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Abstract

In this paper I formulate, solve and estimate an endowment version of a macroeco-
nomic dynamic stochastic general equilibrium model with monetary and fiscal policy
rules whose coefficients are time-varying and contemporaneously correlated. The aim of
the paper is to identify from data the interactions between monetary and fiscal policies
that have prevailed in the U.S. economy. The monetary authority uses a Taylor rule
and the fiscal authority uses a rule in which taxes respond to lagged debt deviations.
Policy rule coefficients are modeled as logistic functions of stationary correlated latent
factors, introducing long-run interactions between monetary and fiscal policies. There
are three main findings of the paper: First, monetary policy has reacted strongly to
inflation deviations along, almost, the entire analyzed period, with a loose policy only
during the periods 1979:1-1981:3 and 2008:4-2009:2. Second, regimes under which a
determinacy condition is in place occur 54.25% of the time, while regimes with explod-
ing local dynamics occur 45.34% of the time, and there is an association between the
duration of these unstable regimes and the volatility of inflation. Third, tightening
monetary policy in terms of increasing the reaction of the central bank with respect to
inflation deviations, given the situation of the economy in the third quarter of 2010,
implies an increase in inflation of the order of 3%.
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1 Introduction

In this paper I formulate, solve and estimate an endowment version of a macroeconomic
dynamic stochastic general equilibrium (DSGE) model with monetary and fiscal policy rules
whose coefficients are time-varying and contemporaneously correlated. The aim of the paper
is to identify from data the interactions between monetary and fiscal policies that have
prevailed in the U.S. economy.

In recent decades has been widely accepted that price stabilization is a desirable outcome
that central banks should achieve as a sign of their success. This is especially true after the
learning process of the 1970s that led to the arise of the rational expectation hypothesis,
when central bankers understood that, to stabilize prices, inflation expectations should be
anchored. To incorporate this desirable policy outcome, nowadays conventional macroeco-
nomic DSGE models specify an interest rate rule in which the central bank reacts to increases
in inflation with increases more than proportional in the nominal interest rate. This rule
now has the name of his proponent: Taylor (Taylor, 1993). By conducting monetary policy
in this way, inflation expectations are not supposed to trigger instability in the economy.
This conventional setup assumes that fiscal policy will accommodate the increase in interest
rates necessary to achieve stability with increases in (lump-sum) taxes to cover the higher
interests on public debt to keep it stable. This model (New Keynesian DSGE model) has
become so widely used that now is textbook material since its original formulation in the
second half of the 1990s, and elaborated versions of it are used by central bankers around
the globe.

Another strand of the literature emphasizes that fiscal policy may play a more important
role than just accommodating monetary policy in achieving stabilization. This argument
stresses that this is especially true when monetary policy is not or can not be used as the
conventional models propose. The global crisis has shown that important amounts of debt
were issued by governments to face the crisis, with no immediate revision in expectations of
changes in future taxes. Additionally, in the U.S. in particular, interest rates are near the
zero lower bound, giving almost no space to monetary policy.

The role of fiscal policy in economic systems, in particular in terms of stability (in a
local-linear sense), was first introduced by Leeper (1991), and later extended by Sims (1994)
and Woodford (1995), with heated debates about the plausibility of the results under this
setup that accompanied the arise of the so-called Fiscal Theory of the Price Level. The
idea is that, when monetary policy does not or can not anchor inflation expectations, fiscal
policy, through expectations about future surpluses (debt valuation equation), can anchor
these expectations (Cochrane, 2011). Leeper (2010) offers a review of how fiscal policy influ-
ences economic stability, and why fiscal policy should be taken more seriously in economic
modeling, especially when times of fiscal stress arrive.

With respecto to policy making (monetary and fiscal), there is substantial empirical
literature arguing that policy rules have not remained invariant over the course of the last
6 decades. Examples include: Clarida et al. (2000), Cogley and Sargent (2002), Lubik
and Schorfheide (2004), Primiceri (2005), Fernandez-Villaverde et al. (2010), Favero and
Monacelli (2003), and Davig and Leeper (2006). There is also theoretical literature arguing
that, in designing policy rules, policy authorities may have asymmetric preferences with
respect to deviations of variables of interest from target, or state-dependent loss functions,
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resulting this in time-varying rules. Examples include: Dolado et al. (2005) and Svensson
and Williams (2007).

This paper assumes that policy moves across regimes as a function of a latent factor.
This is analogous to having a random coefficient (unit root) specification, or a Markov
switching specification for policy rules. The difference is that the function considered here
is bounded (as opposed to the random coefficient setup), and continuous (as opposed to the
Markov switching setup). A function that satisfies these requirements is the logistic function.
Boundedness is important because some policy rule coefficients make sense only if they are
positive or, in terms of determinacy of a linear rational expectations model, if they have
an upper or lower bound. Smoothness (continuity) of the transition is also important since
policies do not necessarily switch abruptly from one regime to another, and if they do, the
logistic function still allows to have that type of behavior. The logistic function driving policy
parameters is modeled in terms of latent factors, which can be thought as a combination of
macroeconomic, microeconomic, financial, political, institutional, etc. factors that trigger a
change in monetary and/or fiscal policy.

I also incorporate the possibility of interactions between policies. There is extensive
literature on monetary and fiscal policy interactions. From a normative perspective, for
example: Nordhaus (1994), Buti et al. (2001), and Dixit and Lambertini (2003). From a
positive perspective, for example: Davig and Leeper (2006), and Chung et al. (2007). I
introduce interactions between monetary and fiscal policies by means of correlation between
the latent factors that drive the evolution of policy rule coefficients. To the best of my
knowledge, this is the first attempt in the literature to introduce these explicit interactions
between policies, and the first attempt to estimate a model with these characteristics to let
the data tell what the interactions have been over the last 6 decades.

Since the model is intrinsically nonlinear, an unconventional solution technique has to
be used. To solve a semi-nonlinear version of the model, I propose a method based on the
minimal state variable solution and show that, under certain conditions, the solution exists
and is stable. The paper also provides a discussion on uniqueness. Once solved, the DSGE
model boils down to a state-space model in which the latent factors enter nonlinearly. I
utilize appropriate Bayesian techniques to estimate the parameters of the model and the
latent factors using U.S. data on interest and tax rates. I also obtain responses of inflation
to shocks to interest and tax rates, conditional on the situation of the economy in the third
quarter of 2010; and introduce an unconventional impulse-response approach in which a
shock is given to the parameters of the rules and the response is evaluated on inflation.

There are three main findings of the paper: First, monetary policy has reacted strongly
to inflation deviations along, almost, the entire analyzed period, with a loose policy only
during the periods 1979:1-1981:3 and 2008:4-2009:2. Second, regimes under which a deter-
minacy condition is in place occur 54.25% of the time, while regimes with exploding local
dynamics occur 45.34% of the time, and there is an association between the duration of these
unstable regimes and the volatility of inflation. Third, tightening monetary policy in terms
of increasing the reaction of the central bank with respect to inflation deviations, given the
situation of the economy in the third quarter of 2010, implies an increase in inflation of the
order of 3%.
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2 The Model

The economy has a maximizing representative household endowed with constant output,
and there are also monetary and fiscal authorities. There are neither price nor wage rigidities
or capital accumulation, to keep the analysis focused on the interactions between monetary
and fiscal policy, and to illustrate the solution method and the estimation strategy in a
simple framework. The model is a modified version of the model in Leeper (1991) where
smoothing has been included in both the monetary and fiscal policy rules.

2.1 Households

The representative household derives utility from consumption, Ct, and real money bal-
ances, Mt/Pt. A representative household maximizes

E0

∞
∑

t=0

βt

(

C1−σ
t − 1

1 − σ
+ χM log (Mt/Pt)

)

, (1)

where 0 < β < 1 is the discount factor, σ > 0 is the inverse of the elasticity of intertemporal
substitution, and χM > 0 is a constant affecting the velocity of money, vt, in steady state.
The household saves in the form of nominal government bonds, Bt, that pay a gross interest
rate Rt each period, and by accumulating money balances, Mt − Mt−1, that do not pay
interests. It pays lump-sum taxes, Tt, and receives a constant endowment, Y each period,
so that its budget constraint is given by

PtCt + Mt + Bt + Tt = PtY + Mt−1 + Rt−1Bt−1 for t ≥ 0, (2)

given the initial value of assets (M−1 +R−1B−1)/P−1, and where the transversality condition
that rules out Ponzi games holds.

2.2 Government

The government finances a constant level of goods, G < Y , with a combination of lump-
sum taxes, Tt, and money creation, Mt − Mt−1 so that the implied process for debt, Bt,
satisfies the budget constraint:

Bt + Mt + Tt = PtG + Mt−1 + Rt−1Bt−1 for t ≥ 0, (3)

given (M−1 + R−1B−1)/P−1.

2.3 Policy Rules

Time-varying policy rule coefficients have received special attention in recent years.
Dolado et al. (2005) offers a survey of the literature to support on theoretical grounds
the existence of nonlinear responses of an interest rate rule with respect to inflation and/or
output. In particular, one of the arguments goes along the line of asymmetric preferences
by the central bank with respect to deviations of inflation and/or output with respect to
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target. In a similar line, Svensson and Williams (2007), in a context of model uncertainty,
specify a loss function whose weights are not constant and obtain a monetary policy rule
with coefficients that take on different values across states.

I specify policy rules in a semi-nonlinear fashion, where the coefficients of the policy rules
are time varying. The time varying coefficients of a particular policy rule are specified as
logistic functions of a latent state. That is, if ̺t is a time varying coefficient of a policy rule,
it has the following functional form:

̺t ≡ ̺(zt)

= ̺0 +
̺1

1 + exp (−̺2(zt − ̺3))
,

where zt = ρzzt−1 + ut, 0 < ρz ≤ 1 and ut ∼ iidN(0, 1).
Under this specification, ̺0 denotes the lower (upper) bound of ̺t, while ̺0 + ̺1 denotes

its upper (lower) bound (if ̺1 < 0). ̺2 is a positive transition coefficient affecting with
its magnitude the slope of the transition between regimes, and ̺3 is a location parameter
determining the value of zt at which ̺t crosses the y-axis. A graph for ̺(zt) with ̺0 = 0.01,
̺1 = 0.1, ̺2 = 1, and ̺3 = 0 is reproduced in Figure 1. Also, zt is a persistent process to
introduce long memory in ̺t, as pointed out by Park (2002).

Figure 1: Logistic Function
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The attractiveness of this specification is that it allows a policy to switch smoothly from
one regime to another without jumps, so that the economy does not have to “wake up” in a
possibly (and totally) different state compared to the one it was in the previous period, as it
happens with the Markov switching specification of policy parameters. Since the speed of the
transition is measured by the magnitude of ̺2, this specification for policy parameters is more
general than a Markov switching formulation, which corresponds to the present specification
when ̺2 → ∞. On the other hand, using a latent factor as the process driving the policy
rule coefficients avoids having to choose an observable macroeconomic variable to drive the
smooth transition between states. Davig and Leeper (2007) argue that a policy rule, in
particular the monetary policy rule, is a “complicated, probably non-linear, function of a
large set of information about the state of the economy.” In that sense, the latent factor may
be viewed as a combination of several variables affecting the evolution of policy coefficients.

Two types of specifications have been introduced in the literature to model time-varying
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policy rule coefficients: One is a two-state Markov switching specification, like in Davig and
Leeper (2006), Davig and Doh (2009) or Favero and Monacelli (2003); and another is random
coefficient specification, like in Fernandez-Villaverde et al. (2010) or Kim and Nelson (2006).
The specification in this paper bounds the evolution of policy rule coefficients and, at the
same time, offers continuity for their evolution, encompassing the two specifications in the
existing literature.

For the policy rule specifications below, a policy coefficient with subscript t denotes a
coefficient with the characteristics mentioned above.

2.3.1 Monetary Policy Rule

Monetary policy takes place by means of an interest rate feedback rule of the form

Rt = RρR
t−1R̄

(1−ρR)
t exp (εR

t ),

where ρR ∈ (0, 1), and εR
t ∼ iidN(0, σ2

R). R̄t is the target short-term nominal interest rate.
The central bank reacts to deviations of inflation from target, setting

R̄t = R

(

Πt

Π̄

)αt

,

where Πt = Pt/Pt−1, and where R is the steady state nominal interest rate, which is guar-
anteed to be state independent if we set the target inflation rate, Π̄, equal to Π, the steady
state inflation.

2.3.2 Fiscal Policy Rule

The fiscal rule is a feedback rule for the ratio of lump-sum taxes net of transfers to output,
τt = Tt/(PtY ), of the form

τt = τ ρτ

t−1τ̄
(1−ρτ )
t exp (ετ

t ),

where ρτ ∈ (0, 1), and ετ
t ∼ iidN(0, σ2

τ ). τ̄t is the target level of taxes net of transfers to
output set to respond to debt deviations according to

τ̄t = τ

(

bt−1

b̄

)γt

,

where bt = Bt/(PtY ) denotes the lagged debt-to-output ratio in period t, and b̄ is its target
level. τ denotes the steady state level of the ratio of lump-sum taxes net of transfers to
output, which is guaranteed to be state independent in the steady equilibrium if we set b̄ to
its steady state value, denoted by b.

2.4 Interactions Between Monetary and Fiscal Policies

The introduction of monetary and fiscal policy interactions in the context of dynamic
stochastic macroeconomic models dates back to the pioneer work of Leeper (1991), where
different parameter values lead to different equilibrium outcomes and local dynamics in a
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stochastic maximizing environment. There, the terms “active” and “passive” monetary and
fiscal policies are introduced to describe how the central bank responds to fight inflation
(more aggressive fighting of inflation is called “active” monetary policy), and how fiscal
policy adjusts to changes in public debt (a Ricardian view of fiscal policy is called “passive”
fiscal policy). Other works along this line are Sims (1994) and Leith and Wren-Lewis (2000).

Nordhaus (1994) carries on a game theoretical approach to understand monetary-fiscal
policy coordination. He finds that a deficit-reduction package should be accompanied by
a cooperative monetary policy to offset declines in aggregate demand and increases in un-
employment, so that the economy ends up in a recovery with higher domestic and foreign
investment. From an optimality perspective, Dixit and Lambertini (2003) find that a second-
best outcome can be achieved if the monetary and the fiscal authorities both choose to be
equally and optimally conservative with respect to the price level.

As for a quantitative approach to measure the interdependence of monetary and fiscal
policies, Muscatelli et al. (2004) estimate a new Keynesian model with an interest rate
rule and government-expenditure and tax rules. Their study finds that when an output
shock hits the economy, monetary and fiscal policies tend to be complements, while if an
inflation shock hits the economy, the policies tend to act as substitutes. On a related work,
Davig and Leeper (2006) estimate regime switching models of monetary and fiscal policy
rules to embed them into a new Keynesian DSGE model in order to offer a view of how
monetary policy and, in particular, fiscal policy have affected the US economy. To introduce
interactions between monetary and fiscal policies in terms of a set of states across which the
policies jump, Davig and Leeper multiply the transition probabilities matrices of a two-state
specification of each of the parameters of the monetary and fiscal policy rules. Clearly, that
multiplication assumes that the states driving monetary policy and the states driving fiscal
policy are independent of each other. One of the conclusion of that work is that, to better
understand macroeconomic policy effects, it is essential to model policy rules as governed by
a stochastic process over which agents form expectations.

To the best of the author’s knowledge, there is no study in the literature that incorporates
explicit interactions between monetary and fiscal policies. In this study, interaction between
policies is interpreted as the possibility of a long-run relationship between the coefficients of
the policy rules. To incorporate a scenario of possible dependence between policies, I specify
the latent states driving the policy parameters as follows:

zR
t = ρzRzR

t−1 + uR
t

zτ
t = ρzτ zτ

t−1 + uτ
t ,

where uR
t and uτ

t are normally distributed with zero mean, unit variance and cov(uR
t , uτ

t ) = κ.
Notice that under this specification, if κ is different from zero, there is endogeneity between
the coefficients of the policy rules.

Davig and Leeper (2006) find evidence that whenever the interest rate rule pays more
(less) attention to inflation deviations, less (more) weight is given to output deviations. That
corresponds to the “active” (“passive”) regime of monetary policy. Also, when the tax rule
pays more (less) attention to debt deviations, more (less) weight is given to output deviations.
That corresponds to the “passive” (“active”) regime of fiscal policy. According to Leeper
(1991), the active-passive and passive-active combinations of policies imply existence and
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uniqueness of the equilibrium in a context of local dynamics within a neighborhood of the
steady state.1

In the present context, policies become active or passive depending on the evolution of
the latent factors zR

t and zτ
t , and there is the possibility of combinations of policies according

to the (long-run) relationship between these factors. From equations (2.3.1) and (2.3.2),2

α(zR
t ) = α0 +

α1

1 + exp(−α2zR
t )

γ(zτ
t ) = γ0 +

γ1

1 + exp(−γ2zτ
t )

.

To make monetary policy able to switch between passive and active regimes, we need, for
example, α0 < 1 and α0 + α1 > 1, so that as zR

t increases, monetary policy reacts more
strongly to inflation deviations, and viceversa. On the other hand, regarding fiscal policy,
and to be consistent with the findings in Davig and Leeper (2006), we would need γ0 < 0 and
γ1 > |γ0|, so that for high values of zτ

t , fiscal policy reacts increasing taxes to stabilize debt,
and viceversa. With respect to interactions, notice that if, for example, cov(uR, uτ ) = κ > 0,
then it is possible to have a combination of policies in the active monetary - passive fiscal
quadrant in the long run. This is so since, in that case, the latent factors will move together
in the long run, implying that whenever α(zR

t ) is high (more weight is given to inflation
stabilization), γ(zτ

t ) will be high (more weight is given to debt stabilization), and whenever
α(zR

t ) is low (less weight is given to inflation stabilization), γ(zτ
t ) will be low (less weight is

given to debt stabilization). However, in the short run there may be deviations from this
long-run equilibrium, and the economy could visit the passive-passive, or active-active regions
temporarily. As it can be seen, the model allows to have a rich possibility of combinations,
and explicitly introduces interactions between monetary and fiscal policies.

Even though the latent factors are potentially correlated, I assume that they are inde-
pendent of the stochastic processes that add uncertainty to the macroeconomic model. This
assumption is necessary to obtain a solution to the model that is based on the minimum
state variable solution approach.

2.5 Equilibrium

An equilibrium under this setup is an allocation {Ct,Mt, Bt}∞t=0, a sequence of prices and
Lagrange multiplier {Pt, λt}∞t=0 satisfying the optimality conditions of the household, and
the government budget constraint, given (M−1 + R−1B−1)/P−1, a sequence {zR

t , zτ
t }∞t=0, and

1The passive-passive regime of policies imply an equilibrium with the possibility of sunspots, while the
active-active regime of policies imply the inexistence of equilibrium (unless very particular conditions hold).

2Recall that α2 > 0 and γ2 > 0. Also, without loss of generality, I assume from here on that α3 = γ3 = 0.
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the monetary and fiscal policy rules. Therefore, in equilibrium

Ct = Y − G (4)

1 = βRtEt
1

Πt+1

(5)

1

vt

= χM(Y − G)σ Rt

Rt − 1
. (6)

2.5.1 Steady State Equilibrium

In the absence of shocks, the following equations characterize the steady state equilibrium:

R =
Π

β
(7)

1

v
= χM(Y − G)σ

(

R

R − 1

)

(8)

τ = g −
(

1 − 1

Π

)

1

v
+

(

1

β
− 1

)

b, (9)

where v is the steady state level of money velocity.

2.6 Log-linearized Model and Solution Method

Notice that the model is unconventional, in the sense that the coefficients of the policy
rules are time varying. I present here the model in log-deviations from the nonstochastic
steady state, and show a way to solve it using a method in line with the minimum state
variable (MSV) solution approach (McCallum, 1983). The model is composed of the following
equations where a hat on a variable denotes that variable in percentage deviations from its
deterministic steady sate (for given values of the processes {zR

t }∞t=0 and {zτ
t }∞t=0):

Etπ̂t+1 = R̂t (10)

v̂t =
1

1 − R
R̂t (11)

b̂t = −τ

b
τ̂t +

v̂t

vb
− v̂t−1

vΠb
−

(

1

vΠb
+

1

β

)

π̂t +
1

β
(R̂t−1 + b̂t−1) (12)

R̂t = ρRR̂t−1 + (1 − ρR)α(zR
t )π̂t + εR

t (13)

τ̂t = ρτ τ̂t−1 + (1 − ρτ )γ(zτ
t )b̂t−1 + ετ

t . (14)

To solve the model, let ωt = π̂t, kt = [R̂t, τ̂t, b̂t, v̂t]
′ and rewrite (10)-(14) as

0 = Etωt+1 + Φkt (15)

0 = Mkt + Υ(zτ
t )kt−1 + Λ(zR

t )ωt + Ξεt, (16)

where zt = [zR
t , zτ

t ]′, εt = [εR
t , ετ

t ]
′, and where Φ, M, Υ(zt), Λ(zt), and Ξ are appropriate
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coefficient matrices shown in Appendix B.
The proposed solution is given by

ωt = A(zt)kt−1 + B(zt)εt (17)

kt = C(zt)kt−1 + D(zt)εt, (18)

where, for F (zt) = A(zt), B(zt), C(zt), D(zt), the i, j − th entry is given by

F ij(zt) =

(

F ij
0R +

F ij
1R

1 + F ij
2R exp(−F ij

3RzR
t )

)

(

F i,j
0τ +

1

1 + F ij
2τ exp(−F ij

3τz
τ
t )

)

, (19)

for i, j = π̂, v̂, b̂, R̂, τ̂ , which is known as a bivariate logistic function. For identification
purposes, it is necessary to impose that F ij

2 ≥ 0 and F ij
3 ≥ 0.

Appendix C shows that the coefficients of the solution indeed follow a logistic function for
the case when the latent process, zt, is iid, or when the factors are uncorrelated. Appendix
D also illustrates the procedure to obtain the parameters of the logistic functions in the
solution, F ij

0R, F ij
1R, F ij

2R, F ij
3R, F ij

0τ , F
ij
2τ and F ij

3τ .
Since the purpose of this paper is to investigate the performance of the solution and

estimation techniques in a simplified environment, I assume that the solution takes the form

F ij(zt) = F ij
0 +

F ij
1

(

1 + exp(−F ij
2RzR

t )
) (

1 + exp(−F ij
2τz

τ
t )

) ,

which is still a bivariate logistic function, and leave the more sophisticated version (19) for
a future work.

2.7 On Existence, Stability and Uniqueness of the Solution

Since the method used to obtain the solution is based on the undetermined coefficients
method, existence is guaranteed. By construction this method yields stable solutions, and
the parameter space has been properly constrained to guarantee that. However, since the
model is intrinsically nonlinear, and the parameters are time varying, even after bounding
the parameter space, the model may imply the arise of sunspot solutions. In that sense,
the approach shown here picks the solutions with the smallest eigenvalues at the limits, and
lets the solution evolve between these well defined limits. The issue of uniqueness of the
solution of nonlinear models has attracted attention of the DSGE modeling and estimation
literatures in recent years, and it is still an open field to future research. Examples in the
literature include Davig and Leeper (2006), Davig and Leeper (2007), Davig and Leeper
(2008), Farmer et al. (2009), Fernandez-Villaverde et al. (2010) and Fernandez-Villaverde
and Rubio-Ramirez (2010).
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3 Estimation

To estimate the model, I employ Bayesian methods that allow obtaining the set of param-
eters of the macroeconomic model, denoted Θy, the set of parameters of the latent factors,
denoted Θz, and the latent factors themselves, using a modified approach based on the
approach proposed in Geweke and Tanizaki (2001).

Let INTt denote the demeaned quarterly nominal federal funds rate in period t, and TAXt

the demeaned ratio or quarterly federal receipts net of transfers to output. The state-space
model is composed of the following equations:

yt = Hxt (20)

xt = G(zt)xt−1 + S(zt)εt (21)

zt = Pzt−1 + ut, (22)

where yt = [INTt, TAXt]
′, xt = [ωt, kt]

′, and ut = [uR
t , uτ

t ]
′, for appropriate matrices H, G(zt),

S(zt), and P shown in Appendix F.
Let Yt = {ys}t

s=0, and let Ft be the sigma field σ(Yt). Let Zt = {zs}t
s=0, and let Zt be the

sigma field σ(Zt). Then

yt|Ft−1,Zt, Θy ∼ N
(

yt|t, Σt|t

)

,

where yt|t = E (yt|Ft−1,Zt, Θy), and Σt|t = var (yt|Ft−1, Zt, Θy). The Kalman filter can be
used to obtain the conditional likelihood function of YT given F0 and ZT . Details are shown
in the Appendix.

Let Py(yt|Ft−1, Zt, Θy) denote the conditional density of yt given Ft−1, Zt and Θy. Let
Pz(zt|zt−1, Θz) denote the conditional density of zt given zt−1 and Θz. Define Z∗

t+1 =
{zs}T

s=t+1, and Z∗
t+1 = σ(Z∗

t+1). Then, if z0 is assumed to be stochastic,

Pz(ZT |Θz) = Pz(z0|Θz)
T

∏

t=1

Pz(zt|zt−1, Θz)

Py(YT |F0,ZT , Θy) =
T

∏

t=1

Py(yt|Ft−1,Zt, Θy)

P (zt|Zt−1, Z
∗
t+1,Fn, Θy, Θz) ∝ (23)

{

Py(yt|Ft−1, Zt, Θy)Pz(zt|zt−1, Θz)Pz(zt+1|zt, Θz) if t ≤ T − 1

Py(yt|Ft−1, Zt, Θy)Pz(zt|zt−1, Θz) if t = T

P (Θy|FT , ZT , Θz) ∝ Py(YT |F0,ZT , Θy)PΘy(Θy) (24)

P (Θz|FT ,ZT , Θy) ∝ Pz(ZT |Θz)PΘz(Θz), (25)

where PΘy(Θy) and PΘz(Θz) are the prior densities of Θy and Θz, respectively.
From the posterior densities (23)-(25), the smoothing random draws are generated as

follows:

11



(i) Take appropriate initial values for Θy, Θz and {zt}T
t=0.

3

(ii) Use the Kalman filter to obtain Py(yt|Ft−1, Zt, Θy) and Py(YT |F0,ZT , Θy).

(iii) Generate a random draw of zt from P (zt|Zt−1,Z
∗
t+1,FT , Θy, Θz) for t = 1, 2, . . . , T .

(iv) Generate a random draw of Θy from P (Θy|FT ,ZT , Θz).

(v) Generate a random draw of Θz from P (Θz|FT , ZT , Θy).

(vi) Repeat (ii)-(v) N times to obtain N random draws of ZT , Θy and Θz.

In steps (ii)-(vi) the random draws of ZT , Θy and Θz are updated. This sampling method
is referred to as the Gibbs sampler. To generate the random draws of zt for t = 1, 2, . . . , T ,
Θy and Θz, I use the Metropolis-Hastings (M-H) algorithm. That is, the Gibbs sampler and
the M-H algorithm are combined in order to obtain the smoothing random draws from the
state-space model. The choice of proposal densities for the M-H algorithm is shown in the
Appendix G.

3.1 Data and Parameter Assumptions

The interest rate data correspond to the quarterly average of the monthly rate in the
secondary market of the 3-month T-Bill, and were obtained from the Federal Reserve Bank.
The tax net of transfers data correspond to the seasonally adjusted quarterly current receipts
of the federal government from which the current transfer payments have been deducted,
and were obtained from the NIPA Table 3.2. The seasonally adjusted quarterly output data
were obtained from the Bureau of Economic Analysis. The sample covers the first quarter
of 1949 until the third quarter of 2010. The model was specified at a quarterly frequency.

Some of the model parameters were fixed to focus on the estimation of the policy coef-
ficients. The values of v, b, Π, g, and R that match the means of their counterparts in the
sample data at quarterly rates and frequencies are shown in Table 1.

Table 1: Parameter values

β† v b Π g τ ‡ R
0.9968 2.256 0.3354 1.0084 0.081 0.0784 1.0116

†
β = Π/R

‡ τ = g −

(

1 −
1

Π

)

1

v
+

(

1

β
− 1

)

b

3.2 Estimation Results

The choice of prior distributions, hyper parameters, means of 20, 000 draws from the
posterior distribution of parameters, 90% confidence sets and P-values from the convergence

3The values of the policy rule parameters at their limits were taken from Davig and Leeper (2006), and
the latent factors are the smoothed estimates of a random coefficient model of the policy rules.
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tests in Geweke (1991) are presented in Table 2. Since only 20, 000 draws have been obtained,
the tests do not show convergence in 3 of the 15 parameters estimated. This situation can
be easily overcome by drawing more samples from the posterior, which is left for future
work, since the purpose of this document was only to explore the solution and estimation
techniques. Figures 3 and 4 show the good performance of the model in terms of explaining
the time series of interest and tax rates.

From the results it can be seen that the estimated lower limit of the monetary policy
rule parameter is 0.83, its upper limit is 1.73, and its mean value, 1.295, which lies in
the determinacy region given by the constant coefficient counterpart of the present model
(α > 1). The coefficient of the fiscal policy rule evolves asymptotically between −0.01 and
0.03, with an average of 0.0133, slightly below the threshold given by b

τ
(β−1 − 1) = 0.0137,

above which fiscal policy becomes passive.4

With respect to the parameters of the latent factors, the estimates of ρzR and ρzτ imply
that monetary policy is more persistent than fiscal policy in the sense that the coefficients
of the rules have a slow reversion to the mean, in the former, and a more rapid reversion
to the mean in the latter. This result is consistent with the findings in Davig and Leeper
(2006) and Favero and Monacelli (2003). The parameter that measures interactions between
the policies, κ, has a posterior mean value of 0.17, with P (κ > 0) = 0.8126. That is,
monetary and fiscal policies co-move, but the linear association between them is not strong.
Given the positiveness of the parameter at the posterior mean, this implies that, on average,
policy rules spend most of their time in the active monetary - passive fiscal (AM/PF) and
the passive monetary - active fiscal (PM/AF) regimes, which are the regimes that deliver
uniqueness in the constant coefficient version of this model.

3.2.1 Evolution of Policy Rule Coefficients

Figure 5 shows the evolution of the posterior means of the coefficients of the monetary
and fiscal policy rules, and the NBER recession periods. One important implication of the
estimated parameters that immediately calls attention is the fact that monetary policy has
been passive (α < 1) only in during the periods 1979:1-1981:3 and 2008:4-2009:2. Another
characteristic of the coefficients that is apparent from the graph is their co-movement.

In an analysis by decades, the results with respect to the monetary policy rule coefficient
in this paper coincide with findings in various works. For example, Romer and Romer (2002)
and Davig and Doh (2009) find that monetary policy has been active during the 1950s. Davig
and Doh (2009) and Fernandez-Villaverde et al. (2010) find the same result for the 1960s.
With respect to the first half of the 1970s, only Boivin (2006) finds that monetary policy
has been active, and all the studies that investigated the second half of that decade conclude
that policy was passive. For the 1980s, Romer and Romer (2002), Kim and Nelson (2006),

4These thresholds are obtained under the constant coefficient setup of the present model by using the
approach in Leeper (1991), in which the characteristic roots of the expectational difference equation involving

Etπ̂t+1, π̂t and b̂t are given by α, 0 and b

τ
(β−1 − 1). By the Blanchard-Khan criterion, one of the roots

different from zero has to be greater than one and the other less than one, which yields the four determinacy
regions described by Leeper: Active Monetary Policy / Passive Fiscal Policy (AM/PF), Passive Monetary
Policy / Active Fiscal Policy (PM/AF)), Passive Monetary Policy / Passive Fiscal Policy (PM/PF), and
Active Monetary Policy / Active Fiscal Policy (AM/AF).
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Davig and Leeper (2006), Davig and Doh (2009) and Fernandez-Villaverde et al. (2010)
conclude that monetary policy has reacted strongly with respect to inflation. Romer and
Romer (2002), Davig and Doh (2009) and Kim and Nelson (2006) find the same result for
the 1990s. Finally, for the 2000s, Davig and Doh (2009) conclude that policy has been active.

I give particular attention to the results found here with respect to the monetary policy
rule coefficient during the 1970s and early 1980s. As said before, only during 1979:1-1981:3
monetary policy was found to be passive. It is important to recall the types of monetary
policies in place in the period between the early 1970s and the early 1980s: According to
Nelson (2007), during the first four years, the control of inflation was based on price controls,
while a loose federal funds rate instrument was in place. There it could lie the reason why
the results display a decrease in the policy rule coefficient, even though it still stays slightly
above 1. Starting the second half of the decade, according to Nelson, monetary policy
adopted monetary targets, and that could be the reason why the coefficient increases again.
However, money growth rates were still high, reaching double digits for M2 growth by the
end of the decade, provoking the loosest monetary policy of all the analyzed period at the
beginning of the 1980’s. Once the Fed, under chairman Volcker, implements credit controls
and a federal funds target instrument in 1982, monetary policy becomes tight.

I also give particular attention to the behavior of monetary policy during the 2000s:
As described by Bernanke (2007), monetary policy accommodated in order to fight the
recession of the beginning of the decade, and that coincides with the decrease in the policy
rule coefficient. Then, at the beginning of the second half of the decade the Fed gradually
removed the accommodation and started to conduct policies to deflate the asset price bubble,
turning to a tight monetary policy, which, according to Reis (2010), ended with a loose
monetary policy with the recession of the end of the decade.

With respect to the fiscal policy rule coefficient, the results here almost mirror the results
in Davig and Leeper (2006), and that is the only available work against which the results
can be contrasted. Perhaps the only difference between the results here and those found by
Davig and Leeper lies in the evolution of the coefficient during the 1950s. Davig and Leeper
find that fiscal policy has been passive during the first half of that decade, while the results
here show that fiscal policy was active in each of the recessions of the decade. This last result
is consistent with the findings in May (1990) about President Eisenhower’s fiscal policy.

Again, this work gives special attention to fiscal policy during the 1970s and the early
1980s: According to Conte et al. (2001), after an original commitment to fight inflation at
the beginning of the decade, there was an accelerated federal spending to stimulate economic
growth and fight unemployment, turning to an active fiscal policy. According to the Annual
Budget Message to the Congress for the fiscal year 1974, this increase in federal spending was
held down to balance the budget to guard the economy against inflation, making fiscal policy
passive for a short period around 1975. In the second half of the 1970s, the tax reduction
acts of 1975 and 1977, and the economic recovery act of 1981 turned fiscal policy into one
of the most active regimes in the analyzed period, which lasted until the early years of the
1980s.

With respect to the 2000s, after the tax cuts of 2001 and 2003, fiscal policy becomes
passive around 2005 mainly because of the increase in tax receipts due to the economic
recovery. At the end of the decade, and in face with the crisis and the stimulus and recovery
acts of 2008 and 2009, fiscal policy turns to the active regime in what seems to be the most
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active regime of the analyzed period.
In sum, according to the evolution of policy coefficients and their thresholds (given by

the dotted horizontal line in Figure 5), the U.S. economy has spend 48.99% of the time in
the AM/PF regime, 5.26% in the PM/AF regime, 0.4% in the PM/PF regime, and 45.34%
in the AM/AF regime. This means that the economy has spent 54.25% of the time in the
regimes that guarantee determinacy under the constant coefficient version of the model.

The significant amount of time that the economy would have spent in the AM/AF regime
is something that could trouble the analysis of the results since this implies that the economy
has gone through important instabilities. However, precisely there it may lie the reason for
the instability of inflation during the 1970s and the early 1980s. Figure 6 shows the evolution
of inflation and the periods of the AM/AF regime. According to the findings of the estimated
model, the four longest periods of AM/AF policies are, in decreasing order: 1998:2-2003:2
(20 quarters), 1971:1-1973:4 (12 quarters), 1967:1-1969:4 (12 quarters), and 1976:3-1978:4
(10 quarters). That is, out of 48 quarters between 1967 and 1978, the economy spent 34 in
the AM/AF regime. Hence, the highly volatile inflation was not due to bad monetary policy,
but to a bad combination of monetary and fiscal policies.5

Finally, it is important to point out that, even though the majority of studies investigating
the behavior of the Taylor rule have concluded that the coefficient of the rule has been smaller
than 1 during the 1970s and the early 1980s, none of these studies has incorporated fiscal
policy into the analysis, and if it has, independence between the policies has been assumed.
Having fiscal policy interacting with monetary policy in the model gives opportunity to richer
and different dynamics from the ones obtained in the existing literature of policy rules.

3.2.2 Conventional Impulse-Response Analysis

I now proceed to conduct conventional policy experiments to analyze the performance of
inflation under orthogonal shocks to the monetary policy and fiscal policy rules. Figures 7
and 8 display the response of inflation to a 1% increase of the interest rate and a 1% increase
of the tax rate, respectively. Both experiments were conducted starting at the filtered values
of the latent factors at the end of the sampling period (2010:3). These values imply that
the economy is in the PM/AF regime, with values for the policy rule coefficients given by
α(zR

2010:3) = 0.9769 and γ(zτ
2010:3) = 0.0133.6

With respect to the monetary contraction, the evolution of inflation is consistent with
the results found in the fiscal theory of the price level, see for example Davig and Leeper
(2006). The impulse-response function reveals that inflation decreases on impact, but that
the long-run effect is an increase in inflation, above inflation prevailing in the PM/AF regime,
that slowly returns to its initial value (given the values of the parameters that are very close
to those under the AM/PF regime, from the graph is very difficult to see that inflation is
indeed higher after the first quarter. However, inflation is 0.1% higher than its initial value
and stays there even after 5 years.) This “price puzzle” has been found in studies with U.S.
data by Sims (1992) and Hanson (2004). The operational mechanism behind the result is

5In fact, the only period in which the economy had a PM/PF regime was in 1981:3.
6Notice that these values do not correspond with the values at the end of the sampling period shown in

Figure 5 since those values correspond to the posterior means of the policy rule coefficients, while the values
considered here are constructed using α0, α1, α2, γ0, γ1, γ2, z

R
2010:3 and zτ

2010:3 at their posterior means.
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an open-market operation that sells debt to the public, leaving households holding a higher
level of government debt. This positive wealth effect that is not neutralized with future
taxes, since fiscal policy is active, pressures the demand of goods and prices.

A fiscal policy contraction (increase in taxes) implies retiring debt, generating a negative
wealth effect that will not be corrected in the future since fiscal policy is active, decreasing
demand and, therefore, inflation. From the impulse-response function it can be seen that
inflation decreases on impact, and slowly returns to the level prevailing in the PM/AF regime
at which started. This is a result uniformly found in the fiscal theory of the price level, see
for example Chung et al. (2007).

3.2.3 Unconventional Impulse-Response Analysis

One of advantages of the specification for policy rule parameters in this work is that
one can simulate the response of the economy to a change in the way in which the policy
authorities react to changes in their variables of interest. Say, for example, that, without
any perturbation to the interest rate, the monetary authority decides to increase its reaction
to inflation deviations. The same can happen with respect to the fiscal authority. However,
since the policies are correlated, it is likely that a change in one of the policy coefficients
triggers a change on the other. To calculate this unconventional impulse response, let

xt = G(zt)xt−1 + S(zt)εt

be defined as in system (20)-(22). Also, let νt be a shock on zt over which the response of
inflation is measured. Let z∗t+j = zt + Pjνt be the value of the latent factors after j periods
of the shock, for j ≥ 0. Additionally, let

x0
t+j = G(zt)x

0
t+j−1 + S(zt)εt+j

be the endogenous variables after j periods without the effect of the shock, and

x∗
t+j = G(z∗t+j)xt+j−1 + S(z∗t+j)εt+j

be the endogenous variables after j periods with the effect of the shock. The response is
measured by

Et−1

(

x∗
t+j − x0

t+j

)

=
[

G(z∗t+j)G(z∗t+j−1) . . . G(z∗t+1)G(z∗t ) − (G(zt))
j+1

]

xt−1|t−1,

where xt−1|t−1 is the filtered state at period t − 1.
Figure 9 shows the evolution of inflation after a shock νt = [1, κ]′ to the estimated value

of the latent factor in 2010:3, z2010:3. A shock of this magnitude takes the policy coefficients
from α = 0.9769 to α′ = 1.136, and from γ = 0.0133 to γ′ = 0.0156. That is, the economy
switches from a situation with passive monetary policy and active fiscal policy (PM/AF) to
a situation with active monetary policy and passive fiscal policy (AM/PF), with the ergodic
distribution converging to the PM/AF regime. The results show that inflation increases
on impact, then decreases below the original level, and then slowly converges to its long
run equilibrium. The initial increase in inflation may seem counterintuitive, given that the
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central bank reaction to inflation deviations is stronger after the shock. However, a similar
result is obtained by Davig et al. (2011) in a work about the presence of a fiscal limit and its
effect on inflation. The operating mechanism behind this result is as follows: By going from a
PM/AF to an AM/PF regime, agents foresee that, to keep the debt-output ratio stationary,
a downwards adjustment in taxes shall have to be done in the future, since now fiscal policy
is reacting strongly to debt deviations. This devalues debt, increasing the demand for goods
and, therefore, prices. After that point, the regular mechanism of higher interest rates over
inflation, under the AM/PF regime, operates.

4 Conclusions and Future Work

This paper formulated, solved and estimated a DSGE model with correlated and time-
varying monetary and fiscal policy rules. The estimations using U.S. data on interest and
tax rates show that the reaction of the central bank to inflation has been strong, except
in the periods 1979:1-1981:3 and 2008:4-2009:2. Also, fiscal policy has had more variability
than monetary policy, and the economy has spent 54.25% of the time with policies that
complement each other so that stability is achieved. Finally, given the situation of the
economy in the third quarter of 2010, increasing the reaction of the central bank to inflation
deviations from target increases inflation in about 3%.

The results obtained here assumed an endowment economy, which restricts the response
of interest ant tax rules, since the only variable of interest to policy authorities is inflation.
The obvious extension is to introduce production in this economy and price rigidities. That is
the conventional New Keynesian model in which time-varying policy rules will be introduced.
That extension will also allow to implement the bivariate logistic function in its complete
formulation to solve the model, which I simplified in this work.
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A Model Setup

The representative household solves the following problem:

max
{Ct,Mt/Pt,Bt}∞t=0

E0

∞
∑

t=0

βt

(

C1−σ
t

1 − σ
+ χM log

(

Mt

Pt

))

Ct +
Mt

Pt

+
Bt

Pt

+
Tt

Pt

= Y +
Mt−1

Pt−1

+ Rt−1
Bt−1

Pt−1

for t ≥ 0,

M−1 + R−1B−1

P−1

given

lim
t→∞

MRS0,t
Mt + Bt

Pt

= 0,

where MRS0,t denotes the marginal rate of substitution between period 0 and period t. The
necessary first order conditions are:

Ct : C−σ
t − λt = 0 (26)

Mt

Pt

: χM
Mt

Pt

− λt + βλt+1Π
−1
t+1 = 0 (27)

Bt

Pt

: −λt + λt+1βRtΠ
−1
t+1 = 0 (28)

λt : Ct +
Mt

Pt

+
Bt

Pt

+
Tt

Pt

= Y +
Mt−1

Pt−1

Π−1
t + Rt−1

Bt−1

Pt−1

Π−1
t . (29)

From (26) and (28),

1 = βRtEt

(

Ct

Ct+1

)σ

Π−1
t+1. (30)

From (26), (27) and (28),
Mt

Pt

= χMC−σ
t

Rt

Rt − 1
. (31)

In equilibrium, (3) and (29) imply (4), which, together with (30) imply (5), and together
with (31) imply (6), using the definition of velocity vt = Y/(Mt/Pt).

Writing (3) in terms of nominal output yields

bt +
1

vt

+ τt = g +
1

vt−1

1

Πt

+ Rt−1bt−1
1

Πt

, (32)

where g = G/Y .
Since all the variables in the system are stationary, the absence of shocks in (5),(6) and

(32) yields (7)-(9).
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B Matrices for Solving the Model

The matrices in the system (15)-(16) are given by

Φ =
[

−1 0 0 0
]

,

M =









−1 0 0 0
0 −1 0 0
0 −τ/b −1 1/vb

−1/(R − 1) 0 0 −1









, Υ(zτ
t ) =









ρR 0 0 0
0 ρτ (1 − ρτ )γ(zτ

t ) 0
1/β 0 1/β −1/vΠb
0 0 0 0









,

Λ(zR
t ) =









(1 − ρr)α(zR
t )

0
−(1/vΠb + 1/β)

0









, Ξ =









1 0
0 1
0 0
0 0









.

C Guess and Verify: Checking that the Functional

Form for the Solution is Logistic

Rewrite equation (16) as

kt = Υ̃(zτ
t )kt−1 + Λ̃(zR

t )wt + Ξ̃εt, (33)

where C̃ = −M−1C for C = Υ, Λ, Ξ.
From (17) and (33) we have

Etωt+1 = Ākt

= Ā
[

Υ̃(zτ
t ) + Λ̃(zR

t ) (A(zt)kt−1 + B(zt)εt) + Ξ̃εt

]

(34)

kt = Υ̃(zτ
t )kt−1 + Λ̃(zR

t ) (A(zt)kt−1 + B(zt)εt) + Ξ̃εt, (35)

where Ā = EtA(zt+1) is a constant since zt is iid, and where the assumption that ut and εt

are independent of each other has also been used.
Substituting (34) and (35) in (17), yields

ĀΥ̃(zτ
t )kt−1 + ĀΛ̃(zR

t )A(zt)kt−1 + ĀΛ̃(zR
t )B(zt)εt + ĀΞ̃εt+

ΦΥ̃(zτ
t )kt−1 + ΦΛ̃(zR

t )A(zt)kt−1 + ΦΛ̃(zR
t )B(zt)εt + ΦΞ̃εt = 0.

By collecting terms

(Ā + Φ)Λ̃(zR
t )A(zt) + (Ā + Φ)Υ̃(zτ

t ) = 0

(Ā + Φ)Λ̃(zR
t )B(zt) + (Ā + Φ)Ξ̃ = 0.
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Hence

A(zt) = − (Ā + Φ)Υ̃(zτ
t )

(Ā + Φ)Λ̃(zR
t )

B(zt) = − (Ā + Φ)Ξ̃

(Ā + Φ)Λ̃(zR
t )

.

Notice that A(zt) is the ratio of two logistic functions, which can be written as a bivariate
logistic function. To show this claim, let a, b, c, and d be any real numbers such that c > 0
and d ≥ 0 (this is necessary since the coefficients of the Taylor rule are positive). Without
loss of generality, I claim that we can write

a +
b

1 + exp(−y)

c +
d

1 + exp(−x)

=

(

e +
f

1 + g exp(−hx)

)(

i +
1

1 + j exp(−kx)

)

, (36)

where g ≥ 0, h ≥ 0, j ≥ 0, and k ≥ 0.
First, notice that we can write

1

c +
d

1 + exp(−x)

= l +
m

1 + n exp(−px)
,

where

l =
1

c

m =
1

c + d
− 1

c

n =

1

c + d
−

1

c
1

c + d/2
−

1

c

− 1

p = −
d

(

1

c + d
−

1

c

)

4(c + d/2)2

(

1

c + d/2
−

1

c

)2.
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Second, we can normalize the coefficients so that

e = am

f = bm

i = l/m.

Finally, with j = n, k = p and g = h = 1 we have shown that (36) indeed holds.
Hence, each of the elements of A(zt) can be written as

(

F ij
0R +

F ij
1R

1 + F ij
2R exp(−F ij

3RzR
t )

)

(

F ij
0τ +

1

1 + F ij
2τ exp(−F ij

3τz
τ
t )

)

.

For B(zt), since its elements are the inverse of a univariate logistic function, they can be
trivially written as a bivariate logistic function where the coefficient on zτ

t is zero.
Since

C(zt) = Υ̃(zτ
t ) + Λ̃(zR

t )A(zt) and

D(zt) = Λ̃(zR
t )B(zt) + Ξ̃

are combinations of logistic functions of zR
t and zτ

t , they can also be expressed as bivariate
logistic functions.

When the latent factors are uncorrelated, EtA(zt+1) can be obtained as a bivariate logistic
function (shown in this Appendix below) and, as proven above, a combination of bivariate
logistic functions can always be written as another bivariate logistic function.

D Obtaining the Coefficients of the Logistic Functions

To find the coefficients in the matrices A(zt), B(zt), C(zt), D(zt), substitute (17) and (18)
into (15) and (16) to obtain

[

Ā(zt) + Φ
]

C(zt)kt−1 +
[

Ā(zt) + Φ
]

D(zt)εt = 0
[

MC(zt) + Λ(zR
t )A(zt) + Υ(zτ

t )
]

kt−1 +
[

MD(zt) + Λ(zR
t )B(zt) + Ξ

]

εt = 0,

where Ā(zt) = EtA(zt+1) can also be expressed as a bivariate logistic function. How to obtain
this result is explained in Appendix E.

By the undetermined coefficients method,

[

Ā(zt) + Φ
]

C(zt) = 0 (37)
[

Ā(zt) + Φ
]

D(zt) = 0 (38)

MC(zt) + Λ(zR
t )A(zt) + Υ(zτ

t ) = 0 (39)

MD(zt) + Λ(zR
t )B(zt) + Ξ = 0. (40)

To find F ij
0R, F ij

1R and F ij
0τ in A(zt), B(zt), C(zt), D(zt) and Ā(zt) above, evaluate (37)-(40)
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at the limits zR
t = zτ

t = −∞, zR
t = −∞, zτ

t = ∞ or zR
t = ∞, zτ

t = −∞, and zR
t = zτ

t = ∞
(PM/AF, PM/PF or AM/AF, and AM/PF, respectively)7 to obtain the following system:
At zR

t = zτ
t = −∞

[

Āll + Φ
]

Cll = 0
[

Āll + Φ
]

Dll = 0

MCll + ΛlAll + Υl = 0

MDll + ΛlBll + Ξ = 0.

At zR
t = −∞, zτ

t = ∞
[

Ālu + Φ
]

Clu = 0
[

Ālu + Φ
]

Dlu = 0

MClu + ΛlAlu + Υu = 0

MDlu + ΛlBlu + Ξ = 0.

At zR
t = ∞, zτ

t = −∞
[

Āul + Φ
]

Cul = 0
[

Āul + Φ
]

Dul = 0

MCul + ΛuAul + Υl = 0

MDul + ΛuBul + Ξ = 0.

At zR
t = zτ

t = ∞
[

Āuu + Φ
]

Cuu = 0
[

Āuu + Φ
]

Duu = 0

MCuu + ΛuAuu + Υu = 0

MDuu + ΛuBuu + Ξ = 0.

Here, for F = All, Āll, Bll, Cll, Dll, the i, j − th entry is given by

F ij = F ij
0RF ij

0τ ,

and Λl is Λ(zR
t ), except that the entry (1, 1) is given by (1−ρR)αR

0 , while Υl is Υ(zτ
t ), except

that the entry (2, 3) is given by (1 − ρτ )γ
τ
0 .

For F = Alu, Ālu, Blu, Clu, Dlu, the i, j − th entry is given by

F ij = F ij
0R(F ij

0τ + 1),

and Υu is Υ(zτ
t ), except that the entry (2, 3) is given by (1 − ρτ )(γ

τ
0 + γτ

1 ).

7AM: Active Monetary, PM: Passive Monetary, AF: Active Fiscal, PF: Passive Fiscal.
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For F = Aul, Āul, Bul, Cul, Dul, the i, j − th entry is given by

F ij = (F ij
0R + F ij

1R)F ij
0τ ,

and Λu is Λ(zR
t ), except that the entry (1, 1) is given by (1 − ρR)(αR

0 + αR
1 ).

For F = Auu, Āuu, Buu, Cuu, Duu, the i, j − th entry is given by

F ij = (F ij
0R + F ij

1R)(F ij
0τ + 1).

To find F ij
2R and F ij

2τ , evaluate (37)-(40) at zR
t = −∞, zτ

t = 0, zR
t = ∞, zτ

t = 0, zR
t =

0, zτ
t = −∞ and zR

t = 0, zτ
t = ∞ to obtain the system:

At zR
t = −∞, zτ

t = 0

[

Āl0 + Φ
]

Cl0 = 0
[

Āl0 + Φ
]

Dl0 = 0

MCl0 + ΛlAl0 + Υ0 = 0

MDl0 + ΛlBl0 + Ξ = 0.

At zR
t = ∞, zτ

t = 0

[

Āu0 + Φ
]

Cu0 = 0
[

Āu0 + Φ
]

Du0 = 0

MCu0 + ΛuAu0 + Υ0 = 0

MDu0 + ΛuBu0 + Ξ = 0.

At zR
t = 0, zτ

t = −∞
[

Ā0l + Φ
]

C0l = 0
[

Ā0l + Φ
]

D0l = 0

MC0l + Λ0A0l + Υl = 0

MD0l + Λ0B0l + Ξ = 0.

At zR
t = 0, zτ

t = ∞
[

Ā0u + Φ
]

C0u = 0
[

Ā0u + Φ
]

D0u = 0

MC0u + Λ0A0u + Υu = 0

MD0u + Λ0B0u + Ξ = 0.

Here, for F = Al0, Āl0, Bl0, Cl0, Dl0, the i, j − th entry is given by

F ij = F ij
0R(F ij

0τ + 1/(1 + F ij
2τ )),

and Υ0 is Υ(zτ
t ), except that the entry (2, 3) is given by (1 − ρτ )(γ

τ
0 + γτ

0/2).
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For F = Au0, Āu0, Bu0, Cu0, Du0, the i, j − th entry is given by

(F ij
0R + F ij

1R)(F ij
0τ + 1/(1 + F ij

2τ )).

For F = A0l, Ā0l, B0l, C0l, D0l, the i, j − th entry is given by

(F ij
0R + F ij

1R/(1 + F ij
2R))F ij

0τ ,

and Λ0 is Λ(zR
t ), except that the entry (1, 1) is given by (1 − ρR)(αR

0 + αR
1 /2).

For F = A0u, Ā0u, B0u, C0u, D0u, the i, j − th entry is given by

(F ij
0R + F ij

1R/(1 + F ij
2R))(F ij

0τ + 1).

To find the transition coefficients F ij
3R and F ij

3τ , evaluate (37)-(40) at the limit zτ
t = ∞ to

obtain the following system, which is a function of zR
t only:

[

ĀR(zR
t ) + Φ

]

CR(zR
t ) = 0 (41)

[

ĀR(zR
t ) + Φ

]

DR(zR
t ) = 0 (42)

MCR(zR
t ) + Λ(zR

t )AR(zR
t ) + Υu = 0 (43)

MDR(zR
t ) + Λ(zR

t )BR(zR
t ) + Ξ = 0, (44)

where, for F = AR, ĀR, BR, CR, DR, the i, j − th entry is given by

F ij(zR
t ) =

(

F ij
0R +

F ij
1R

1 + F ij
2R exp(−F ij

3RzR
t )

)

(

F ij
0τ + 1

)

.

Deriving the system (41)-(44) with respect to zR
t and evaluating at zR

t = 0, yields

āRCR +
(

ĀR + Φ
)

cR = 0

āRDR +
(

ĀR + Φ
)

dR = 0

McR + λ0AR + Λ0aR = 0

MdR + λ0BR + Λ0bR = 0,

where, for F = AR, ĀR, BR, CR, DR, and for f = aR, āR, bR, cR, dR the i, j − th entry is,
respectively,

F ij =

(

F ij
0R +

F ij
1R

1 + F ij
2R

)

(

F ij
0τ + 1

)

f ij =

(

F ij
1RF ij

2RF ij
3R

(1 + F ij
2R)2

)

(

F ij
0τ + 1

)

,

and λ0 is a 4 × 1 matrix of zeros whose first entry is α1α2/4.
Another set of equations can be obtained, and utilized if necessary, by evaluating (37)-
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(40) at the limit zτ
t = −∞, so that (41)-(44) is now

[

ĀR(zR
t ) + Φ

]

CR(zR
t ) = 0 (45)

[

ĀR(zR
t ) + Φ

]

DR(zR
t ) = 0 (46)

MCR(zR
t ) + Λ(zR

t )AR(zR
t ) + Υl = 0 (47)

MDR(zR
t ) + Λ(zR

t )BR(zR
t ) + Ξ = 0, (48)

where, for F = AR, ĀR, BR, CR, DR, the i, j − th entry is given by

F ij(zR
t ) =

(

F ij
0R +

F ij
1R

1 + F ij
2R exp(−F ij

3RzR
t )

)

F ij
0τ .

Deriving the system (45)-(48) with respect to zR
t and evaluating at zR

t = 0, yields

āRCR +
(

ĀR + Φ
)

cR = 0

āRDR +
(

ĀR + Φ
)

dR = 0

McR + λ0AR + Λ0aR = 0

MdR + λ0BR + Λ0bR = 0,

where, for F = AR, ĀR, BR, CR, DR, and for f = aR, āR, bR, cR, dR the i, j − th entry is,
respectively,

F ij =

(

F ij
0R +

F ij
1R

1 + F ij
2R

)

F ij
0τ

f ij =

(

F ij
1RF ij

2RF ij
3R

(1 + F ij
2R)2

)

F ij
0τ .

Now, evaluating (37)-(40) at the limit zR
t = ∞ yields the following system, which is as a

function of zτ
t only:

[

Āτ (z
τ
t ) + Φ

]

Cτ (z
τ
t ) = 0 (49)

[

Āτ (z
τ
t ) + Φ

]

Dτ (z
τ
t ) = 0 (50)

MCτ (z
τ
t ) + ΛuAτ (z

τ
t ) + Υ(zτ

t ) = 0 (51)

MDτ (z
τ
t ) + ΛuB

τ (zτ
t ) + Ξ = 0, (52)

where, for F = Aτ , Āτ , Bτ , Cτ , Dτ , the i, j − th entry is given by

F ij(zτ
t ) =

(

F ij
0τ +

1

1 + F ij
2τ exp(−F ij

3τz
R
t )

)

(

F ij
0R + F ij

1R

)

.
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Deriving the system (49)-(52) with respect to zτ
t and evaluating at zτ

t = 0, yields

āτCτ +
(

Āτ + Φ
)

cτ = 0

āτDτ +
(

Āτ + Φ
)

dτ = 0

Mcτ + Λuaτ + υ0 = 0

Mdτ + Λubτ = 0,

where, for F = Aτ , Āτ , Bτ , Cτ , Dτ , and for f = aτ , āτ , bτ , cτ , dτ the i, j − th entry is, respec-
tively,

F ij =

(

F ij
0τ +

1

1 + F ij
2τ

)

(

F ij
0R + F ij

1R

)

f ij =

(

F ij
2τF

ij
3τ

(1 + F ij
2τ )

2

)

(

F ij
0R + F ij

1R

)

,

and υ0 is a 4 × 4 matrix of zeros whose entry (2,3) is γ1γ2/4.
Another set of equations can be obtained, and utilized if necessary, by evaluating (37)-

(40) at the limit zR
t = −∞, so that (49)-(52) is now

[

Āτ (z
τ
t ) + Φ

]

Cτ (z
τ
t ) = 0 (53)

[

Āτ (z
τ
t ) + Φ

]

Dτ (z
τ
t ) = 0 (54)

MCτ (z
τ
t ) + ΛlAτ (z

τ
t ) + Υ(zτ

t ) = 0 (55)

MDR(zτ
t ) + ΛlBτ (z

τ
t ) + Ξ = 0, (56)

where, for F = AR, ĀR, BR, CR, DR, the i, j − th entry is given by

F ij(zτ
t ) =

(

F ij
0τ +

1

1 + F ij
2τ exp(−F ij

3τz
R
t )

)

F ij
0R.

Deriving the system (49)-(52) with respect to zτ
t and evaluating at zτ

t = 0, yields

āτCτ +
(

Āτ + Φ
)

cτ = 0

āτDτ +
(

Āτ + Φ
)

dτ = 0

Mcτ + Λlaτ + υ0 = 0

Mdτ + Λlbτ = 0,

where, for F = Aτ , Āτ , Bτ , Cτ , Dτ , and for f = aτ , āτ , bτ , cτ , dτ the i, j − th entry is, respec-
tively,

F ij =

(

F ij
0τ +

1

1 + F ij
2τ

)

F ij
0R

f ij =

(

F ij
2τF

ij
3τ

(1 + F ij
2τ )

2

)

F ij
0R.
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E Computation of EtA(zt+1)

The proposed solution takes the form

F (x, y; α, β) = α0β0 +
α0

1 + β2e−β3y
+

β0α1

1 + α2e−α3x
+

α1

(1 + α2e−α3x)(1 + β2e−β3y)
,

where α = [α0, α1, α2, α3]
′ and β = [β0, β2, β3]

′.
We need to compute

E [F (x′, y′; α, β)|x, y] =

∫ +∞

−∞

∫ +∞

−∞

F (x′, y′; α, β)p(x′, y′|x, y, κ) dx′dy′,

where x′ = ρxx + εx and y′ = ρyy + εy, 0 ≤ ρx ≤ 1, 0 ≤ ρy ≤ 1 , and εx and εy are bivariate
normal with zero mean, unit variance and correlation coefficient κ.

Following Maragakis et al. (2008), we can write

E

[

α0

1 + β2e−β3y′

∣

∣

∣

∣

x, y

]

≈ α0

1 + β2e−b3y

E

[

β0α1

1 + α2e−α3x′

∣

∣

∣

∣

x, y

]

≈ β0α1

1 + α2e−a3x
,

where

b3 =
ρy

√

1
β2
3

+ π
8

(57)

a3 =
ρx

√

1
α2

3
+ π

8

. (58)

Next, we are interested in approximating

G(x, y; α2, α3, β2, β3, κ) =

∫ +∞

−∞

∫ +∞

−∞

(

1

(1 + α2e−α3x′)(1 + β2e−β3y′)

)

p(x′, y′|x, y, κ) dx′dy′

with the bivariate logistic function suggested by Ali et al. (1978):

H(x, y; α2, a3, β2, b3, c) =
1

1 + α2e−a3x + β2e−b3y + (1 − c)α2β2e−a3xe−b3y
,

where a3 and b3 correspond to their expressions in (57) and (58), respectively. Also, −1 ≤
c ≤ 1, and c = 0 ⇐⇒ κ = 0.

To find c we need the following results with respect to the bivariate logistic function
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F̃ (x, y; α, β) = 1/(1 + e−αx)(1 + e−βy):

f̃xy(x, y; α, β) =
∂2

∂x∂y
F̃ (x, y; α, β) =

αβe−αxe−βy

(1 + e−αx)2(1 + e−βy)2

f̃x(x; α) =
∂

∂x
F̃ (x,∞; α, β) =

αe−αx

(1 + e−αx)2

f̃y(y; β) =
∂

∂y
F̃ (∞, y; α, β) =

βe−βy

(1 + e−βy)2
.

To conduct the approximation, it is necessary to approximate f̃xy(x, y; α, β) with a bivari-
ate normal density function centered at zero and variance chosen such that both functions
coincide at the origin:

f̃xy(0, 0; α, β) =
αβ

16
=

1

2π

1

σxσy

.

Additionally, we choose σx and σy such that f̃x(·) and f̃y(·) coincide with unconditional
marginal normals at the origin:

f̃x(0; α) =
α

4
=

1√
2π

1

σx

f̃y(0; β) =
β

4
=

1√
2π

1

σy

.

These conditions yield

σx =
1

α

√

8

π

σy =
1

β

√

8

π
.

A feature of H(x, y; α2, a3, β2, b3, c) is

∂2

∂x∂y
H(x, y; α2, a3, β2, b3, c)

∣

∣

x=ln(α2)/a3,y=ln(β2)/b3
=

a3b3(3 + (1 − c)2 − c)

(4 − c)3
.

Let

F̂ (x, y; α2, α3, β2, β3) =
1

(1 + α2e−α3x′)(1 + β2e−β3y′)
.

Then, c is chosen such that

∂2

∂x∂y
H(x, y; α2, a3, β2, b3, c)

∣

∣

x=x0h,y=y0h
=

∂2

∂x∂y
G(x, y; α2, α3, β2, β3, κ)

∣

∣

x=x0g,y=y0g
,

where x0h = ln(α2)/a3 and y0h = ln(β2)/b3, and x0g = ln(α2)/α3 and y0g = ln(β2)/β3. That
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is

a3b3
3 + (1 − c)2 − c

(4 − c)3
=

∂2

∂x∂y

[
∫ +∞

−∞

∫ +∞

−∞

F̂ (x′, y′; α2, α3, β2, β3)p(x′, y′|x, y, κ) dx′dy′

]

x=x0g ,y=y0g

=
∂2

∂x∂y

[
∫ +∞

−∞

∫ +∞

−∞

F̂ (ρxx + εx, ρyy + εy; α2, α3, β2, β3)p(εx, εy; κ) dεxdεy

]

x=x0g,y=y0g

= ρxρy

∫ +∞

−∞

∫ +∞

−∞

f̃xy(εx, εy; α3, β3)p(εx, εy; κ) dεxdεy

≈ ρxρy

∫ +∞

−∞

∫ +∞

−∞

p(εx, εy; σx, σy)p(εx, εy; κ) dεxdεy, (59)

where

p(εx, εy; σx, σy) = (2π)−1(σxσy)
−1 exp

(

−1

2
(ε2

x/σ
2
x + ε2

y/σ
2
y)

)

p(εx, εy; κ) = (2π)−1(1 − κ2)−1/2 exp

(

− 1

2
√

1 − κ2
(ε2

x + ε2
y + 2κεxεy)

)

.

The RHS of (59) can be written as

ρxρy(2π)−2
[

σ2
xσ

2
y(1 − κ2)

]−1/2
∫

exp

(

−1

2
ε′Aε

)

dε,

where ε = (εx, εy)
′, and

A =

[

σ2
x 0
0 σ2

y

]−1

+

[

1 κ
κ 1

]−1

.

The gaussian integral yields

∫

exp

(

−1

2
ε′Aε

)

dε = 2π(det(A))−1/2

= 2π

[

1 − κ2 + σ2
xσ

2
y + σ2

x + σ2
y

(1 − κ2)σ2
xσ

2
y

]−1/2

.

Hence, the RHS of (59) is

ρxρy(2π)−1[1 − κ2 + σ2
xσ

2
y + σ2

x + σ2
y ]

−1/2.
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Since,

a3 =
ρx

√

1/α2
3 + π/8

,

b3 =
ρy

√

1/β2
3 + π/8

,

σx =
1

α3

√

8

π
,

σy =
1

β3

√

8

π

the solution for c satisfies

3 + (1 − c)2 − c

(4 − c)3
≈ 1

2π

√

1

α2
3

+
π

8

√

1

β2
3

+
π

8

(

1 − κ2 +
64

π2α2
3β

2
3

+
8

πα2
3

+
8

πβ2
3

)−1/2

. (60)

Let g(c) denote the function on the LHS of (60). It has the following shape

Figure 2: Solution for c

-1.0 -0.5 0.5 1.0
c

0.063

0.064
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0.066

0.067

0.068

gHcL

To guarantee that −1 ≤ c ≤ 1, the RHS of (60) has to be bounded from below and from
above according to the bounds of g(c). First, notice that the RHS is increasing in both α4

and β4, so that

lim
α3→∞,β3→∞

RHS =
1

16
(1 − κ2)−1/2.

Second, notice that κ ≥ 0 implies c ≥ 0, so the maximum value that κ can take is found
when c = 1:

g(0) =
1

16
≤ 1

16
(1 − κ2)−1/2 ≤ g(1) =

2

27
.

Hence

0 ≤ κ ≤

√

1 −
(

27

32

)2

≈ 0.53674.
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For κ < 0,

g(0) =
1

16
≤ 1

16
(1 − κ2)−1/2 ≤ g(−1) =

8

125
,

so

−0.21523 ≈ −

√

1 −
(

125

128

)2

≤ κ ≤ 0.

Therefore, the admisible values for κ are κ ∈
(

−
√

1 −
(

125
128

)2
,
√

1 −
(

27
32

)2
)

.

With all the parameters found, I can write

E [F (x′, y′; α, β)|x, y] ≈ α0β0+
α0

1 + β2e−b3y
+

β0α1

1 + α2e−a3x
+

α1

1 + α2e−a3x + β2e−b3y + (1 − c)α2β2e−a3x−b3y
.

F Log-likelihood Function

In the system (20)-(22), the coefficient matrices are given by

H =
[

0 1 1 0 0
]

G(zt) =

[

0 A(zt)
04×1 C(zt)

]

S(zt) =

[

B(zt)
D(zt)

]

P =

[

ρR
z 0
0 ρτ

z

]

.

To obtain the log-likelihood function of YT given F0 and ZT , setup the Kalman filter,
whose prediction stage is given by the following equations:

xt|t−1 = E(xt|Ft−1,Zt, Θy) = G(zt)xt−1|t−1

Ωt|t−1 = var(xt|Ft−1,Zt, Θy) = G(zt)Ωt−1|t−1G(zt)
′ + S(zt)QS(zt)

′

yt|t−1 = Hxt|t−1

Σt|t−1 = HΩt|t−1H
′,

where Q = var(εt|Ft−1,Zt, Θy).
The updating stage is given by the following equations:

xt|t = E(xt|Ft, Zt, Θy) = xt|t−1 + Ωt|t−1H
′Σ−1

t|t−1(yt − yt|t−1)

Ωt|t = var(xt|Ft, Zt, Θy) = Ωt|t−1 − Ωt|t−1H
′Σ−1

t|t−1HΩt|t−1.

The conditional log-likelihood function of yt given Ft−1 and Zt is given by

lt(Θy) = −m

2
log(2π) − 1

2
log

(

det Σt|t−1

)

− 1

2
(yt − yt|t−1)

′Σ−1
t|t−1(yt − yt|t−1),

where m is the dimension of yt.
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The conditional log-likelihood function of YT given F0 and ZT is given by

LT (Θy) =
T

∑

t=1

lt(Θy).

G Choice of Proposal Densities for the M-H Algorithm

Let P∗z(x
∗|x), P∗Θy(x

∗|x) and P∗Θz(x
∗|x) denote the proposal densities of zt, Θy and Θz,

respectively.
For zt I use an independence chain, specifying the transition density of zt as the proposal

density for the draws, i.e.,P∗z(x
∗|x) = Pz(x

∗|zt−1, Θz). That is, I obtain a random draw x∗

for round i from
x∗ = Pzi

t−1 + ut,

where ut ∼ N(0, K) and K is a 2 × 2 variance-covariance matrix with unit variance and
correlation coefficient κ. Then, I compute the ratio

r =
Py(yt|Ft−1,Z

i−1
t−1, x

∗, Θy)Pz(z
i−1
t+1|x∗, Θz)Pz(x

∗|zi−1
t−1, Θz)/Pz(x

∗|zi
t−1, Θz)

Py(yt|Ft−1,Z
i−1
t , Θy)Pz(z

i−1
t+1|zi−1

t , Θz)Pz(z
i−1
t |zi−1

t−1, Θz)/Pz(z
i−1
t |zi

t−1, Θz)

for t ≤ T − 1, and

r =
Py(yt|Ft−1,Z

i−1
t−1, x

∗, Θy)Pz(x
∗|zi−1

t−1, Θz)/Pz(x
∗|zi

t−1, Θz)

Py(yt|Ft−1,Z
i−1
t , Θy)Pz(z

i−1
t |zi−1

t−1, Θz)/Pz(z
i−1
t |zi

t−1, Θz)

for t = T . The random draw x∗ for round i is accepted, i.e., zi
t = x∗, if min{r, 1} ≥

Uniform(0, 1), and rejected, i.e., zi
t = zi−1

t , otherwise.
For Θy, I use a random walk chain, specifying the proposal density as P∗Θ(x∗|x) =

N(x, cΣ̃), where c is a scaling constant and Σ̃ is the inverse of the Hessian matrix from the
maximum likelihood estimation (weighted by the prior densities of the parameters) of the
state-space model in (20)-(21) for given ZT .

For Θz, I also use a random walk chain with an identity variance-covariance matrix that
is updated after a big number, N1, of draws with the variance-covariance matrix of Θz.
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Table 2: Results from the Bayesian Estimation

Prior Posterior Convergence
Parameters Density Mean SD Mean 90% Conf. Set p-value

α0 Gamma 0.8 0.1 0.83 [0.79, 0.87] 0
α1 Gamma 1 0.1 0.93 [0.82, 1.05] 0.04
α2 Gamma 1 0.1 0.97 [0.88, 1.05] 0.09
γ0 Normal -0.01 0.002 -0.01 [-0.013, -0.007] 0.53
γ1 Gamma 0.05 0.025 0.04 [0.02, 0.07] 0.05
γ2 Gamma 1 0.1 1.09 [0.94, 1.24] 0.04
ρR Beta 0.93 0.02 0.928 [0.927, 0.929] 0
ρτ Beta 0.98 0.015 0.978 [0.977, 0.980] 0.09
σR InvGamma 0.002 0.001 0.013 [0.011, 0.016] 0
στ InvGamma 0.008 0.004 0.008 [0.007, 0.009] 0.34
ρzR Beta 0.95 0.02 0.94 [0.91, 0.97] 0.7
ρzτ Beta 0.5 0.05 0.44 [0.36, 0.52] 0.35
κ Transf. Beta 0.25 0.05 0.17 [-0.15, 0.5] 0.25
zR
0 Normal 0 1 -0.05 [-1.55, 1.47] 0.20

zτ
0 Normal 0 1 0.003 [-1.60, 1.66] 0.28

p-values correspond to Geweke (1991) convergence test.
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Figure 3: Interest Rate
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Figure 4: Tax Rate
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Figure 5: Policy Rule Coefficients
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Figure 6: Inflation and AM/AF Periods
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Figure 7: Response of Inflation to a 1% increase in the Interest Rate starting
at the PM/AF Regime (α(zR

2010:3) = 0.9769, γ(zτ
2010:3) = 0.0133)
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Figure 8: Response of Inflation to a 1% increase in the Tax Rate starting at
the PM/AF Regime (α(zR

2010:3) = 0.9769, γ(zτ
2010:3) = 0.0133)
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Figure 9: Response of Inflation to a one-time Increase in Policy Parameters
from the PM/AF Regime (α(zR

2010:3) = 0.9769, γ(zτ
2010:3) = 0.0133)

to the AM/PF Regime (α∗(zR
2010:3) = 1.136, γ∗(zτ

2010:3) = 0.0156)
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