies no-veto, then it is Nash implementable. ¤

Remark 2: Although the algorithmic mechanism stems from quantum me-
chanics, it is completely classical that can be run in a computer. In addition,
condition λπ/2 is also a classical condition.

Remark 3: The problem of Nash implementation requires complete informa-
tion among all agents. In the last paragraph of Page 392, Ref. [9], Serrano
wrote: “We assume that there is complete information among the agents...
This assumption is especially justified when the implementation problem con-
cerns a small number of agents that hold good information about one another”.
Hence, the fact that the algorithmic mechanism is suitable for small-scale cases
(e.g., less than 20 agents) is acceptable for Nash implementation.

4 Conclusions

Just like quantum mechanics brings novel results to physics, quantum com-
puting leads new ideas to computer science and game theory [1,2,5]. By coin-
cidence, Eisert et al [5] and Maskin [6] formally published their papers in the
same year 1999. So far Maskin’s sufficiency theorem has been widely applied
to many literature, and quantum strategies have been successfully applied
to game theory. The two disciplines, mechanism design and quantum games,
were not connected until the theory of mechanism design was generalized to
the quantum domain in 2010 [7]. In this paper, we go beyond the obstacle of
how to realize the quantum mechanism, and propose an algorithmic mecha-
nism which amends the sufficient conditions for Nash implementation in the
real world. Note that Shor’s algorithm and Grover’s algorithm show their
non-trivial advantages in terms of runtime when the scale of problem is large.
As a comparison, the algorithmic mechanism proposed here yields non-trivial
results for small-scale cases.
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start_time = cputime

% n: the number of agents. In Example 1 of Ref. [7], there are 3 agents: Apple, Lily, Cindy
n=3;

% gamma: the coefficient of entanglement. Here we simply set gamma to its maximum pi/2.
gamma=pi/2;

% Defining the array of     and                      .
theta=zeros(n,1);
phi=zeros(n,1);

% Reading Apple’s parameters. For example,
theta(1)=0;
phi(1)=pi/2;

% Reading Lily’s parameters. For example, 
theta(2)=0;
phi(2)=pi/2;

% Reading Cindy’s parameters. For example, 
theta(3)=0;
phi(3)=0;

���������
�� πωω == �

���������
�� πωω == �

��������
	 ωω == �

�
θ ��

�
���� �=φ


��
�	����
��������������������� �����������������������������������������

�

θ ��
�

���� �=φ

���������	��
��
�������������������������������������������

% Defining two 2*2 matrices
A=zeros(2,2);
B=zeros(2,2);

% In the beginning, A represents the local operation of agent 1. (See Eq 8)
A(1,1)=exp(i*phi(1))*cos(theta(1)/2);
A(1,2)=i*sin(theta(1)/2);
A(2,1)=A(1,2);
A(2,2)=exp(-i*phi(1))*cos(theta(1)/2);
row_A=2;

% Computing 
for agent=2 : n

% B varies from to
B(1,1)=exp(i*phi(agent))*cos(theta(agent)/2);
B(1,2)=i*sin(theta(agent)/2);
B(2,1)=B(1,2);
B(2,2)=exp(-i*phi(agent))*cos(theta(agent)/2);

% Computing the leftmost and rightmost columns of C= A ⊗ B
C=zeros(row_A*2, 2);
for row=1 : row_A

C((row-1)*2+1, 1) = A(row,1) * B(1,1);
C((row-1)*2+2, 1) = A(row,1) * B(2,1);
C((row-1)*2+1, 2) = A(row,2) * B(1,2);
C((row-1)*2+2, 2) = A(row,2) * B(2,2);

end
A=C;
row_A = 2 * row_A;

end
% Now the matrix A contains the leftmost and rightmost columns of

�
�ω

�
ωωω ���

�� ⊗⊗⊗ �

�
ωωω ���

�� ⊗⊗⊗ �

�
ωωω ���

�� ⊗⊗⊗ �

�
�ω

�
ω�
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% Computing 
psi2=zeros(power(2,n),1);
for row=1 : power(2,n)

psi2(row)=A(row,1)*cos(gamma/2)+A(row,2)*i*sin(gamma/2);
end

% Computing 
psi3=zeros(power(2,n),1);
for row=1 : power(2,n)

psi3(row)=cos(gamma/2)*psi2(row) - i*sin(gamma/2)*psi2(power(2,n)-row+1);
end

% Computing the probability distribution
distribution=psi3.*conj(psi3);
distribution=distribution./sum(distribution);

��
� ψψ += �

����
�

�� ������ ��� ωωωψ ⊗⊗⊗=

�� ψψ

�ψ �ψ �� ψψ

% Randomly choosing a “collapsed” state according to the probability distribution
random_number=rand;
temp=0;
for index=1: power(2,n)

temp = temp + distribution(index);
if temp >= random_number

break;
end

end

% indexstr: a binary representation of the index of the collapsed state
%   ‘0’ stands for      , ‘1’ stands for  
indexstr=dec2bin(index-1);
sizeofindexstr=size(indexstr);

% Defining an array of messages for all agents
message=cell(n,1);

% For each agent          , the algorithm generates the message
for index=1 : n - sizeofindexstr(2)

message{index,1}=strcat('card(',int2str(index),',0)');
end
for index=1 : sizeofindexstr(2)

if indexstr(index)=='0' % Note: ‘0’ stands for  
message{n-sizeofindexstr(2)+index,1}=strcat('card(',int2str(n-sizeofindexstr(2)+index),',0)');

else
message{n-sizeofindexstr(2)+index,1}=strcat('card(',int2str(n-sizeofindexstr(2)+index),',1)');

end
end

% The algorithm sends messages                         to the designer
for index=1:n

disp(message(index));
end

end_time = cputime;
runtime=end_time – start_time

�� ψψ

�
��� ∈

�
��� ��� �� �

����	�	
���	
��������	���	��������																								�	����	����	

�����������	��	����	�	���	�	��	���	 ������	���������	��	�������	����
�
��� ��� �� �
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