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Two-agent Nash implementation:

A new result

Haoyang Wu ∗

Abstract

[Moore and Repullo, Econometrica 58 (1990) 1083-1099] and [Dutta and Sen, Rev.

Econom. Stud. 58 (1991) 121-128] are two fundamental papers on two-agent Nash
implementation. Both of them are based on Maskin’s classic paper [Maskin, Rev.

Econom. Stud. 66 (1999) 23-38]. A recent work [Wu, http://arxiv.org/abs/1002.4294,
Inter. J. Quantum Information, 2010 (accepted)] shows that when an additional
condition is satisfied, the Maskin’s theorem will no longer hold by using a quantum
mechanism. Furthermore, this result holds in the macro world by using an algorith-
mic mechanism. In this paper, we will investigate two-agent Nash implementation
by virtue of the algorithmic mechanism. The main result is: The sufficient and nec-
essary conditions for Nash implementation with two agents shall be amended, not
only in the quantum world, but also in the macro world.

Key words: Quantum game theory; Mechanism design; Nash implementation.

1 Introduction

Game theory and mechanism design play important roles in economics. Game
theory aims to investigate rational decision making in conflict situations,
whereas mechanism design just concerns the reverse question: given some
desirable outcomes, can we design a game that produces them? Ref. [1] is
seminal work in the field of mechanism design. It provides an almost complete
characterization of social choice rules that are Nash implementable when the
number of agents is at least three. In 1990, Moore and Repullo [2] gave a
necessary and sufficient condition for Nash implementation with two agents
and many agents. Dutta and Sen [3] independently gave an equivalent re-
sult for two-agent Nash implementation. In 2009, Busetto and Codognato [4]
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gave an amended necessary and sufficient condition for two-agent Nash imple-
mentation. These papers together construct a framework for two-agent Nash
implementation.

In 2010, Wu [5] claimed that the Maskin’s theorem are amended by virtue of
a quantum mechanism, i.e., a social choice rule that is monotonic and satisfies
no-veto will not be Nash implementable if it satisfies an additional condition.
Although current experimental technologies restrict the quantum mechanism
to be commercially available, Wu [6] propose an algorithmic mechanism that
amends the sufficient and necessary conditions for Nash implementation with
three or more agents in the macro world. Inspired by these results, it is natural
to ask what will happen if the algorithmic mechanism can be generalized to
two-agent Nash implementation. This paper just concerns this question.

The rest of this paper is organized as follows: Section 2 recalls preliminaries of
two-agent Nash implementation given by Moore and Repullo [2]. Section 3 and
4 are the main parts of this paper, in which we will propose two-agent quantum
and algorithmic mechanisms respectively. Section 5 draws the conclusions. In
Appendix, we explain that the social choice rule given in Section 3 satisfies
condition µ2 defined by Moore and Repullo.

2 Preliminaries

Consider an environment with a finite set I = {1, 2} of agents, and a (possibly
infinite) set A of feasible outcomes. The profile of the agents’ preferences over
outcomes is indexed by θ ∈ Θ, where Θ is the set of preference profiles. Under
θ, agent j ∈ I has preference ordering Rj(θ) on the set A. Let Pj(θ) denote
the strict preference relation corresponding to Rj(θ).

For any j ∈ I, θ ∈ Θ and a ∈ A, let Lj(a, θ) be the lower contour set of agent
j at a under θ, i.e., Lj(a, θ) = {â ∈ A : aRj(θ)â}. For any j ∈ I, θ ∈ Θ and
C ⊆ A, let Mj(C, θ) be the set of maximal elements in C for agent j under θ,
i.e., Mj(C, θ) = {ĉ ∈ C : ĉRj(θ)c, for all c ∈ C}.

A social choice rule (SCR) is a correspondence f : Θ → A that specifies a
nonempty set f(θ) ⊆ A for each preference profile θ ∈ Θ. A mechanism is
a function g : S → A that specifies an outcome g(s) ∈ A for each vector of
strategies s = (s1, s2) ∈ S = S1 × S2, where Sj denotes agent j’s strategy set.

A mechanism g together with a preference profile θ ∈ Θ defines a game in
normal form. Let NE(g, θ) ⊆ S denote the set of pure strategy Nash equilibria
of the game (g, θ). A mechanism g is said to Nash implement an SCR f if for
all θ ∈ Θ, {g(s) : s ∈ NE(g, θ)} = f(θ).
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Condition µ: There is a set B ⊆ A, and for each j ∈ I, θ ∈ Θ, and a ∈ f(θ),
there is a set Cj(a, θ) ⊆ B, with a ∈ Mj(Cj(a, θ), θ) such that for all θ∗ ∈ Θ,
(i), (ii) and (iii) are satisfied:
(i) if a ∈ M1(C1(a, θ), θ∗) ∩ M2(C2(a, θ), θ∗), then a ∈ f(θ∗);
(ii) if c ∈ Mj(Cj(a, θ), θ∗) ∩ Mk(B, θ∗), for j, k ∈ I, j 6= k, then c ∈ f(θ∗);
(iii) if d ∈ M1(B, θ∗) ∩ M2(B, θ∗), then d ∈ f(θ∗);

Condition µ2: Condition µ holds. In addition, for each 4-tuple (a, θ, b, φ) ∈
A × Θ × A × Θ, with a ∈ f(θ) and b ∈ f(φ), there exists e = e(a, θ, b, φ)
contained in C1(a, θ) ∩ C2(b, φ) such that for all θ∗ ∈ Θ, (iv) is satisfied:
(iv) if e ∈ M1(C1(a, θ), θ∗) ∩ M2(C2(b, φ), θ∗), then e ∈ f(θ∗).

Theorem 1 (Moore and Repullo, 1990): Suppose that there are two
agents. Then a social choice rule f is Nash implementable if and only if it
satisfies condition µ2.

To facilitate the following discussion, here we cite the Moore-Repullo’s mecha-
nism as follows: For each agent j ∈ I, Let Sj = {(θj, aj, bj, nj) ∈ Θ×A×B×N :
aj ∈ f(θj)}, where N denotes the set of non-negative integers, and define the
mechanism g : S → A such that for any s ∈ S:
(1) if (a1, θ1) = (a2, θ2) = (a, θ), then g(s) = a;
(2) if (a1, θ1) 6= (a2, θ2) and n1 = n2 = 0, then g(s) = e(a2, θ2, a1, θ1);
(3) if (a1, θ1) 6= (a2, θ2) and n1 > n2 = 0, then g(s) = b1 if b1 ∈ C1(a2, θ2), and
g(s) = e(a2, θ2, a1, θ1) otherwise;
(4) if (a1, θ1) 6= (a2, θ2) and n2 > n1 = 0, then g(s) = b2 if b2 ∈ C2(a1, θ1), and
g(s) = e(a2, θ2, a1, θ1) otherwise;
(5) if (a1, θ1) 6= (a2, θ2) and n1 ≥ n2 > 0, then g(s) = b1;
(6) if (a1, θ1) 6= (a2, θ2) and n2 > n1 > 0, then g(s) = b2.

3 A two-agent quantum mechanism

In this section, first we will show an example of a Pareto-inefficient two-agent
SCR f that satisfies condition µ2, i.e., it is Nash implementable according
to Moore-Repullo’s mechanism. Then, we will propose a two-agent version of
quantum mechanism, which amends the sufficient and necessary conditions for
Nash implementation for two agents. Hence, f will not be Nash implementable
in the quantum domain.
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3.1 A Pareto-inefficient two-agent SCR

Consider an SCR f given in Table 1. I = {1, 2}, A = {a1, a2, a3, a4}, Θ =
{θ1, θ2}. In each preference profile, the preference relations over the outcome
set A and the corresponding SCR f are given in Table 1. f is Pareto-inefficient
from the viewpoint of two agents because in the preference profile θ = θ2,
both agents prefer a Pareto-efficient outcome a1 ∈ f(θ1): for each agent j ∈ I,
a1Pj(θ

2)a2. However, since f satisfies condition µ2 (see the Appendix), it is
Nash implementable according to Moore-Repullo’s theorem.

Table 1. A Pareto-inefficient two-agent SCR f that satisfies condition µ2.

θ1 θ2

agent 1 agent 2 agent 1 agent 2

a3 a2 a4 a3

a1 a1 a1 a1

a2 a4 a2 a2

a4 a3 a3 a4

f(θ1) = {a1} f(θ2) = {a2}

3.2 A two-agent quantum mechanism

Following Ref. [5], here we will propose a two-agent quantum mechanism to
help agents combat “bad” social choice functions. According to Eq (4) in Ref.
[8], two-parameter quantum strategies are drawn from the set:

ω̂(θ, φ) ≡



eiφ cos(θ/2) i sin(θ/2)

i sin(θ/2) e−iφ cos(θ/2)


 , (1)

Ω̂ ≡ {ω̂(θ, φ) : θ ∈ [0, π], φ ∈ [0, π/2]}, Ĵ ≡ cos(γ/2)Î⊗n + i sin(γ/2)σ̂x
⊗n,

where γ is an entanglement measure, and Î ≡ ω̂(0, 0), D̂ ≡ ω̂(π, π/2), Ĉ ≡
ω̂(0, π/2).

Without loss of generality, we assume:
1) Each agent j ∈ I has a quantum coin j (qubit) and a classical card j . The
basis vectors |C〉 ≡ (1, 0)T , |D〉 ≡ (0, 1)T of a quantum coin denote head up
and tail up respectively.
2) Each agent j ∈ I independently performs a local unitary operation on
his/her own quantum coin. The set of agent j’s operation is Ω̂j = Ω̂. A
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strategic operation chosen by agent j is denoted as ω̂j ∈ Ω̂j. If ω̂j = Î, then

ω̂j(|C〉) = |C〉, ω̂j(|D〉) = |D〉; If ω̂j = D̂, then ω̂j(|C〉) = |D〉, ω̂j(|D〉) = |C〉.
Î denotes “Not flip”, D̂ denotes “Flip”.
3) The two sides of a card are denoted as Side 0 and Side 1. The informa-
tion written on the Side 0 (or Side 1) of card j is denoted as card(j, 0) (or
card(j, 1)). A typical card of agent j is described as cj = (card(j, 0), card(j, 1)) ∈
Sj × Sj, where Sj is defined in Moore-Repullo’s mechanism. The set of cj is
denoted as Cj ≡ Sj × Sj.
4) There is a device that can measure the state of two quantum coins and
send strategies to the designer.

Note that if Ω̂j is restricted to be {Î , D̂}, then Ω̂j is equivalent to {Not flip,
Flip}.

Definition 1: A two-agent quantum mechanism is defined as Ĝ : Ŝ → A,
where Ŝ = Ŝ1 × Ŝ2, Ŝj = Ω̂j × Cj (j ∈ I). Ĝ can also be written as Ĝ :

(Ω̂1 ⊗ Ω̂2) × (C1 × C2) → A, where ⊗ represents tensor product.

We shall use Ŝ−j to express Ω̂k × Ck (k 6= j), and thus, a strategy profile is

ŝ = (ŝ1, ŝ2), where ŝ1 = (ω̂1, c1) ∈ Ŝ1, ŝ2 = (ω̂2, c2) ∈ Ŝ2. A Nash equilibrium
of Ĝ played in a preference profile θ is a strategy profile ŝ∗ = (ŝ∗1, ŝ

∗

2) such
that for any agent j ∈ I, ŝj ∈ Ŝj, Ĝ(ŝ∗1, ŝ

∗

2)Rj(θ)Ĝ(ŝj, ŝ
∗

−j). For each θ ∈ Θ,

the pair (Ĝ, θ) defines a game in normal form. Let NE(Ĝ, θ) ⊆ Ŝ denote the
set of pure strategy Nash equilibria of the game (Ĝ, θ). Fig. 1 illustrates the
setup of the two-agent quantum mechanism Ĝ. Its working steps are shown
as follows:

Step 1: The state of each quantum coin is set as |C〉. The initial state of the
two quantum coins is |ψ0〉 = |CC〉.
Step 2: Given a preference profile θ, if the two following conditions are satis-
fied, goto Step 4:
1) There exists θ′ ∈ Θ, θ′ 6= θ such that a′Rj(θ)a (where a′ ∈ f(θ′), a ∈ f(θ))
for each agent j ∈ I, and a′Pk(θ)a for at least one agent k ∈ I;
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2) If there exists θ′′ ∈ Θ, θ′′ 6= θ′ that satisfies the former condition, then
a′Rj(θ)a

′′ (where a′ ∈ f(θ′), a′′ ∈ f(θ′′)) for each agent j ∈ I, and a′Pk(θ)a
′′

for at least one agent k ∈ I.
Step 3: Each agent j sets cj = ((θj, aj, bj, nj), (θj, aj, bj, nj)) ∈ Sj × Sj and

ω̂j = Î. Goto Step 7.
Step 4: Each agent j sets cj = ((θ′, a′, ∗, 0), (θj, aj, bj, nj)). Let the two quan-

tum coins be entangled by Ĵ . |ψ1〉 = Ĵ |CC〉.
Step 5: Each agent j independently performs a local unitary operation ω̂j on

his/her own quantum coin. |ψ2〉 = [ω̂1 ⊗ ω̂2]Ĵ |CC〉.
Step 6: Let the two quantum coins be disentangled by Ĵ+. |ψ3〉 = Ĵ+[ω̂1 ⊗
ω̂2]Ĵ |CC〉.
Step 7: The device measures the state of the two quantum coins and sends
card(j, 0) (or card(j, 1)) as the strategy sj to the designer if the state of quan-
tum coin j is |C〉 (or |D〉).
Step 8: The designer receives the overall strategy s = (s1, s2) and let the final
outcome be g(s) using rules (1)-(6) of the Moore-Repullo’s mechanism. END.

Given two agents, consider the payoff to the second agent, we denote by $CC

the expected payoff when the two agents both choose Î (the corresponding col-
lapsed state is |CC〉), and denote by $CD the expected payoff when the first
agent choose Î and the second agent chooses D̂ (the corresponding collapsed
state is |CD〉). $DD and $DC are defined similarly. For the case of two-agent
Nash implementation, the condition λ in Ref. [5] is reformulated as the fol-
lowing condition λ′:
1) λ′

1: Given an SCR f , a preference profile θ ∈ Θ and a ∈ f(θ), there exists
θ′ ∈ Θ, θ′ 6= θ such that a′Rj(θ)a (where a′ ∈ f(θ′), a ∈ f(θ)) for each agent
j ∈ I, and a′Pk(θ)a for at least one agent k ∈ I. In going from θ′ to θ both
agents encounter a preference change around a′.
2) λ′

2: If there exists θ′′ ∈ Θ, θ′′ 6= θ′ that satisfies λ′

1, then a′Rj(θ)a
′′ (where

a′ ∈ f(θ′), a′′ ∈ f(θ′′)) for each agent j ∈ I, and a′Pk(θ)a
′′ for at least one

agent k ∈ I.
3) λ′

3: For each agent j ∈ I, let him/her be the second agent and consider
his/her payoff, $CC > $DD.
4) λ′

4: For each agent j ∈ I, let him/her be the second agent and consider
his/her payoff, $CC > $CD cos2 γ + $DC sin2 γ.

Proposition 1: For two agents, given a preference profile θ ∈ Θ and a “bad”
SCR f (from the viewpoint of agents) that satisfies condition µ2, agents who
satisfies condition λ′ can combat the “bad” SCR f by virtue of a two-agent
quantum mechanism Ĝ : Ŝ → A, i.e., there exists a Nash equilibrium ŝ∗ ∈
NE(Ĝ, θ) such that Ĝ(ŝ∗) /∈ f(θ).

The proof is straightforward according to Proposition 2 in Ref. [5]. Let us
reconsider the SCR f given in Section 3.1. Obviously, when the true prefer-
ence profile is θ2, the two conditions in Step 2 of Ĝ are satisfied. Hence, Ĝ
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will enter Step 4. In Step 4, two agents set c1 = ((θ1, a1, ∗, 0), (θ2, a2, ∗, 0)),
c2 = ((θ1, a1, ∗, 0), (θ2, a2, ∗, 0)). For any agent j ∈ I, let him/her be the
second agent. Consider the payoff of the second agent, suppose $CC = 3
(the corresponding outcome is a1), $CD = 5 (the corresponding outcome is
e(a1, θ1, a2, θ2) = a4 if j = 1, and e(a2, θ2, a1, θ1) = a3 if j = 2), $DC = 0 (the
corresponding outcome is e(a2, θ2, a1, θ1) = a3 if j = 1, and e(a1, θ1, a2, θ2) =
a4 if j = 2), $DD = 1 (the corresponding outcome is a2). Hence, condition λ′

3

is satisfied, and condition λ′

4 becomes: 3 ≥ 5 cos2 γ. If sin2 γ ≥ 0.4, condition
λ′

4 is satisfied.

Therefore, in the preference profile θ = θ2, there exists a novel Nash equi-
librium ŝ∗ = (ŝ∗1, ŝ

∗

2), where ŝ∗1 = ŝ∗2 = (Ĉ, ((θ1, a1, ∗, 0), (θ2, a2, ∗, 0))), such
that in Step 8 the strategy received by the designer is s = (s1, s2), where
s1 = s2 = (θ1, a1, ∗, 0). Consequently, Ĝ(ŝ∗) = g(s) = a1 /∈ f(θ2) = {a2}, i.e.,
the Moore and Repullo’s theorem does not hold for the “bad” social choice
rule f by virtue of the two-agent quantum mechanism Ĝ.

4 A two-agent algorithmic mechanism

Following Ref. [6], in this section we will propose a two-agent algorithmic
mechanism to help agents benefit from the two-agent quantum mechanism
immediately.

4.1 Matrix representations of quantum states

In quantum mechanics, a quantum state can be described as a vector. For
a two-level system, there are two basis vectors: (1, 0)T and (0, 1)T . In the
beginning, we define:

|C〉 = [1, 0]T , |D〉 = [0, 1]T , |CC〉 = [1, 0, 0, 0]T ,

Ĵ =




cos(γ/2) 0 0 i sin(γ/2)

0 cos(γ/2) i sin(γ/2) 0

0 i sin(γ/2) cos(γ/2) 0

i sin(γ/2) 0 0 cos(γ/2)




, γ ∈ [0, π/2].
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For γ = π/2,

Ĵπ/2 =
1√
2




1 0 0 i

0 1 i 0

0 i 1 0

i 0 0 1




.

|ψ1〉 = Ĵ |CC〉 =




cos(γ/2)

0

0

i sin(γ/2)




4.2 A two-agent algorithm

Following Ref. [6], here we will propose a two-agent version of algorithm that
simulates the quantum operations and measurements in Step 4-7 of Ĝ given
in Section 3.2. The entanglement measurement γ can be simply set as its
maximum π/2. The inputs and outputs of the two-agent algorithm are shown
in Fig. 2. The Matlab program is shown in Fig. 3(a)-(d).

Inputs:
1) (ξj, φj), j = 1, 2: the parameters of agent j’s local operation ω̂j, ξj ∈
[0, π], φj ∈ [0, π/2].
2) card(j, 0), card(j, 1) ∈ Sj, j = 1, 2: the information written on the two sides
of agent j’s card.

Outputs:
sj ∈ Sj, j = 1, 2: the strategy of agent j that is sent to the designer.
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Procedures of the algorithm:
Step 1: Reading two parameters ξj and φj from each agent j (See Fig. 3(a)).
Step 2: Computing the leftmost and rightmost columns of ω̂1 ⊗ ω̂2 (See Fig.
3(b)).
Step 3: Computing the vector representation of |ψ2〉 = [ω̂1 ⊗ ω̂2]Ĵπ/2|CC〉.
Step 4: Computing the vector representation of |ψ3〉 = Ĵ+

π/2
|ψ2〉.

Step 5: Computing the probability distribution 〈ψ3|ψ3〉 (See Fig. 3(c)).
Step 6: Randomly choosing a “collapsed” state from the set of all four possi-
ble states {|CC〉, |CD〉, |DC〉, |DD〉} according to the probability distribution
〈ψ3|ψ3〉.
Step 7: For each j ∈ I, the algorithm sends card(j, 0) (or card(j, 1)) as sj to
the designer if the j-th basis vector of the “collapsed” state is |C〉 (or |D〉)
(See Fig. 3(d)).

4.3 A two-agent version of algorithmic mechanism

Given a two-agent algorithm that simulates the quantum operations and mea-
surements, the two-agent quantum mechanism Ĝ : (Ω̂1⊗ Ω̂2)× (C1×C2) → A
can be updated to a two-agent algorithmic mechanism G̃ : (Ξ1 × Φ1) × (Ξ2 ×
Φ2) × (C1 × C2) → A, where Ξ1 = Ξ2 = [0, π], Φ1 = Φ2 = [0, π/2].

We use S̃j to express [0, π]×[0, π/2]×Cj, and S̃−j to express [0, π]×[0, π/2]×Ck

(k 6= j). And thus, a strategy profile is s̃ = (s̃j, s̃−j), where s̃j = (ξj, φj, cj) ∈ S̃j

and s̃−j = (ξ−j, φ−j, c−j) ∈ S̃−j. A Nash equilibrium of a two-agent algorithmic
mechanism G̃ played in a preference profile θ is a strategy profile s̃∗ = (s̃∗1, s̃

∗

2)
such that for any agent j ∈ I, s̃j ∈ S̃j, G̃(s̃∗1, s̃

∗

2)Rj(θ)G̃(s̃j, s̃
∗

−j).

Working steps of the two-agent algorithmic mechanism G̃:

Step 1: Given an SCR f and a preference profile θ, if the two following condi-
tions are satisfied, goto Step 3:
1) There exists θ′ ∈ Θ, θ′ 6= θ such that a′Rj(θ)a (where a′ ∈ f(θ′), a ∈ f(θ))
for each agent j ∈ I, and a′Pk(θ)a for at least one agent k ∈ I;
2) If there exists θ′′ ∈ Θ, θ′′ 6= θ′ that satisfies the former condition, then
a′Rj(θ)a

′′ (where a′ ∈ f(θ′), a′′ ∈ f(θ′′)) for each agent j ∈ I, and a′Pk(θ)a
′′

for at least one agent k ∈ I.
Step 2: Each agent j sets card(j, 0) = (θj, aj, bj, nj) and sends card(j, 0) as
the strategy sj to the designer. Goto Step 5.
Step 3: Each agent j sets card(j, 0) = (θ′, a′, ∗, 0) and card(j, 1) = (θj, aj, bj, nj),
then submits ξj, φj, card(j, 0) and card(j, 1) to the two-agent algorithm.
Step 4: The two-agent algorithm runs in a computer and outputs strategies s1

and s2 to the designer.
Step 5: The designer receives the overall strategy s = (s1, s2) and let the final

9



outcome be g(s) using rules (1)-(6) of the Moore-Repullo’s mechanism. END.

4.4 New result for two-agent Nash implementation

As we have seen, in the two-agent algorithmic mechanism G̃, the entanglement
measurement γ is reduced to its maximum π/2. Hence, condition λ′ shall be

revised as λ′π/2, where λ
′π/2

1 , λ
′π/2

2 and λ
′π/2

3 are the same as λ′

1, λ′

2 and λ′

3

respectively. λ
′π/2

4 is revised as follows:

λ
′π/2

4 : For each agent j ∈ I, let him/her be the second agent and consider
his/her payoff, $CC > $DC .

Proposition 2: For two agents, given a preference profile θ ∈ Θ and an SCR
f that satisfies condition µ2:
1) If condition λ′π/2 is satisfied, then f is not Nash implementable.
2) If condition λ′π/2 is not satisfied, then f is Nash implementable. Put dif-
ferently, the sufficient and necessary conditions for Nash implementation with
two agents are updated as condition µ2 and no-λ′π/2.

The proof is straightforward according to Proposition 1 in Ref. [6]. Obviously,
the two-agent algorithmic mechanism proposed here is a completely “classical”
one that can be run in a computer.

5 Conclusions

This paper generalizes the quantum and algorithmic mechanisms in Refs. [5,6]
to the case of two-agent Nash implementation. Although Moore and Repullo
used the phrase “a full characterization” to claim that the problem of two-
agent Nash implementation had been completely solved, we argue that there
exists a new result as Proposition 2 specifies.

Since the two-agent quantum mechanism only requires two qubits to work,
theoretically current experimental technologies of quantum information are
adequate [7]. Moreover, the problem of time and space complexity existed
in the algorithmic mechanism [6] does not exist here because the number of
agents are exactly two. Therefore, the two-agent algorithmic mechanism can
be applied to practical cases immediately. In this sense, the new result on two-
agent Nash implementation holds not only in the quantum world, but also in
the macro world.
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Appendix

Consider the SCR f specified by Table 1. I = {1, 2}, A = {a1, a2, a3, a4},
Θ = {θ1, θ2}. Let B = A and Cj(a, θ) = Lj(a, θ) for each j ∈ I, θ ∈ Θ,
a ∈ f(θ), i.e.,

C1(a
1, θ1) = L1(a

1, θ1) = {a1, a2, a4},
C2(a

1, θ1) = L2(a
1, θ1) = {a1, a3, a4},

C1(a
2, θ2) = L1(a

2, θ2) = {a2, a3},
C2(a

2, θ2) = L2(a
2, θ2) = {a2, a4}.

Obviously,

a1 ∈ M1(C1(a
1, θ1), θ1) = {a1},

a1 ∈ M2(C2(a
1, θ1), θ1) = {a1},

a2 ∈ M1(C1(a
2, θ2), θ2) = {a2},

a2 ∈ M2(C2(a
2, θ2), θ2) = {a2}.

For each 4-tuple (a, θ, a′, θ′) ∈ A × Θ × A × Θ, let

e(a1, θ1, a1, θ1) = a1 ∈ C1(a
1, θ1) ∩ C2(a

1, θ1) = {a1, a4},
e(a1, θ1, a2, θ2) = a4 ∈ C1(a

1, θ1) ∩ C2(a
2, θ2) = {a2, a4},

e(a2, θ2, a1, θ1) = a3 ∈ C1(a
2, θ2) ∩ C2(a

1, θ1) = {a3},
e(a2, θ2, a2, θ2) = a2 ∈ C1(a

2, θ2) ∩ C2(a
2, θ2) = {a2}.

Case 1): Consider θ∗ = θ1, f(θ∗) = {a1}.

For rule (i):

M1(C1(a
1, θ1), θ∗) ∩ M2(C2(a

1, θ1), θ∗) = {a1} ∩ {a1} = {a1},
M1(C1(a

2, θ2), θ∗) ∩ M2(C2(a
2, θ2), θ∗) = {a3} ∩ {a2} = φ.

Hence, rule (i) is satisfied.

For rule (ii):

M1(C1(a
1, θ1), θ∗) ∩ M2(B, θ∗) = {a1} ∩ {a2} = φ,

M1(C1(a
2, θ2), θ∗) ∩ M2(B, θ∗) = {a3} ∩ {a2} = φ,

M2(C2(a
1, θ1), θ∗) ∩ M1(B, θ∗) = {a1} ∩ {a3} = φ,

M2(C2(a
2, θ2), θ∗) ∩ M1(B, θ∗) = {a2} ∩ {a3} = φ.

Hence, rule (ii) is satisfied.
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For rule (iii):

M1(B, θ∗) ∩ M2(B, θ∗) = {a3} ∩ {a2} = φ.

Hence, rule (iii) is satisfied.

For rule (iv):

e(a1, θ1, a1, θ1) = a1, M1(C1(a
1, θ1), θ∗) ∩ M2(C2(a

1, θ1), θ∗) = {a1} ∩ {a1} = {a1},
e(a1, θ1, a2, θ2) = a4, M1(C1(a

1, θ1), θ∗) ∩ M2(C2(a
2, θ2), θ∗) = {a1} ∩ {a2} = φ,

e(a2, θ2, a1, θ1) = a3, M1(C1(a
2, θ2), θ∗) ∩ M2(C2(a

1, θ1), θ∗) = {a3} ∩ {a1} = φ,

e(a2, θ2, a2, θ2) = a2, M1(C1(a
2, θ2), θ∗) ∩ M2(C2(a

2, θ2), θ∗) = {a3} ∩ {a2} = φ.

Hence, rule (iv) is satisfied.

Case 2): Consider θ∗ = θ2, f(θ∗) = {a2}.

For rule (i):

M1(C1(a
1, θ1), θ∗) ∩ M2(C2(a

1, θ1), θ∗) = {a4} ∩ {a3} = φ,

M1(C1(a
2, θ2), θ∗) ∩ M2(C2(a

2, θ2), θ∗) = {a2} ∩ {a2} = {a2}.

Hence, rule (i) is satisfied.

For rule (ii):

M1(C1(a
1, θ1), θ∗) ∩ M2(B, θ∗) = {a4} ∩ {a3} = φ,

M1(C1(a
2, θ2), θ∗) ∩ M2(B, θ∗) = {a2} ∩ {a3} = φ,

M2(C2(a
1, θ1), θ∗) ∩ M1(B, θ∗) = {a3} ∩ {a4} = φ,

M2(C2(a
2, θ2), θ∗) ∩ M1(B, θ∗) = {a2} ∩ {a4} = φ.

Hence, rule (ii) is satisfied.

For rule (iii):

M1(B, θ∗) ∩ M2(B, θ∗) = {a4} ∩ {a3} = φ.

Hence, rule (iii) is satisfied.

For rule (iv):

e(a1, θ1, a1, θ1) = a1, M1(C1(a
1, θ1), θ∗) ∩ M2(C2(a

1, θ1), θ∗) = {a4} ∩ {a3} = φ,

e(a1, θ1, a2, θ2) = a4, M1(C1(a
1, θ1), θ∗) ∩ M2(C2(a

2, θ2), θ∗) = {a4} ∩ {a2} = φ,

e(a2, θ2, a1, θ1) = a3, M1(C1(a
2, θ2), θ∗) ∩ M2(C2(a

1, θ1), θ∗) = {a2} ∩ {a3} = φ,

e(a2, θ2, a2, θ2) = a2, M1(C1(a
2, θ2), θ∗) ∩ M2(C2(a

2, θ2), θ∗) = {a2} ∩ {a2} = {a2}.

Hence, rule (iv) is satisfied.
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To sum up, the SCR f given in Table 1 satisfies condition µ2. Therefore, ac-
cording to Moore-Repullo’s theorem, it should be Nash implementable. How-
ever, as shown in Section 3 and 4, when condition λ′ is satisfied, neither in the
quantum world nor in the macro world will the SCR f be Nash implementable.
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%************************************************************
%     A two-agent algorithm
%************************************************************

% Defining the array of   
xi=zeros(2,1);
phi=zeros(2,1);

% Reading agent 1's parameters              . For example,
xi(1)=0;
phi(1)=pi/2;

% Reading agent 2's parameters              . For example, 
xi(2)=0;
phi(2)=pi/2;

���������
� πωω ==�

���������
� πωω ==�

������� =�
��

φξ

��� �� φξ

��� �� φξ

	
�����������
�����������������������������
ξ ���� =�

�
φ

���������	��
���������������������������������������������

% Defining two 2*2 matrices A and B
A=zeros(2,2);
B=zeros(2,2);

% Let A represents the local operation of agent 1.
A(1,1)=exp(i*phi(1))*cos(xi(1)/2);
A(1,2)=i*sin(xi(1)/2);
A(2,1)=A(1,2);
A(2,2)=exp(-i*phi(1))*cos(xi(1)/2);

% Let B represents the local operation of agent 2.
B(1,1)=exp(i*phi(2))*cos(xi(2)/2);
B(1,2)=i*sin(xi(2)/2);
B(2,1)=B(1,2);
B(2,2)=exp(-i*phi(2))*cos(xi(2)/2);

% Computing the leftmost and rightmost columns of 
C=zeros(4, 2);
for row=1 : 2

C((row-1)*2+1, 1) = A(row,1) * B(1,1);
C((row-1)*2+2, 1) = A(row,1) * B(2,1);
C((row-1)*2+1, 2) = A(row,2) * B(1,2);
C((row-1)*2+2, 2) = A(row,2) * B(2,2);

end
A=C;

% Now the matrix A contains the leftmost and rightmost columns of

�
�ω

��
�� ωω ⊗

�
�ω

��
�� ωω ⊗

��
�� ωω ⊗
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���������	��
����������������������������������

% Computing 
psi2=zeros(4,1);
for row=1 : 4

psi2(row)=(A(row,1)+A(row,2)*i)/sqrt(2);
end

% Computing 
psi3=zeros(4,1);
for row=1 : 4

psi3(row)=(psi2(row) - i*psi2(5-row))/sqrt(2);
end

% Computing the probability distribution
distribution=psi3.*conj(psi3);
distribution=distribution./sum(distribution);

����
� ψψ π

+= �

��� �����
����� πωωψ ⊗=

�� ψψ

�ψ �ψ �� ψψ

% Randomly choosing a “collapsed” state according to the probability distribution
random_number=rand;
temp=0;
for index=1: 4

temp = temp + distribution(index);
if temp >= random_number

break;
end

end

% indexstr: a binary representation of the index of the collapsed state
%   ‘0’ stands for      , ‘1’ stands for  
indexstr=dec2bin(index-1);
sizeofindexstr=size(indexstr);

% Defining an array of strategies for two agents
strategy=cell(2,1);

% For each agent          , the algorithm generates the strategy
for index=1 : 2 - sizeofindexstr(2)

strategy{index,1}=strcat('card(',int2str(index),',0)');
end
for index=1 : sizeofindexstr(2)

if indexstr(index)=='0' % Note: ‘0’ stands for  
strategy{2-sizeofindexstr(2)+index,1}=strcat('card(',int2str(2-sizeofindexstr(2)+index),',0)');

else
strategy{2-sizeofindexstr(2)+index,1}=strcat('card(',int2str(2-sizeofindexstr(2)+index),',1)');

end
end

% The algorithm outputs the strategies            to the designer
for index=1:2

disp(strategy(index));
end

�� ψψ

���� ∈

�� � ��

����	�	
���	��������	���	����������										�	����	����	�����������	��	����	�	��	���	

���������	 ������	���������	��	�������	!���

� �

�

�� � ��
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