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Abstract

Low labor productivity and small scale are key features of agriculture in poor na-

tions. This paper assesses quantitatively the role of self selection and skill investment

of farmers in accounting for these observations. I construct a two-sector overlapping

generation model featuring individual heterogeneity in skill. Individuals self-select into

two occupations: farmers and workers. As a key ingredient, I allow skill growth in

response to optimal investment. The model is calibrated to reproduce the farm size

distribution and other macroeconomic statistics in the US. Quantitative results show

that low aggregate total factor productivity and suboptimal skill investment are the

main drivers of unproductive, small-scale agriculture in poor countries.

JEL Classification: O11, O13, O41

Keywords: Agricultural productivity, skill investment, farm size distribution, income

differences.

1 Introduction

Two features of the agricultural sector in poor nations are striking. The first one is its

low productivity. Output per worker measured in international dollar in countries from the
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bottom 5% of the world income distribution is 60 times lower, compared to that in the

top 5%. The vast inequality in agricultural productivity across countries is documented

in Caselli (2005) and Restuccia, Yang, and Zhu (2008), and has simulated a large body of

research to provide feasible explanations. These explanations range from unmeasured home

production as in Gollin, Parente, and Rogerson (2004), barriers to intermediate inputs as in

Restuccia, Yang, and Zhu (2008), low efficiency of workers as in Lagakos and Waugh (2010)

and high transportation cost as in Adamopoulos (2006) and Gollin and Rogerson (2010).

The second, and relatively less well-known, feature is the small scale of production. I

follow a long tradition in the literature and measure scale as the land size of a farm. To

demonstrate the enormous differences in scale of agricultural production across countries, I

present two figures. Figure 1 plots mean farm size against 1996 real income per worker in log

scale. Mean farm size clearly rises with income per worker - with a correlation of 0.53. An

average farm in the United States, for example, commands 180 hectares of land - 90 times

the size of an average farm in Uganda. Most of the differences in mean farm size remain

after controlling for the size of arable land and types of crops produced within a country.
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Figure 1: Cross Country Distribution of Mean Farm Size

The inequality in average farm size reflects the differences in the size distribution of

farms. Figure 2 plots the (average) farm size distribution in two representative groups of

countries.1 In the poorest five nations, 73% of the farms are smaller than 5 hectares. In

contrast, 50% of the farms in the richest five nations exceed 50 hectares in size.

1Rich countries: US, Canada, Australia, Norway, Switzerland. Poor countries: Uganda, Burkina Faso,
Ivory Coast, Pakistan, Sri Lanka.
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Figure 2: Size Distribution of Farms Across Income Levels

Farm level data from the US show that larger farms are remarkably more productive.

Using 2007 agriculture census data, I find that farms in the top scale bracket are at least 16

times more productive in terms of sales per worker, and 30 times more productive in terms of

value added per worker, compared to those in the bottom scale bracket.2 Productivity also

appears to increase monotonically with scale, as illustrated in Figure 3. Internationally, farm

level productivity data as detailed as the ones in the US are not systematically available,

especially for developing countries. In a study of 15 developing countries, Cornia (1985) found

that larger farms have higher value added per worker, but lower value added per hectare.3

To see the effect of scale on average productivity in agriculture, consider a counterfactual

experiment where all countries have the US farm level productivity, but produce at their own

scales. In Appendix B, I show that observed differences in farm size distribution alone can

generate a factor of 7 differences in output per worker, between the 90th percentile country

and 10th percentile country.

Two questions naturally arise: why are farms predominantly small in poor nations and

how producing at a small scale affects agricultural productivity in these economies. I develop

a model in which agriculture output is produced by idiosyncratic farmers facing a decreasing

2Substantial differences remain when productivity is measured residually. The Solow residual ranges from
3 to 5 times higher for farms in the top scale bracket. The results are also robust when earlier censuses (92,
97 and 02) are used.

3Similar findings are documented in Fan and Chan-Kang (2005) for a set of asian countries, and in
Byiringiroa and Reardon (1996) for Rwanda. There is a also large literature debating the relation between
farm size and land productivity. See Feder (1985) and reference therein.
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Figure 3: Productivity by Size of Farms, United States 2007

returns to scale technology. The productivity of farmers determines the scale of production as

well as the average productivity in agriculture. The model builds on Lucas (1978), extended

to allow for on-the-job skill investments.

Differences in average productivity of farmers arise from two distinct margins in the

model. The extensive margin operates through occupation choice, i.e., heterogeneous in-

dividuals self-select into farmers and workers. More able individuals will run farms and

produce agricultural output, and less able ones will supply labor for wage. Subsistence need,

however, dictates that even less able farmers will be producing in poor nations. As a result,

average productivity of farmers is low in these countries. This margin is similar to the one

stressed in Lagakos and Waugh (2010).

The intensive margin operates through on-the-job skill investment, which is the key ingre-

dient of this paper. By allocating time to skill investment, farmers improve their exogenously

drawn productivity over the life cycle. At the aggregate, such improvement acts like an in-

crease in total factor productivity in agriculture. However, farmers in poor economies invest

less in skill due to high financing cost - in the form of high interest rate, which adversely

impacts their equilibrium productivity. On the one hand, skill investment can be broadly

interpreted as a form of human capital accumulation. Focusing on the intensive margin

accords with recent development in the literature that emphasizes the role of human cap-

ital accumulation in understanding income differences.4 On the other hand, cross-section

data in the US reveals that on-the-job skill investment is a critical component of farmer’s

4See Manuelli and Seshadri (2005), Cordoba and Ripoll (2007), Erosa et al. (2010), among others.
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productivity. Table 4 records the time allocation between farm work and non-farm work by

operators aged 25 and above, whose primary occupation is farming. Table 5 documents the

life-cycle productivity profile of farm operators. The key observation is that young farmers

allocate substantial amount of time to non-production activities that improve their future

productivity by as much as a factor of 1.5. This suggests that skill investment might be

quantitatively important in determining productivity in agriculture.

I calibrate the model to the US. In particular, the model reproduces the size distribution

of farms and time allocations of farmers. Doing so provides reasonable identification of

the underlying skill distribution and imposes discipline on the behavior of on-the-job skill

investment. Given exogenous differences in aggregate total factor productivity and land

endowment - both inferred from data, the model predicts a 23-fold difference in agricultural

output per worker between the 80th percentile country and the 20th percentile country,

compared to a 25-fold difference in the data. Like in the data, the model also generates

much larger farms in high income countries. Mean farm size is 380 hectares in the 80th

percentile country, and only 16 hectares in the 20th percentile country. Quite surprisingly,

endogenously produced farm size distributions are remarkably close to the actual ones for a

large set of countries, which I view as support of the mechanism stressed in this paper. The

model also accords well with data in terms of sector labor share and relative price.

This paper is related to a large literature that studies cross country income differences,

e.g., Klenow and Rodriguez-Clare (1997), Prescott (1998), Hall and Jones (1999).5 In stress-

ing the role of unmeasured skill, this paper is similar to Assuncao and Ghatakb (2003).

However, they mainly focus on the negative correlation between size and land productiv-

ity in an analytical framework. Adamopoulos and Restuccia (2009) also focus on farm size

heterogeneity across countries and use a version of Lucas (1978) to endogenously generate

a size distribution. Two key features separate this paper from theirs. Firstly, they do not

consider occupation choice, and instead focus on time allocation between agricultural and

nonagricultural production uniformly for all household members, despite their different skills.

Secondly, a key contribution of this paper is to explore quantitatively the role of on-the-job

skill investment in determining productivity of farmers. This aspect is absent in their paper.

Hence, I view this paper as complement to theirs.

The remaining of the paper is organized as follows. In section 2, I describe the economic

environment and define a competitive equilibrium. In section 3, I calibrate the model and

5For stressing the role of agriculture in understanding income differences within a development accounting
framework, see also Cordoba and Ripoll (2005), Chanda and Dalgaard (2008) and Vollrath (2009).
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present the quantitative results. Section 4 concludes.

2 Model

2.1 Environment

Each period a continuum of measure one individuals are born, and live for T periods. Indi-

viduals of the same cohort constitute a household, with all decisions made by a hypothetical

household head. When born, individuals within a household draw independently their skill

type, z ∈ ℜ+, from a known, time invariant distribution G(z). The instantaneous utility

function of a household is given by

U(ca, cn) = η · log(ca − ā) + (1− η) · log(cn)

where (ca, cn) denote, respectively, agricultural consumption and nonagricultural consump-

tion at the household level. Preference parameter η controls the relative taste towards two

consumption goods, and ā is typically interpreted as subsistence consumption level. ā > 0

implies an income elasticity of agricultural consumption less than unity.

Each member is endowed with one unit of physical time. Households equally own the

stock of land L̄. There is no population growth or lifetime uncertainty. Total measure of

individuals at any point in time is T.

2.2 Technology and Household Decision

Everybody works in this economy and faces two occupations: farmer and worker. All workers,

regardless of skill type, earn the same wage rate. A farmer combines her skill (z), labor (ha)

and land (ℓ) to produce agricultural output according to

Ya = A · z1−γ
(

hα
a · ℓ1−α

)γ

where A represents the efficiency level. There are competitive rental markets for labor and

land at prices w and q, and output are sold in competitive markets at price p. All prices are

expressed relative to the price of nonagricultural output. A farmer with skill z in production
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earns residual profit π(z) after factor payments.

π(z) = arg max
{ha,ℓ}

p · Ya − w · ha − q · ℓ

For later reference, denote ha(z), ℓ(z) the optimal demand of labor and land. It is straight-

forward to show that profit is linear in the skill input, i.e.,

π(z) = z · (1− γ) · (p · A)
1

1−γ

(

γ
(α

w

)α
(

1− α

q

)1−α
)

γ

1−γ

Although the initial realization is drawn exogenously, skill can subsequently grow through

investment. Specifically, skill evolves over time according to the following law of motion

zt+1 = zt + zt · s
θ
t , st ∈ [0, 1]

Each period, the household head considers tow alternative uses of each member’s time:

market work or skill investment. If st fraction is allocated to skill improvement, then (1−st)

is supplied to market work. This skill technology assumes time as the sole input, and hence

abstracts from resources input. This is done for several reasons. First, it allows for closed-

form solutions and clearer expositions. Second, data on time allocations of farm operators

are available to discipline relevant parameters. Lastly, data on resources investment by farm

operators in skill accumulation are limited, if available at all.

When born, the household head chooses for each member an occupation, sequences of

skill investment, and sequences of consumption and saving to maximize discounted household

utility. For simplicity, I assume that occupation can not change over time. This assumption

is not restrictive because I focus on the steady state in the quantitative analysis. For the

same reason, I state the household maximization problem of an arbitrary cohort as follows

max
{cat,cnt,st}

:

T
∑

t=1

βtU(cat, cnt)

s.t :

T
∑

t=1

pcat + cnt
R1−t

≤ Y

where R denotes the return on savings, and Y denotes the maximized discounted income

of the household. The following lemmas establish results that characterize the stationary

equilibrium, where all prices are constant.
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Lemma 1 Workers don’t invest in skill improvement.

This follows naturally from the assumption that all workers earn the same wage rate w,

regardless of skill type. Thus it is not optimal for a worker to invest in skill accumulation.

Discounted lifetime income of a worker is simply Yw =
∑T

t=1w · R1−t. In contrast, since

residual profit is strictly increasing in skill input, Inada conditions ensure skill investment

profitable for all farmers. The following lemma characterizes the optimal investment profile

of farmers.

Lemma 2 Optimal time investment is independent of initial skill type

The proof is given in Appendix. The lemma implies a common slope of skill profile for all

farmers, and the level is determined by the initial draw. It is convenient to define variable

xt as follows

xt =







1, t = 1

xt−1 · (1 + sθt−1), t = 2, ..., T

{xt}
T
t=1 summarize the level of skill at time t relative to the initial draw. Clearly, {xt} is

independent of skill type. This allows a simple expression of lifetime discounted income of a

type z farmer

Yf(z) = π(z) ·
T
∑

t=1

{xt · (1− st) · R
1−t}

Note that Yf(z) is linear and strictly increasing in skill type z. Recall that discounted lifetime

income of a worker (Yw) is independent of skill type z. This leads to Lemma 3.

Lemma 3 There exists a cut-off level of skill type, z̄, such that household members with skill

type z < z̄ become workers, and household members with skill type z ≥ z̄ become farmers.

The most able members will manage farms and utilize their skills. The less able members

will supply inelastically one unit of labor to the market, and forgo their endowed skills.

The marginal farmer, whose skill type is z̄, is indifferent between two occupations. The

maximized discounted income of a household is

Y = G(z̄) · Yw +

∫

z̄

Yf(z)dG(z) + q · L̄/T ·

T
∑

t=1

R1−t
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2.3 Nonagricultural Firm’s Optimization

There is a representative firm that produces nonagricultural output with a linear technology

Yn = A · Hn. Two remarks are in order. First, efficiency parameter A augments both

agricultural and nonagricultural production, and hence represents economy-wide efficiency.

From now on, I shall refer to A as total factor productivity (TFP). Second, Hn denotes labor

hours and does not embed skills. The representative firm solves

max
{Hn}

A ·Hn − w ·Hn

2.4 Equilibrium

A stationary competitive equilibrium is a collection of prices (w, p, q, R), consumption and in-

vestment (cat, cnt, st)
T
t=1, factor demand ha(z), ℓ(z), Hn such that: (1) given prices, (cat, cnt, st)

T

t=1

solve household maximization problem; (2) given prices, ha(z), ℓ(z) solve farm manager’s

profit maximization, and Hn solve nonagricultural firm’s profit maximization; (3) prices are

competitive; (4) all markets clear.

To solve the model, I begin by solving for prices (p, q). Equation (1) below states the

indifference condition of the marginal manager. Equation (2) below states the land market

clearing condition.

π(z̄) ·

T
∑

t=1

{xt · (1− st) ·R
1−t} =

T
∑

t=1

{w ·R1−t} (1)

∫

z̄

ℓ(z)dG(z) ·
T
∑

t=1

{xt · (1− st)} = L̄ (2)

Dividing (1) by (2) yields an expression for the rental price of land

q =

[

∑T

t=1{xt · (1− st)}
∑T

t=1{xt · (1− st) · R1−t}

]

·





γ · (1− α) ·
(

∑T

t=1{w · R1−t}
)

(1− γ) · L̄



 ·

∫

z̄
zdG(z)

z̄
(3)

Substituting (3) into (1) yields the relative price of agricultural good

p =

[

∑T

t=1{w · R1−t}

z̄ · (1− γ) ·
∑T

t=1{xt · (1− st) · R1−t}

]1−γ

·

(

γ
(α

w

)α
(

1− α

q

)1−α
)−γ

·
1

A
(4)
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Note the relative price of agricultural good is strictly decreasing in TFP. To the extend that

poor countries also have lower TFP, this implies higher price of agricultural consumption

in low income countries. Solving for optimal consumption bundles and aggregating over

generations yields the aggregate demand of two consumption goods

Ca =

T
∑

t=1

cat =

[

T
∑

t=1

(βR)t−1

]

·

[

Y − p · ā
∑T

t=1R
1−t

∑T

t=1 β
t−1

]

·
η

p
+ T · ā (5)

Cn =

T
∑

t=1

cnt =

[

T
∑

t=1

(βR)t−1

]

·

[

Y − p · ā
∑T

t=1 R
1−t

∑T

t=1 β
t−1

]

· (1− η) (6)

In each household, the measure of workers is G(z̄). Given constant prices, the division

of labor does not change across cohorts. Hence the total measure of worker in the economy

is simply T ·G(z̄). The measure of workers demanded in agricultural production is obtained

by first integrating over farmers within a household, and then summing over generations

Ha =

[

T
∑

t=1

xt(1− st)

]

·

∫

z̄

ha(z)dG(z)

Similarly, aggregate agricultural output is given by

Ya =

[

T
∑

t=1

xt(1− st)

]

·

∫

z̄

Ya(z)dG(z)

Imposing labor market clearing, the measure of workers in the nonagricultural sector is

Hn = T ·G(z̄)−Ha. The output in the nonagricultural sector is Yn = A ·Hn. Goods market

clearing conditions require Ca = Ya, Cn = Yn. Loan market clears by Walras’ law.

Finally nonagricultural firm’s optimization implies w = A. Hence the two goods market

clearing conditions constitute two equations with two unknowns (z̄, R) that can be solved

numerically. Once the cut-off skill and interest rates are known, rest of the equilibrium

variables can be recovered easily.

Lemma 4 Low TFP economy has a lower cut-off skill level, and a higher interest rate.

The proof is given in Appendix B. Lemma 4 suggests that low TFP adversely impacts

the productivity of farmers through both the extensive margin and the intensive margin. On

the one hand, low TFP implies that the marginal farmer is of lower quality. On the other

hand, higher interest rate in low TFP economy also reduces the incentive to invest in skill
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improvement because future income gets discounted more. As a result, the skill profile is

less steep. Both margins lead to lower average productivity of farmers, which translates into

low measured labor productivity and small scale.

3 Quantitative Analysis

3.1 Calibration

In this section, I parameterize the model. Model period is 10-years. Individuals are born

at the age of 25 and live for 5 periods. Some model parameters are either standard or can

be inferred without solving the model. Assuming an annual discount rate of 0.96, I set

β = 0.9610. TFP for the US is normalized to be 1. Elasticity parameters of the agricultural

production function are directly inferred from agriculture value added data in the US (see

Appendix A). Over the period 1980-1999, the average share of agricultural output accruing

to farm operators is 20%. I thus set γ = 1 − 0.2 = 0.8. This paper is certainly not the

first one to estimate the span-of-control parameter. However, existing works either focus on

the aggregate economy as in Guner, Ventura, and Yi (2008), Restuccia and Rogerson (2008)

and Gollin (2008) or the manufacturing sector as in Atkeson and Kehoe (2005). The value

of the span-of-control parameters from these studies range from 0.8 to 0.9. A value of 0.8

for the agricultural sector appears compatible with these estimates.6 Over the same period,

return to land and hired labor are almost identical, which suggests α = 0.5 a consistent

value.

I restrict the skill type distribution to be lognormal with mean µ and standard deviation

σ. Given values of (β,A, γ, α), I choose the remaining six parameters (ā, η, L̄, µ, σ, θ) simul-

taneously to match moments of the US economy in 1992. From the World Development

Indicator, agriculture employs 2% of the labor force. I also target a long run agricultural

employment share of 0.5%. This corresponds to the asymptotic agricultural employment

share when the subsistence consumption share of income is effectively zero. To discipline

θ, I turn to data on time allocations of farm operators. From 1992 census of agriculture, I

compute the distribution of labor hours over farmers in 5 different age groups: 25-34, 35-44,

45-54, 55-64, 65+. Within the model, this statistic corresponds to 1−si∑T
i=1

1−si
because farmers

of generation i spend (1 − si) fraction of their time producing. I choose θ to reproduce the

share of farmers aged 35-44. However, the implied shares of other farmers are reasonably

6Adamopoulos and Restuccia (2009) use a smaller value γ = 0.6, but they do not include hired labor in
their production function.

11



close to the data.7 Finally, I ask the model to reproduce the observed size distribution of

farms in the US. Figure 4 plots the calibrated size distribution against data. In addition, as

depicted in Figure 5, the model also implies a land distribution that fits the data very well,

even though it is not targeted. These figures are presented in Appendix B.

3.2 Quantitative Results

In this section I assess the model’s ability to quantitatively explain cross-country variations

in agricultural productivity and scale of production. Data on sectoral productivity, sectoral

labor shares and land endowment are from Restuccia, Yang, and Zhu (2008). The size distri-

butions of farms are constructed from the World Census of Agriculture (round 1990, 2000)

published by Food and Agriculture Organization of the United Nations. These two data

sets, however, are not directly comparable because of time period differences. The data in

Restuccia, Yang, and Zhu (2008) pertain to the year 1985. World Census of Agriculture is a

collection of national agriculture censuses administered independently in each member coun-

try - possibly in different years (see Table 10 for country specific census years). In principle,

this study should be restricted to countries with their censuses conducted in 1985. As a first

pass, however, I merge these two data sets with two defenses. First, census of agriculture

typically takes place every 5 years in most countries, if at all. It is thus rather costly to

obtain completely synchronized data set as detailed as the present one. Second, even though

census year in the sample ranges from 1980 to 2000. Most of the countries indeed have their

censuses conducted around 1990. It is unlikely that the composition of farms will undergo

drastic changes over a period of five years. The sample consists of 40 countries with good

representation of both developed and developing nations8.

Countries differ in their aggregate efficiency (A) and land endowment (L̄), and are oth-

erwise identical. In particular, they all face the same ex-ante distribution of skill types. I

infer Ai and L̄i of country i as follows

Ai =
ynlni

ynlnus

, L̄i =
LERi

LERus

· L̄us

where ynlni is the nonagricultural GDP per worker of country i, and LERi is the land-

7See Appendix B for details.
8Burkina Faso, Egypt, India, Sri Lanka, Morocco, Uganda, Dominica, Pakistan, Ivory Coast, Greece,

Hungary, Italy, Tunisia, Switzerland, Portugal, Ecuador, Peru, Netherland, Belgium, Spain, Colombia,
Nicaragua, Ireland, Austria, Germany, France, Denmark, Venezuela, United Kingdom, Finland, Brazil,
Chile, Norway, Sweden, New Zealand, Canada, Uruguay, Argentina, Australia, United States
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employment ratio of country i. Both are directly available from Restuccia et al. (2008).

To assess the quantitative performance of the model, I focus on the following metrics:

agricultural labor share (La), real agricultural output per worker (ryala), real GDP per

worker (rgdp) and mean farm size (mfs). Note that agricultural employment is the sum of

agricultural workers and farmers. When computing GDP, US price is used as international

price to make results comparable to the data, which is PPP adjusted. To facilitate compari-

son between model and data, I divide countries in the sample into quintile by real GDP per

worker in the data. Productivity in the richest quintile (Q.5) is normalized to be 1. The

results are summarized in Table 1.

Quintile rgdp ryala La mfs
Data Model Data Model Data Model Data Model

Q.1 0.13 0.19 0.04 0.04 0.66 0.48 7 16
Q.2 0.30 0.35 0.15 0.12 0.34 0.22 56 43
Q.3 0.52 0.59 0.36 0.37 0.18 0.07 83 107
Q.4 0.85 0.87 0.82 0.48 0.08 0.05 68 69
Q.5 1.00 1.00 1.00 1.00 0.05 0.05 515 381

Table 1: Model vs Data, by Income Quintile

The model does an excellent job explaining productivity differences. In the sample, the

richest (Q.5) countries are about 8 times more productive overall and 25 times more pro-

ductivity in agriculture, relative to the poorest countries (Q.1). The model generates almost

the same magnitude of differences. Low agricultural productivity can arise from two sources:

low TFP and low average productivity of farmers. However, the former can account for at

most 50% of the differences in agricultural productivity between Q.5 and Q.1 country. The

reason is that Q.5 country is at most 5 times more productive in nonagricultural production,

compared to Q. 1 country. The differences in idiosyncratic productivity of farmers explain

the remaining half. These results suggest that the quality of farmers are at least as important

as overall efficiency for understanding productivity differences in agriculture.

Farms in rich nations are much larger compared to those in poor nations in the data,

and so are they in the model. Mean farm size is 381 hectares in the 80th percentile country,

and only 16 hectares in the 20th percentile country. Countries not only differ in their

average scale, but also in their size distribution. In Appendix B I plot the endogenously

generated farm size distributions along with their empirical counterparts for all countries in

the sample. Even though ex ante all countries face the same skill-type distribution, the ex

post size distribution of farms exhibits vast variations across levels of income. For a large set
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of countries the model can reproduce the actual distributions almost exactly, which I view

as a success of the model.

Agriculture, despite its low productivity, absorbs most of the labor force in poor nations.

The model is able to capture this stylized fact as well. For the bottom quintile countries,

the model predicts a 48% agricultural employment share - about 80% of the actual share.

The fact that the model fails to generate a larger agricultural labor share suggests other

forces at work that are not specifically modeled here. Among other things, barriers to

sectoral labor movements are particularly important to the question posted here. Moreover,

such barriers are prevalent in developing nations as evidenced by substantial disparities in

rural-urban earnings. One famous example is the Hukou system in China that imposes

institutional restrictions on immigration from rural villages to urban cities. Unfortunately,

direct measures of barrier to labor movement are not available, making further quantitative

analysis that incorporates these barriers infeasible.9

Agriculture’s share of total output declines as income rises - a macroeconomic implication

of Engel’s Law. The model predicts agricultural output to be 10% of the aggregate output

in the top quintile countries, and 70% in the bottom quintile countries. In the data, the

value is 3% and 30%, respectively. One possible explanation is that the model over-predicts

the relative price of agricultural output, resulting in a higher agriculture share of GDP

when measured at domestic prices. Using ICP data from the World Bank, I compute the

relative price between “agricultural consumption” and “nonagricultural consumption” for

all available countries.10 The relative price in 2005 is around 4 times higher in the 10th

percentile country, compared to the 90th percentile country. In the model, this relative price

ratio is 2.8, which is roughly in line with the data.

Consensus in the development literature attributes TFP differences as the main source

of income differences. The poorest countries in the sample have 4.5 times lower TFP and

2.1 times lower land endowment, relative to the US.11 If TFP of these countries is fixed

at the US level, and land endowment at its country-specific value, equilibrium allocations

change minimally. Poor endowment is the least to blame for low agricultural productivity.

9Some measures are constructed indirectly using first order conditions in Restuccia et al. (2008). A
straightforward incorporation of these barriers improves model’s prediction substantially. However, the fact
the farmers and farm workers are treated differently in my model complicates the mapping between my
model and the data. As a result, I do not pursue this route.

10“Agricultural consumption” is defined as food, non-alcoholic beverage, alcoholic beverage and tobacco.
“Nonagricultural consumption” is defined as the rest of individual consumptions plus capital consumption.
A similar calculation is done also in Lagakos and Waugh (2010)

11These countries are Burkina Faso, Uganda, India, Ivory Coast and Pakistan
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In contrast, if TFP is fixed at its country-specific level, and land endowment at the US level,

there is a 22-fold reduction in agricultural productivity. Table 2 summarizes these results.

A reversed calculation implies that improvement in overall efficiency benefits agriculture

disproportionately, i.e., a 4.5-fold improvement in overall efficiency increases agricultural

productivity by a factor of 22. Public policies, albeit agriculture oriented, should aim at

improving overall efficiency through better institutes, better educations and more efficient

markets.

Exg. variable La ryala mfs
L̄ only 2.5% 1/2 117
A only 24% 1/22 47
Both A and L̄ 53% 1/48 13
Data 70% 1/51 3

Table 2: TFP versus Endowment

3.3 Discussion

An novel and key feature of the model is to embed skill accumulation in an otherwise standard

Lucas’ span-of-control model. A similar idea was explored in Bhattacharya (2009), who shows

that skill accumulation is critical to quantitatively explain cross-country variation in firm size

distribution and income. While in that paper the main channel of variation is coming from

resources input in skill accumulation, in this model the main mechanism operators through

nonhomothetic preferences. To highlight the quantitative importance of skill accumulation,

I calibrate a version of the model without skill accumulation, and then assess its quantitative

prediction for the representative poor country. The model without skill fails to generate the

observed size distribution of farms in the US. Moreover, given exogenous variables, the model

without skill accumulation in general explains less of the cross-section differences in labor

allocation and productivity. Details of calibration and quantitative results are presented in

Appendix B.

As shown in Restuccia, Yang, and Zhu (2008), barriers to intermediate inputs have size-

able impact on labor allocation and agricultural productivity. Here I explore how such

barriers affect agricultural productivity in an environment with idiosyncratic farmers. To do

so, I modify the agricultural production technology to incorporate intermediate input, X .

Ya = A · z1−γ
(

Xφ · hρ · ℓ1−φ−ρ
)γ
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Intermediate good can be converted from nonagricultural output at the rate of π. For

expositional purposes, I suppress skill accumulation. Detailed calibration and results are

given in Appendix B. As expected, the model explains more of the differences in labor

allocation and productivity when distortion in intermediate inputs are included (58% vs.

48% in labor share, 33-fold vs. 28-fold differences in agricultural productivity).

Restuccia, Yang, and Zhu (2008) explore the impact of intermediate input on agricul-

tural productivity through the intensive margin. However, there are evidences suggesting

that the extensive margin might also be important. Evenson and Gollin (2003) document a

substantial lag in adoption of modern variety in Sub-Saharan Africa during the 1960s and

1970s. There are two ways skill might affect the use of modern inputs. Through the exten-

sive margin, low skill might impede the farmer’s learning of the new variety, and delays the

decision of adoption. Through intensive margin, low skill farmers might use modern variety

to a less extent if skill is complementary to modern varieties. Quantitative explorations from

these angles are left for future work.

4 Conclusion

Unmeasured skill of farmers is shown to be quantitatively important for understanding cross

country differences in agricultural productivity. Even though skill is latent in nature, the

model establishes a link between skill and farm size distribution, which is observable. The

model is able to capture not only the fact that mean farm size increases with the level of

income, it also generates endogenously size distributions that are reasonably close to the

data.

The agricultural sector characterized in this paper is “poor but efficient”, as articulated

in Schultz (1964). Nonetheless, various distortions geared specifically towards agriculture

are also important. Distortions such as barriers to sectoral labor movements, and implicit

government taxation on agriculture as discussed in Krueger, Schiff, and Valdes (1988) and

Anderson (2009), might be key to understand the coexistence of a large labor force and low

productivity in agriculture in poor nations. While eliminating these distortions is important

for development in agriculture, public policies favoring better institutions, faster technology

adoptions and more efficient markets are of first order importance in improving overall living

standards.
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A Data Appendix

• World Census of Agriculture: This data set is published by the Food and Agri-
culture Organization (FAO) of the United Nations. The data set is an archive of
national agriculture censuses from a wide range of developing and developed countries.
FAO processes these national censuses and presents key summary statistics in a com-
mon, internationally comparable format. The unit of observation in WCA is a holding
- defined as “an economic unit of agricultural production under single management
comprising all livestock kept and all land used wholly or partly for agricultural pro-
duction purposes, without regard to title, legal form, or size”. Throughout this paper,
I view a holding as identical to a farm. http://www.fao.org/economic/ess/ess-data/ess-wca

• World Development Indicator: Data can be accessed at http://data.worldbank.org/indicator

• Factor Shares in U.S Farming: Data are from National Agriculture Statistics Ser-

vices administrated by the Department of Agriculture, and can be accessed through

http://www.ers.usda.gov/Data/FarmIncome/FinfidmuXls.htm . In the calculation, government trans-

fers are subtracted from total output and real estate and non real estate interest are

included as capital income.

1985 1980-1990 1990-1999 1980-1999
Intermediate 0.47 0.48 0.51 0.49

Capital 0.24 0.24 0.15 0.20
Labor 0.05 0.05 0.07 0.06
Land 0.05 0.04 0.05 0.04

Managers 0.18 0.18 0.23 0.20

Table 3: Factor Shares in U.S. Farming

• Working Days by Age of Farm Operator: From 1992 census of agriculture, I

extract the number of days off the farm for farm operators by age (Panel A), assuming

250 working days a year. Midpoint of the interval is used as the interval average.

• Scale and Productivity By Age of Farm Operator: The following table is re-

stricted to farm operators whose primary occupation is farming. Mean holding size

is measured by acreage per farm. Productivity is measured by net cash income of

operators.
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Panel A
25-34 35-44 45-54 55-64 65+ Total

None 52,938 104,375 110,380 158,629 249,512 675,834
1-99 days 18,015 29,804 25,428 27,061 19,267 119,575
100-199 days 7,872 14,648 14,308 12,423 6,169 55,420
200 days + 10,028 15,565 14,681 11,082 5,087 56,443
Panel B
Work Days (1000s) 17875 33908 34478 46589 66975
% Days 0.09 0.17 0.17 0.23 0.34

Table 4: Days off Farm by Age of Operator

Age 25-34 35-44 45-54 55-64 65+
Mean Holding Size 575 857 909 736 542
Net Cash Income 59,839 90,705 91,501 60,249 32,282

Source: 2007 U.S. Census of Agriculture, Vol 1, Chapter 1: Table 63.

Table 5: Scale and Productivity over Life Cycle of Farm Operators

B Model Appendix

B.1 Proofs

Proof of Lemma 2:

Profit function is linear in skill, i.e.,

π(z) =π̃ · z

where π̃ = (1− γ) · (P · A)
1

1−γ

(

γ
(α

w

)α
(

1− α

q

)1−α
)

γ

1−γ

In a stationary equilibrium, the optimal sequence of skill investment is the solution to the

following problem

max
st

:
T
∑

t=1

R1−t · zt · (1− st)

s.t : zt+1 = zt(1 + sθt )
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Let λt be the Lagrangian multiplier for period t

L =

T
∑

t=1

R1−t · zt · (1− st)− λt(zt+1 − zt(1 + sθt ))

F.O.Cs are

R1−t = λtθs
θ−1
t (7)

λt = R−t(1− st+1) + λt+1(1− δt + sθt ) (8)

From equation (8), if λt+1 is independent of beginning of period skill zt, then (λt) does not

depend on zt. Consequently the equation (7) the optimal time investment st does not depend

on zt as well. To solve the optimal path, I use backward induction. Clearly, it is optimal to

invest no time in the last period, sT = 0, λT = 0, and hence independent of zT−1. Using the

argument above, λT−1 and sT−1 does not depend on zT−1. Repeating this argument implies

that the entire path of investment is independent of initial skill type.

Proof of Lemma 4:

Consider two economies with Ar = g · Ap, g > 1, and assume the threshold level of skill and

interest rate are the same in these two economies. Equation (3) implies qr = g · qp because

optimal time st depends only on interest rate. Given this, equation (4) implies pr = pp.

These two conditions, together with equation (5), further implies Yr = g · Yp, i.e., aggregate

income is proportional to aggregate TFP. Aggregate production of agricultural good is also

proportional to TFP. However, with nonhomothetic preferences, Equation (5) suggests that

demand of agricultural consumption drops by less than a factor of g. Excess demand pushes

up the price of agricultural consumption, and reduces the threshold level of skill in low

efficiency economy. This implies a higher labor share in agriculture, and a decline in the

supply of nonagricultural good. Interest rate must rise to offset the excess demand.

B.2 Development Accounting Exercise

To simply the calculation, I assume that all farms in size class [sl, sh] have the same size

(sl+ sh)/2. Let si denote the mean farm size, and µi denote the corresponding share in class

i. In addition, let yi and hi denote, respectively, the output and labor. Using U.S. data, I
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estimate the following equations

log ((y/h)i) = b1 + b2 · log(si)

log ((hl)i) = c1 + c2 · log(si)

Note that yi is measured by the total market sales of goods net of government payments, and

hi is measured by the sum of farm operators and hired workers. The methodology in U.S.

agriculture census assumes one farm operator per farm. Let ni note the number of farms

with hli denote the reported number of hired labor. The total number of worker in size class

i is simply ni + hli. For 2007, the estimated coefficients are (b1, b2) = (-0.916,0.548) and

the R2 is 93% for the first regression. For the second regression, the estimated coefficients

are (c1, c2) = (1.62, 0.058) and the R2 is 72%. Given size distribution µi over size class,

then aggregate output per worker is computed as

Y =
∑

i

[(b1 + b2 · log(si)) · hi · µi]

hi =
(c1 + c2 · log(si)) · µi + µi

∑

i [(c1 + c2 · log(si)) · µi + µi]

where the second equation gives the distribution of workers over size classes.

B.3 Parameter Values

η ā θ L̄ µ σ
0.015 0.221 0.3157 0.7842 -3.1236 4.1693

Table 6: Parameter Values

Age 25-34 35-44 45-54 55-64 65+
Data 0.09 0.17 0.17 0.23 0.34
Model 0.08 0.17 0.20 0.26 0.29

Table 7: Time Share by Age of Operator: Model against Data

23



 < 5  <20  <28  <40  <56  <72  <88  <104  <200  <400  <800 800+ 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
um

ul
at

iv
e 

D
en

si
ty

Size Distribution: Model vs Data

 

 

Data

Model

Figure 4: Calibrated Size Distribution
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B.4 Model Performances

1. Baseline Model Prediction
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Figure 6: Model Prediction Against Data

2. Model without Skill Accumulation

I calibrate (η, ā, µ, σ) to match: current agricultural employment (2%), long run agri-

culture employment (0.5%), Mean farm size (198) and coefficient of variation of farm

size distribution (0.5). I ask the model to predict for a representative poor country

with 4.5 times lower TFP and a 2.1 times smaller land endowment.

Exg. variable La ryala mfs
L̄ only 3.3% 1/1.6 65
A only 22% 1/16 20

Both A and L̄ 48% 1/28 6
Data 70% 1/51 3

Table 8: TFP versus Endowment (No Skill Accumulation)

3. Model with Intermediate Inputs

I set γ = 0.8, φ = 0.5 and ρ = 0.2. For the U.S, π = 1. I choose (η, ā, µ, σ) to target a

2% current agriculture employment, 0.5% long run agriculture employment, 2% share
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of agriculture output of GDP, and the mean farm size. Again I ask the calibrated

model to predict equilibrium allocations for the representative poor country, which has

4.5 times lower TFP, 2.1 times smaller land endowment and 3 times higher relative

price of intermediate inputs.

Exg. variable La ryala mfs
L̄ only 2.4% 1/1.2 88
A only 29% 1/17 18
π only 3.1% 1/1.6 135
A and L̄ 34% 1/20 7
A and π 49% 1/28 12
π and L̄ 3.6% 1/1.9 57

A, π and L̄ 58% 1/33 5
Data 70% 1/51 3

Table 9: TFP versus Endowment (With Intermediate)
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B.5 Model Predicted Farm Size Distribution

<0.5 <1  <2  <3  <4  <5  <10 <20 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Burkina Faso

 

 

Data

Model

<1 <2 <5 <10 <50

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class
C

u
m

u
la

ti
v
e
 D

e
n
s
it
y

Uganda

 

 

Data

Model

<1  <3  <5  <10 <20 <50 <100 <200

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Morocco

 

 

Data

Model

<1 <2 <4 <10 <20
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

India

 

 

Data

Model

<0.4 <0.8 <20 

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Sri Lanka

 

 

Data

Model

<0.5 <1  <2  <3  <4  <5  <7  <10 <20 <50 
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Ivory Coast

 

 

Data

Model

<0.7 <1.8 <3.5 <7  <14 <35 <70 <140 <350 <500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class
C

u
m

u
la

ti
v
e
 D

e
n
s
it
y

Nicaragua

 

 

Data

Model

< 2 < 5 <10 <20 <60
0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Pakistan

 

 

Data

Model

<0.4 <2  <4  <10 <20 <40 <81 <202 <500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Dominica

 

 

Data

Model

<5   <10  <20  <50  <100 <200 <500 <1000 <2500 <5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Urugay

 

 

Data

Model

<0.8 <1.3 <1.7 <2.1 <4.2 <6.3 <8.4 <12.6 <21  <50  

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Egypt

 

 

Data

Model

<3  <10 <50 <100
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Size Class
C

u
m

u
la

ti
v
e
 D

e
n
s
it
y

Peru

 

 

Data

Model

<1  <2  <3  <4  <5  <10 <20 <50 <100 <200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Tunisia

 

 

Data

Model

<1   <5   <20  <50  <100 <200 <500 <1000 <2000 <1   
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Colombia

 

 

Data

Model

<1  <2  <3  <5  <10 <20 <50 <100 <200 <500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Ecuador

 

 

Data

Model

<1   <5   <20  <50  <100 <200 <500 <1000 <2000 <1   
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Chile

 

 

Data

Model

<1   <2   <3   <4   <5   <10  <20  <50  <100 <200 <500 <1000<2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Spain

 

 

Data

Model

<10   <50   <100  <200  <200  <500  <1000 <5000 <10000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Hungary

 

 

Data

Model

< 1 < 2 < 5 <10 <50 <100 <200 <500 < 1 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Brazil

 

 

Data

Model

<1  <2  <5  <10 <20 <50 <100 <200 <500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size Class

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

Portugal

 

 

Data

Model

27



B.6 Model Predicted Farm Size Distribution
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Code rgdpwok MFS (Ha) No. Holding Area (Ha) Census Year
ARG 25715 468.97 378357 177437398 1988
AUS 46436 3,601.68 129540 466561000 1990
AUT 45822 26.42 273210 7217498 1990
BEL 50600 16.06 87180 1400364 1990
BFA 1824 2.79 886638 2472480 1993
BRA 18797 72.76 4859865 353611246 1996
CAN 45304 241.94 280043 67753700 1991
CHE 44152 11.65 108296 1262167 1990
CHL 23244 83.74 316492 26502363 1997
CIV 4966 3.89 1117667 4351663 2001
COL 12178 23.28 1547846 36033713 1988
DEU 42708 32.84 566900 18617900 1990
DNK 45147 34.14 81267 2774127 1989
DOM 12508 2.34 9026 21146 1995
ECU 12664 14.66 842882 12355831 1999
EGY 12670 0.95 3475502 3297281 1990
ESP 39033 18.79 2284944 42939208 1989
FIN 39611 61.88 199385 12338439 1990
FRA 45152 28.42 1006120 28595799 1988
GBR 40620 70.21 244205 17144777 1993
GRC 31329 4.50 802400 3609000 1995
HUN 21554 6.67 966916 6448000 1993
IND 9903 1.69 97155000 164562000 1985
IRL 47977 26.04 170578 4441755 1991
ITA 51060 7.51 3023344 22702356 1990
LKA 7699 0.81 1787370 1449342 2002
MAR 11987 5.84 1496349 8732223 1996
NIC 5697 31.34 199549 6254514 2001
NLD 45940 16.99 127367 2163472 1989
NOR 50275 9.97 99382 991077 1989
NZL 37566 223.43 70000 15640348 2000
PAK 6995 3.80 5071112 19252672 1990
PER 10240 20.15 1756141 35381809 1994
PRT 30086 6.74 594418 4005594 1989
SWE 40125 93.87 81410 7641890 1999
TUN 17753 11.58 471000 5455300 1994
UGA 1763 2.16 1704721 3683288 1991
URY 20772 288.31 54816 15803763 1990
USA 57259 186.95 2087759 390311617 1987
VEN 19905 60.02 500979 30071192 1997

Table 10: Summary Statistics of World Census of Agriculture
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