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Abstract

How can a rational player strategically control a myopic best reply player in
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1 Introduction

How to strategically interact with others? Answers to this question are given by non-
cooperative solution concepts that presume symmetry in the rationality of players. This
symmetry is justified for methodological reasons: We do not want to explain (trivially) ex-
post differences in behavior with an assumption of ex-ante differences among the players.
Yet, in real-life situations we may be (over)confident in our ability to outwit others.
This is perhaps even more apparent in the increasing interaction between humans and
computers, which obviously involves an asymmetry in the rationality of players. For
example, calling computers call clients to schedule appointments, some modern cars take
into account slow responses by drivers and enhance the break if necessary, businesses
may use programmed trading in market platforms to interact with other businesses,
etc. Sometimes we view these programs as inferior to human intelligence.1 After all
computers can just do what they are programmed to do. Their response may be in
some circumstances inappropriate, limited and suboptimal. Even relatively intelligent
machines with learning abilities, must use some kind of learning program. Such a learning
algorithm may adapt only slowly or with a lag to the situation, and is prone to strategic
teaching and manipulation. Given that the opponent’s rationality differs from ours, it
may still not be a trivial problem to answer the question of how to interact optimally
with such an opponent. In particular, how could we manipulate this opponent to our
advantage? In this article we will investigate the following problem that appears to be
straightforward but to our knowledge has been neglected in the literature: How can a
rational player optimally control an adaptively learning opponent in a repeated strategic
game?

For the sake of concreteness, consider a repeated symmetric Cournot duopoly in which
a player’s one-shot payoff function is given by

π(xt, yt) = max{109 − xt − yt, 0}xt − xt, (1)

where xt ∈ R+ (resp. yt ∈ R+) denotes the action of the player (resp. opponent) in
period t. Assume further that the opponent plays a myopic best reply to the previous
period’s quantity of the player, that is

yt = max

{

108 − xt−1

2
, 0

}

. (2)

Myopic best reply can be viewed as a very simple adaptive heuristics. What is the
player’s optimal strategy against such an opponent? Is there a possibility to strategically
manipulate the opponent such that he plays favorable to the player? This may require
that the player forgoes some short-run profit in order to gain more in the long run.

1For some tasks, computers perform much better than humans. E.g., a simple pocket calculator can
calculate much faster than most humans the number 6

√
123456 . What matters for my argument is that

there is interaction among players with differing levels of sophistication.
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We can view this setting as a dynamic programming problem for which the player’s one
period objective function is given by function (1) into which we substitute function (2).
The problem is a bit non-standard in the sense that the object function is not everywhere
concave and differentiable, conditions usually required for dynamic programming (see
Stokey, Lucas and Prescott, 1989). Nevertheless, it is quite natural to conjecture that
the optimal strategy of the player may involve to play a (current) best reply in the last
period and Stackelberg leadership in the previous periods. However, in an experiment in
which human subjects played this game against a computer programmed to myopic best
reply (see Duersch, Kolb, Oechssler and Schipper, 2010), we discovered to our surprise
one subject who played the 4-cycle of quantities depicted by the upper time series in
Figure 1 and obtained a much higher average profit than the Stackelberg leader profit.2

This experimental discovery triggered the current analysis. Can such a cycle be optimal?

Figure 1: Cycle played by a subject

In this article we will show that if the two-player game satisfies a version of strategic
substitutes or strategic complements, namely decreasing or increasing differences, then
the optimal control strategy is monotone in the initial action of the opponent, the discount
rate and time periods. Examples of this class of games include some Cournot duopolies

2The game was repeated over 40 rounds. The subject played the cycle of quantities (108, 70, 54, 42).
This cycle yields an average payoff of 1520 which is well above Stackelberg leader payoff of 1458. In
this game, the Stackelberg leader’s quantity is 54, the follower’s quantity is 27 (payoff 728), the Cournot
Nash equilibrium quantity 36 (payoff 1296). The computer is programmed to myopic best reply with
some noise. The x-axis in Figure 1 indicates the rounds, the y-axis the quantities. The lower time series
depicts the computer’s sequence of actions. The upper time series shows the subject’s quantities. See
Duersch, Kolb, Oechssler and Schipper (2010) for details of the game and the experiment.
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(Amir, 1996b), Bertrand duopolies (Vives, 1999), Common pool resource games, Public
goods games, Rent seeking games, Diamond search, Arms race (Milgrom and Roberts,
1990) etc. The key for the results is to apply methods from lattice programming (Top-
kis, 1978, 1998) to dynamic programming (see Topkis, 1978, Puterman, 1994, Amir,
1996a). It turns out that our problem is analogous to a Ramsey-type capital accumu-
lation problem solved in Amir (1996a), so that his results if appropriately “translated”
can be applied to our game theoretic problem. Note that above example of the Cournot
duopoly does not satisfy decreasing or increasing differences everywhere, which is caused
by insisting on a non-negative price (see Section 3). That is, the results in Section 2 can
not be directly applied to our Cournot duopoly. Yet, we show in Section 3 how to use
the results to conclude that a cycle of the four quantities (108, 68, 54, 41) is the optimal
control strategy, which is very close to the cycle (108, 70, 54, 42) actually played by a
subject in the experiment discussed above.3

Our approach in this paper bears some resemblance with the literature on infinitely
repeated games with long-run and short-run players (sometimes referred to also as long-
lived and short-lived players) (see Fudenberg, Kreps and Maskin, 1990, Fudenberg and
Levine, 1989, 1994). In this literature a long-run optimizer faces a sequence of static
(or current period’s) best reply players who play only once. This is different from our
model, in which the short-run player plays a best reply to the previous period’s action
of the opponent. Our study can be seen as replacing the short-run player by a previous
period’s best reply player. In a sense we “merge” the literature on repeated games with
the literature on adaptive learning. As Fudenberg and Levine (1998, Chapter 8.11) point
out, strategic teaching has been studied in repeated games with rational players but it is
less prominent in learning theory. Camerer, Ho and Chong (2002, 2006) study adaptive
experience-weighted attraction learning of players in repeated games but allow for sophis-
ticated players who respond optimally to their forecasts of all others’ behavior. Their
focus is on estimating such learning models with experimental data. There are only a
few theoretical papers on learning in games in which players follow different learning the-
ories (Banerjee and Weibull, 1995, Droste, Hommes and Tuinstra, 2002, Hehenkamp and
Kaarbøe, 2008, Juang, 2002, Schipper, 2009, Duersch, Oechssler and Schipper, 2011a).
They focus on the evolutionary selection or relative success of different boundedly ratio-
nal learning rules. For instance, Droste, Hommes and Tuinstra (2002) study a population
of players who can choose either a myopic best reply rule or a “Nash” rule (i.e. anticipate
other Nash players and myopic best reply players) in a Cournot oligopoly. Choosing the
Nash rule carries a cost. The fraction of rules used in the population is updated according
to a noisy replication dynamics. They show complicated dynamics can arise. Another
paper related to our work is Ellison (1997), who analyzes a large population which be-
sides of players following a version of fictitious play also contains a single rational player.
He shows that if players are randomly matched to play a 2x2 coordination game, the
rational player may shift the play from a risk and Pareto dominated equilibrium to a risk

3In fact, the average payoff of the optimal cycle is 1522, only a minor improvement over the average
payoff (1520) of the cycle played by the subject.
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and Pareto dominant equilibrium but not vice versa. He also present examples of some
other 2x2 games and some 3x3 games, and shows that there can be cycles in which the
rational player can achieve larger payoffs than in equilibrium. We provide results beyond
2x2 and 3x3 games but focus on a dynamic optimizer against a myopic best reply player.

The next section presents the model and monotonicity results. In Section 3 we discuss
the cyclic Cournot example. We conclude with a discussion in Section 4. For better
readability, all proofs are relegated to the appendix.

2 Model

2.1 A Dynamic Programming Problem

There are two players, a manipulator and a puppet. Let X, Y be two nonempty compact
subsets of R. We denote by x ∈ Xy (resp. yt ∈ Yxt

) the manipulator’s (resp. puppet’s)
action, where Xy (resp. Yx) is an upper hemi-continuous compact valued correspondence
from Y to 2X (resp. X to 2Y ). That is, we allow that a player’s set of actions may
depend upon the opponent’s action.4

Let m : X × Y −→ R (resp. p : Y ×X −→ R) be the manipulator’s (resp. puppet’s)
one-period payoff function. We write m(xt, yt) for the payoff obtained by the manipulator
in period t if he plays xt and the puppet plays yt (analogous for the puppet). We assume
that each player’s payoff function is bounded.

Let B : X −→ 2Y be the puppet’s best reply correspondence. Moreover, let the
puppet’s best reply function b : X −→ Y be a selection of the best reply correspondence,
i.e., b(x) ∈ B(x) for any x ∈ X.

Time is discrete and indexed by t = 0, ..., T . T may be infinity. We assume that the
puppet is a myopic best reply player with a given best reply function. That is, given the
manipulator’s action xt−1 in period t − 1, the puppet’s action at period t is

yt = b(xt−1)

for t = 1, ... and given y0 ∈ Y .

Let b(X) be the range of the puppet’s best reply function. We assume that y0 ∈ b(X),
i.e., the puppet’s initial action is a best reply to some action of the manipulator. We
believe that this assumption is not restrictive since a best reply player should play by
definition a best reply to some action of the opponent.5

For the existence of an optimal strategy, the manipulator’s objective function should
satisfy some continuity properties. While m above is assumed to be u.s.c. on X × Y ,

4In Section 4 we explain why we do not consider here multi-dimensional strategy sets.

5Note that throughout the analysis we do not allow the manipulator to choose suitably the initial
action of the puppet.
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this property may not necessarily extend to the modified one-period objective function
m̂(·, ·) = m(·, b(·)) defined on X × X.

Following lemma will be useful for the study of the optimization problem of the
manipulator when the puppet is a myopic best reply player.

Lemma 1 If Xy is a u.h.c. and compact-valued correspondence from Y to 2X , m is
u.s.c. on X × Y , and p is u.s.c. and strictly quasi-concave in y on Yx given x ∈ X,
then m̂(·, ·) := m(·, b(·)) is u.s.c. on X × X and Xx := Xb(x) is a nonempty, u.h.c., and
compact-valued correspondence from X to 2X .

The proof is contained in the appendix.

In light of Lemma 1 we will assume that m is u.s.c. on X × Y and p is u.s.c. and
strictly quasi-concave on Y . Note that latter assumption is stronger than necessary. In
Section 4, we discuss how to generalize it to quasiconcavity. Note that we do not impose
any concavity assumption on m or m̂.

We can now consider the following Ramsey-type dynamic optimization problem

sup
T−1
∑

t=0

δtm̂(xt, xt−1) (3)

s.t. x−1 ∈ b−1(y0) given y0, and xt ∈ Xxt−1
for t = 0, 1, ..., T − 1, and 0 < δ < 1.

By standard arguments of dynamic programming (see Stokey, Lucas and Prescott,
1989), the value function or Bellman equation satisfies

Mn(x) = sup
z∈Xx

{m̂(z, x) + δMn−1(z)} (4)

for n = 1, 2, ... with M0 ≡ 0, and

M∞(x) = sup
z∈Xx

{m̂(z, x) + δM∞(z)}. (5)

Note that the index in the equations corresponds to the time horizon of the optimization
problem. Mn(x) denotes the manipulator’s objective function of the n-period dynamic
optimization problem. That is, n runs backwards in time.

Lemma 2 If Xy is a u.h.c. and compact-valued correspondence from Y to 2X , m is
u.s.c. on X × Y , and p is u.s.c. and strictly quasi-concave in y on Yx given x ∈ X, then
for n = 0, ..., the value function Mn is u.s.c. on X

The proof is contained in the appendix.

In light of Lemma 2, optimal control strategies exist. We can replace the sup in
equation (4) and (5) by the max. Let Sn(x) be the arg max in equation (4) (resp. (5))
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if n is finite (resp. infinite). Sn(x) is the set of all optimal decisions in the first period
when the problem’s horizon consists of n periods. Let sn be a selection of Sn, and s̄n and
sn be the maximum and minimum selection of Sn. If T is finite, we restrict attention to
Markovian control strategies defined as sequence of transition functions (d0, d1, ..., dT−1)
with dt : X −→ X and dt(x) ∈ Xx. When T is infinity, then we restrict us to stationary
Markovian control strategies (d, d, ...) with d : X −→ X and d(x) ∈ Xx. Such optimal
control strategies exist but there may exist other optimal control strategies as well.

2.2 Monotonicity of Objective Functions

Before we can study properties of the solution for our dynamic optimization problem,
we need to state some definitions and preliminary results. The first definition concerns
a common notion of strategic complements (resp. strategic substitutes). A function
f : X × Y −→ R has increasing (resp. decreasing) differences in (x, y) on X × Y if for
x′′ > x′, x′′, x′ ∈ Xy′′ ∩ Xy′ and for all y′′, y′ ∈ Yx′′ ∩ Yx′ with y′′ > y′,

f(x′′, y′′) − f(x′, y′′) ≥ (≤)f(x′′, y′) − f(x′, y′).

This function has strictly increasing (resp. strictly decreasing) differences if the inequality
holds strictly. The function f is a valuation if it has both increasing and decreasing
differences. The function f has strongly increasing (resp. strongly decreasing) differences
in (x, y) on Xy × Y if X, Y ⊆ R+, Xy is a continuous, convex- and compact-valued
correspondence from Y to 2X , f is continuously differentiable, and for all y′′, y′ ∈ Y with
y′′ > y′,

∂f(x, y′′)

∂x
> (<)

∂f(x, y′)

∂x
.

A payoff function has positive (resp. negative) externalities if it is increasing (resp.
decreasing) in the opponent’s action.

A set of action Xy ⊆ R is expanding (resp. contracting) if y′′ ≥ y′ in Y implies that
Xy′′ ⊇ (⊆)Xy′ . A correspondence F : X −→ 2Y is increasing (resp. decreasing) if x′′ ≥ x′

in X, y′′ ∈ F (x′′), y′ ∈ F (x′) implies that max{y′′, y′} ∈ F (x′′) (resp. max{y′′, y′} ∈
F (x′)).

The following lemma shows how above conditions on the game’s payoff functions
m and p translate into properties of the manipulator’s objective function m̂. These
properties will allow us later on to show properties of optimal control strategies. Note
that according to Lemma 3 (i) whenever m and p have the same kind of monotone
differences, then m̂ has increasing differences.

Lemma 3 (Properties of m̂) (i) Monotone Differences: The following table estab-
lishes relationships between increasing and decreasing differences of m, p, and m̂:
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If and then

m has p has m̂ has

strongly strictly incr. decr strongly strictly incr. decr. strongly strictly incr. decr.

differences differences differences√ √ √
√ √ √

√ √ √
√ √ √

√ √ √ √ √ √ √
√ √ √ √ √ √ √
√ √ √ √ √ √ √
√ √ √ √ √ √ √

√ √ √ √ √ √ √ √ √
√ √ √ √ √ √ √ √ √
√ √ √ √ √ √ √ √ √
√ √ √ √ √ √ √ √ √

(ii) Monotonicity in the Second Argument: The following table establishes relationships
between positive and negative externalities of m, increasing or decreasing differences
of p, and monotonicity of m̂(xt+1, xt) in xt:

If and then

m has p has m̂(xt+1, xt) is

positive negative increasing decreasing increasing decreasing

externalities differences in xt√ √ √
√ √ √

√ √ √
√ √ √

The proof is contained in the appendix.

With Lemma 3, some properties of n-period value functions are know from analogous
results on Ramsey-type problems by Amir (1996) (see Puterman, 1994, for related re-
sults). Lemma 4 states that the n-period value functions are monotone in the previous
period’s action (n + 1) of the manipulator.

Lemma 4 The following conclusions hold:

If and and then

m has p has Xy is Mn is on X

positive negative increasing decreasing expanding contracting increasing decreasing

externalities differences√ √ √ √
√ √ √ √

√ √ √ √
√ √ √ √
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The proof follows from above lemmata and the proof of Theorem 1(i) in Amir (1996).

2.3 Monotone Optimal Control Strategies

Proposition 1 (i) states that the n-period optimal control strategies are monotone in the
previous period’s action (n + 1) of the manipulator. Proposition 1 (ii) shows that the
n+ 1-horizon optimal control strategy (that gives the first period’s action) is larger than
the n-horizon optimal control strategy. That is, optimal control strategies are monotone
over time. Finally, denote by s̄n(·, δ) (resp. sn(·, δ)) be the largest (resp. lowest) optimal
control strategy for the n-horizon problem when the discount rate is δ. Proposition 1 (iii)
states sufficient conditions for the optimal control strategy being monotone increasing in
the discount rate.

Proposition 1 The following conclusions obtain: For n = 1, 2, ...,

(i)

If and and then

m has p has Xy is ... is

strictly incr. decr. strongly incr. decr. ascending descending incr. decr.

differences differences on X√ √ √
s̄n, sn√ √ √
s̄n, sn√ √ √

s̄n, sn√ √ √
s̄n, sn√ √ √ √ √

sn√ √ √ √ √
sn√ √ √ √ √

sn√ √ √ √ √
sn

(ii)

If and and then

m has both m and p have Xy is

positive negative increasing decreasing expanding contracting for n = 1, ...

externalities differences√ √ √
s̄n+1 ≥ s̄n, sn+1 ≥ sn√ √ √
s̄n+1 ≥ s̄n, sn+1 ≥ sn√ √ √
s̄n+1 ≤ s̄n, sn+1 ≤ sn√ √ √
s̄n+1 ≤ s̄n, sn+1 ≤ sn

(iii) Suppose that [m has positive externalities and both m and p have increasing dif-
ferences] or [m has negative externalities and both m and p have decreasing differ-
ences] and Xy is expanding. If δ′′ ≥ δ′, δ′′, δ′ ∈ (0, 1), then s̄n(·, δ′′) ≥ s̄n(·, δ′) and
sn(·, δ′′) ≥ sn(·, δ′).

This proposition is essentially an application of Topkis’s (1978, 1998) results on the
monotone comparative statics of supermodular functions on lattices. The proof of Propo-
sition 1 (i) follows from above lemmata and the proof of Theorem 1 (ii) in Amir (1996a).
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The proof of the first two lines in the table of Proposition 1 (ii) follow from above lem-
mata and Amir (1996a, Theorem 2 (i)). The last two lines extend Theorem 2 (i) in Amir
(1996a) and the proof is contained in the appendix. Such extension becomes possible
here because we focus only on single-dimensional variables whereas Amir (1996a) allows
the set of variables to be a lattice. Given previous lemmata, the proof of Proposition 1
(iii) is essentially analogous to the proof of Theorem 2 (ii) in Amir (1996a). Nevertheless
we decided to state it in the appendix.6

One may be tempted to conjecture analogous results to Proposition 1 (ii) for cases
in which the monotone differences of m and p differ. In the appendix we show an auxil-
iary result (Proposition 3) according to which if monotone differences of payoff functions
differ, then Mn(x) has no monotone differences in (n, x) unless it is a valuation. Hence,
we can not hope to prove with the same methods a result similar to Proposition 1 (ii)
if monotone differences of m and p differ. How do optimal control strategies look like in
such cases? Below Example 1 suggests that if monotone differences of m and p differ,
then the optimal control strategy may involve a cycle. Moreover the example shows that
the manipulator may play a strictly dominated action within the cycle. Thus, apparent
“irrational” behavior may in fact be rational in a dynamic context even if just finite
repetitions are considered.

Example 1 Consider the following 2x2 game:

l r
t 0, 1 0, 3
d 6, 6 20, 4

For any possible ordering of each player’s action set, the game has monotone differences
but the monotone differences differ among players. That is, if either [l > r and t > d] or
[l < r and t < d], then the row player’s payoff function has increasing differences whereas
the column player’s payoff function has decreasing differences. Otherwise, if either [l > r
and t < d] or [l < r and t > d], then the row player’s payoff function has decreasing
differences whereas the column player’s payoff function has increasing differences.

Let the manipulator’s payoff function correspond to the row player’s payoffs, and the
puppet’s payoff function to the column player’s payoffs. If T ≥ 2, T an even integer (T
may be finite), then it is easy to see that a cycle of t, d, t, d, ... is optimal. If the puppet’s
initial action is l, such a cycle yields a payoff stream of 0, 20, 0, 20, ... whereas repeated
play of the unique Nash equilibrium action d, d, d, d, ... yields 6, 6, 6, 6, ....

Note that t is strictly dominated by d. Thus, the example demonstrates that the ma-
nipulator may use a strictly dominant action in an optimal control strategy if it induces

6Amir (1996a, Theorem 2 (ii)) does not state explicitly that the one-period value function is increasing
and Xy is expanding. Yet, this property is required in the proof.
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the puppet to a response favorable to the manipulator.7 �

One may also conjecture analogous results to Proposition 1 (iii) for cases in which
monotone differences of m and p differ or with reverse externalities of m. We discuss this
in the appendix and show some auxiliary results (Proposition 4).

Proposition 2 strengthens the conclusions of Proposition 1 to strict monotonicity.
This comes at the cost of assuming strongly increasing or decreasing differences (and
thus the differentiability of the payoff functions).

Proposition 2 Let X be a nonempty, convex compact subset of R+, and let Xx be a
compact-valued, convex-valued, and continuous correspondence from X to 2X . Moreover,
let sn be any interior optimal strategy for n = 1, ..., i.e. sn(x) is in the interior of Xx.

(i)

If and and then

m has strongly p has strongly Xy is ... is strictly

incr. decr. incr. decr. ascending descending incr. decr.

differences differences on X√ √ √
sn√ √ √
sn√ √ √

sn√ √ √
sn

(ii)

If and and then

m has both m and p have strongly Xy is

positive negative increasing decreasing expanding contracting for n = 1, ...

externalities differences√ √ √
sn+1 > sn√ √ √
sn+1 > sn√ √ √
sn+1 < sn√ √ √
sn+1 < sn

(iii) Suppose that [m has positive externalities and both m and p have strongly increas-
ing differences] or [m has negative externalities and both m and p have strongly
decreasing differences] and Xy is expanding. If δ′′ > δ′, δ′′, δ′ ∈ (0, 1), then
sn(·, δ′′) > sn(·, δ′).

The proofs of the first two lines in Proposition 2 (i) follow from previous lemmata
and Amir (1996a, Theorem 3(i)). The last two lines extend Amir (1996a, Theorem 3(i)),
and the proof is contained in the appendix. Such an extension becomes possible here
because we focus on one-dimensional action sets only. The proof of the first two lines
in Proposition 2 (ii) follow from previous lemmata and Amir (1996a, Theorem 3 (ii)).

7This finding that an optimal control strategy involve strictly dominated actions is not restricted to
games for which monotone differences differ among players.
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The last two lines extend Amir (1996a, Theorem 3(ii)), and the proof is contained in
the appendix. Again, such an extension becomes possible here because we focus on
one-dimensional action sets only. The proof of Proposition 2 (iii) follows from previous
lemmata, Proposition 1 (iii), and the proof of Amir (1996a, Theorem 3 (iii)).

3 The Cyclic Example

Consider the Cournot duopoly discussed in the introduction. In this section we want
to show that a cycle is optimal in this example. First note that the results from the
previous section do not apply to the example. The Cournot duopoly does not satisfy
decreasing differences everywhere, which is due to insisting on a non-negative price. To
see this note that for instance π(100, 0)−π(50, 0) = 800−2900 = −2100 < π(100, 100)−
π(50, 100) = −100 − 50 = −150 while π(40, 20) − π(30, 20) = 1920 − 1740 = 180 >
π(40, 30) − π(30, 30) = 1520 − 1440 = 80.

Consider now a “smooth” version of the game, in which we do not insist on a non-
negative price. The symmetric payoff function is given by

η(x, y) = (108 − x − y)x.

This game has strongly decreasing differences everywhere and negative externalities. The
graph of this payoff function is identical to the graph of the original payoff function for
the range of actions x ∈ [0, 109 − y]. For this range of x the original game satisfies
strictly decreasing differences. Similarly, for any n we can find the range of xn+1 where
the smooth n-period’s objective function coincides with the original n-period’s objective
function.

We want to prove that a cycle of four actions (108, 68, 54, 41) is optimal. This cycle
is very close to the cycle actually played by the subject in the experiment discussed in
the introduction. The idea of the proof is as follows: Since we consider a finite repetition
of the game, we can use backwards induction. By our previous results, any optimal
sequence of actions must be monotonically decreasing over time as long as xn+1 is in
the range where the n-objective function coincides with the smooth n-period objective
function. We show that after eight periods this assumption is violated for the fourth
period. We show that in this game it means that there must be cycle if n = 8, and it
turns out that the 4-cycle (108, 68, 54, 41) is optimal. Using our monotonicity results, we
extend the result to n > 8.
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For n = 1, 2, ..., 8, we write down recursively the n-period objective functions Πn(xn+1),
8

Π1(x2) = max{109 − x1 − b(x2), 0}x1 − x1

Π2(x3) = max{109 − x2 − b(x3), 0}x2 − x2

+ max{109 − s1(x2) − b(x2)}s1(x2) − s1(x2)
...

...
...

and solve for the n-period optimal control strategy sn(xn+1) under the assumption that
xn+1 is in the range where the n-period objective function coincides with the smooth
n-period objective function:9

s1(x2) =
1

4
x2 + 27 if x2 ∈ [0, 108]

s2(x3) =
4

15
x3 + 36 if x3 ∈ [41.59, 108]

s3(x4) =
15

56
x4 +

270

7
if x4 ∈ [53.560, 108]

s4(x5) =
56

209
x5 +

432

11
if x5 ∈ [56.264, 108]

s5(x6) =
209

780
x6 +

513

13
if x6 ∈ [56.959, 108]

s6(x7) =
780

2911
x7 +

1620

41
if x7 ∈ [57.142, 108]

s7(x8) =
2911

10864
x8 +

3834

97
if x8 ∈ [57.191, 108]

s8(x9) =
10864

40545
x9 +

672

17
if x9 ∈ [57.204, 108]

E.g., s2(x3) above is the optimal two-period strategy for the original non-smooth problem
if x3 ∈ [41.59, 108] since under the latter condition the non-smooth problem coincides
with the smooth problem.

Note that if xn+1 is outside the respective for range for which the n-period objective
function coincides with the smooth n-period objective function, then there is a corner
solution sn(xn+1) = 108 since the graph of the n-period objective function has the typical
shape depicted in Figure 2.10

Note further that if xn = 108 then Πn(xn+1) = k for all xn+1 > 1. That is, if xn = 108
then the n-periods payoff is constant in xn+1. So it does not matter what the puppet

8To save space, we write out only the objective functions for n = 1 and n = 2.

9Interestingly, the denominator in the linear factor in sn is identical the nominator of the linear factor
in the sn+1.

10The figure depicts as example the smooth (lower figure) and original (upper figure) n-period objective
functions for n = 2. For n > 2, the graph of the objective function is qualitatively similar.
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Figure 2: Objective Function for n = 2

plays in n. In particular, the puppet could play a best reply to x1, the last period’s
action of the manipulator. We conclude that in the n-period problem, if xn+1 is outside
the respective range for which the n-period objective function coincides with the smooth
n-period objective function, then there is an optimal cycle which starts with xn = 108.

In the experiment mentioned in the introduction, the initial puppet’s action was set
to y = 40. That is, if we consider the n = 8 period problem, already in the 0-period’s
x9 = 28 (defined by 40 = b(x9)) would be outside the range for which the 8-period
objective function coincides with the smooth 8-period objective function. Hence there
must be at least an 8-cycle (or lower cycle-length) in the 8-period problem.

Suppose there is such a 8-cycle in the 8-period problem, then by above arguments
x8 = 108. Using the n-period optimal control strategies for n = 1, 2, ..., 6, 7 above, we
can compute the optimal sequence of quantities of the manipulator:

n 8 7 6 5 4 3 2 1
xn 108 68.464 57.857 54.964 54 53.036 50.143 39.536

We note that n = 4 is the latest period, for which xn+1 = x5 /∈ [56.264, 108] (54.964 <
56.264), a contradiction that the 8-cycle being optimal for the n-period problem. Hence
a smaller cycle must be optimal. Indeed, when we compute all smaller cycles using n-
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period optimal control strategies sn and starting values 108, then we find that the 4-cycle
is optimal.

Consider now the strategic control problems for this game with n > 8. Suppose that
a 4-cycle is not optimal anymore for such problem with period’s larger than 8. Then we
must have that x5 in optimal path for the n > 8 problem is strictly lower than x5 for the
8-cycle. Otherwise, by previous arguments the 4-cycle would be optimal. This could only
be true if x8 in the optimal path of n > 8 period problem is strictly larger than x8 in the
8-cycle, since by Proposition 1 (i) for n = 1, 2, ... we have that sn is monotone increasing
in xn+1. However, already for the 8-cycle we have x8 = 108, the largest undominated
action that makes the puppet leave the market in the following period. Hence, x8 in
the optimal path for the n > 8 period problem can not be larger, which implies that for
n = 5 we must have that x5 /∈ [56.264, 108] (54.964 < 56.264), a contradiction to the
assertion the 4-cycle is not optimal. This completes the proof that 4-cycles are optimal.

What happens if there is a finite repetition of the game for which the number of
periods can not be divided by 4? For all problems with less then 8 periods it is easy to
verify that in the last 4 periods the 4-cycle is optimal. In any previous periods there is
an optimal path monotone over periods since the range-assumption won’t be violated.
For problems with a finite number of periods larger than 8 that can not divided by 4, the
4-cycle is optimal for the last 4m for m = 1, 2, ... period. For any previous periods, there
is an optimal path monotone over periods since the range-assumption won’t be violated.

The result of optimal cycles may be generalized to a larger class of Cournot games in
which we insist on a non-smooth lower bound for the price although the optimal cycle
length and quantities in the cycle may depend on the parameters of the game. Yet,
quantities should decrease over the length of each cycle.

Finally, note that the example is not non-generic. That is, small perturbations of the
payoff function π do not change the result qualitatively.

4 Discussion

In this article we assumed that actions are one-dimensional although lattice programming
allows usually to prove results even if strategies are multi-dimensional. The crucial
assumption required is that payoffs are supermodular in actions. To see what may go
wrong in our case, note that if we assume that both m and p are supermodular in actions,
then m̂ may not be supermodular even if every best reply selection b(x) is supermodular
in x. E.g. the composition of m(·,−b(x)) may not be supermodular in x on X.

We used the cardinal properties of decreasing and increasing differences to obtain
our results. It is unlikely that using similar methods our results can be extended to
the weaker ordinal notion of (dual) single crossing property. The manipulator’s objective
function is a weighted sum of one-period payoff functions. It is well know that the sum of
functions each satisfying the single-crossing property may not satisfy the single-crossing
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property (Milgrom and Shannon, 1994).

In Lemma 1 we assume that p is strict quasi-concave in y. This is probably too strong.
We require that m is u.s.c. and b continuous, since if b is just u.s.c. the composition m̂
may not be a u.s.c. function. E.g., if b is a u.s.c. function then −b is a l.s.c. function.
Hence m(·,−b(·)) may not be a u.s.c. function. It would suffice to obtain a continuous
selection b from B. By Michael’s Selection Theorem we could require that B is a convex-
valued l.h.c. correspondence. But the Theorem of the Maximum just yields a u.h.c.
correspondence. As remedy, we could try to find an approximation along arguments
similar to the one used in generalizing Brouwer’s fixed point theorem to Kakutani’s fixed
point theorem. While it may not be possible to find a continuous selection of an u.h.c.
correspondence, a convex-valued u.h.c. correspondence can be approximated by a closed
and convex-valued l.h.c. correspondence. Note that convex-valuedness of B requires
quasi-concavity of p anyway.

In our model we required the initial action of the puppet to be a best reply to some
action of the manipulator. This may be quite restrictive when period 0 is viewed as the
first period. After all a motivation for learning theories is to study whether boundedly
rational learning could converge to a rational action without assuming that players start
already with it. Yet, we believe that this assumption is not restrictive because myopic
best reply players are programmed to best replies. So no matter what they play, it should
be a best reply to some of the opponent’s action. This is intuitive especially if we view
period 0 not as the first period.

At the first glance, the optimal cycle in the Cournot duopoly with a non-negative
price may look surprising. Yet, we also found optimal cycles in games where one player’s
payoff function has increasing differences while the other player’s payoff function has
decreasing differences (Example 1). Moreover, it is easy to see that the optimal control
strategy against a myopic best reply player in a matching pennies game involves a two-
cycle. Similarly, a three-cycle is optimal in the Rock-Paper-Scissors game. Note however
that the optimal cycle in the Cournot game or Example 1 is more subtle since it involves
the manipulator’s play of strict dominant actions while in those zero-sum games the
manipulator always plays a best reply and hence he does not need to sacrifice short term
for long term gain.11

Any optimal cycles are due to the “mechanistic” nature of myopic best reply. It
seems quite unrealistic that a player even if he is adaptive should not recognize cycles
after some time. Aoyagi (1996) studies repeated two-player games with adaptive players
who are able to recognize patterns such as cycles in the path of play. Indeed, it may be
worthwhile to extend our analysis and allow the best reply player to recognize cycles.

We view our analysis as a first step towards studying strategic control of adaptive
learning. We envision several possible extensions. First, one may want extend our anal-

11We like to remark that not in all zero-sum games the optimal control strategy of the manipulator
involves a cycle. This is the case for some classes of zero-sum games studied in Duersch, Oechssler and
Schipper (2011b).
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ysis to n-player games in order to allow for several manipulators and puppets. Allowing
for several puppets who play myopic best reply increases the complexity of the analysis.
Consider a problem with two puppets and a manipulator. A puppet plays not only a
best reply to the manipulator’s action to the previous period but also a best reply to
any other puppet in the previous period who himself plays a best reply to the manipu-
lator’s actions in the previous-pervious period and ... Hence, the manipulator t-period
objective function does not only depend on her previous period’s quantity but on her
entire sequence of actions up to t. Allowing for several manipulator’s brings the strategic
aspect between rational players back into the dynamic problem. On the other hand, if we
allow several manipulators, then they could cooperate using repeated games strategies
and take turns in making sacrifices required to manipulate the puppet. Second, myopic
best reply is just one adaptive learning theory. Our analysis should be extended to other
(adaptive) learning theories such as fictitious play, reinforcement learning, imitation trail
& error learning, etc. or better to entire classes of (adaptive) learning theories. Duersch,
Oechssler and Schipper (2011a) show that no strategy (incl. no dynamic optimizer) can
manipulate a player following the decision rule “imitate-if-better” to his advantage in
many textbook examples of games such as Cournot duopolies, Bertrand duopolies, rent
seeking, common pool resource games, minimum effort coordination games, etc. Third,
we assumed that the manipulator knows that the puppet plays myopic best reply but in
reality such knowledge may be missing. Could the manipulator learn the learning theory
of the opponent (and the nature of the noise if any)? These extensions are left for further
research.

A Proofs and Auxiliary Results

Proof of Lemma 1 If p is u.s.c. in y on Yx given x ∈ X, then by the Weierstrass
Theorem an argmax exist. By the Theorem of the Maximum (Berge, 1963), the argmax
correspondence is u.h.c. and compact-valued in x. Since p is strictly quasi-concave, the
argmax is unique. Hence the u.h.c. best reply correspondence is a continuous best reply
function. Since m is u.s.c. and b is continuous, we have that m̂ is u.s.c.. �

Proof of Lemma 2 Under the conditions of the Lemma we have by Lemma 1 that m̂
is u.s.c. on X × X. By the Theorem of the Maximum (Berge, 1963), M1 is u.s.c. on X.
If Mn−1 is u.s.c. on X and m̂ is u.s.c. on X ×X, then since δ ≥ 0, m̂(x′, x) + δMn−1(x

′)
is u.s.c. in x′ on X. Again, by the Theorem of the Maximum, Mn is u.s.c. on X. Thus
by induction Mn is u.s.c. on X for any n.

Let L be an operator on the space of bounded u.s.c. functions on X defined by
LM∞(x) = supx′∈Xx

{m̂(x′, x)+ δM∞(x′)}. This function is u.s.c. by the Theorem of the
Maximum. Hence L maps bounded u.s.c. functions to bounded u.s.c. functions. T is a
contraction mapping by Blackwell’s sufficiency conditions (Stokey, Lucas, and Prescott,
1989). Since the space of bounded u.s.c. functions is a complete subset of the complete
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metric space of bounded functions with the sup distance, it follows from the Contraction
Mapping Theorem that L has a unique fixed point M∞ which is u.s.c. on X. �

Proof of Lemma 3 We state the proof just for one case. The proof of the other cases
follow analogously.

(i) If p has strongly decreasing differences in (y, x) on Y × X, then by Topkis (1998)
b is strictly decreasing in x on X. Since m has strongly decreasing differences in (x, y)
on X × Y , m̂(·, ·) = m(·, b(·)) must have strongly increasing differences on X × X.

(ii) If p has decreasing differences in (y, x) on Y × X, then by Topkis (1998) b is
decreasing in x on X. Hence, if m has negative externalities, m̂(x′, x) = m(x′, b(x)) must
be increasing in x. �

Proof of Proposition 1 (ii) The proofs of the first two lines in the table of Proposition 1
(ii) follow directly from previous Lemmata and Amir (1996a, Theorem 2 (i)). The last
two lines require a proof.

Line 3 (resp. Line 4): If m has positive externalities, and both m and p have de-
creasing differences (resp. m has negative externalities, and both m and p have increasing
differences), and Xy is contracting, then s̄n+1 ≤ s̄n and sn+1 ≤ sn.

We first show that in this case Mn(x) has decreasing differences in (n, x) on N × X.
We proceed by induction by showing that for x′′ ≥ x′ and for all n ∈ N,

Mn(x′′) − Mn(x′) ≤ Mn−1(x
′′) − Mn−1(x

′). (6)

For n = 1, inequality (6) reduces to M1(x
′′) ≤ M1(x

′) since M0 ≡ 0. Since m has
positive externalities and p has decreasing differences (resp. m has negative externalities
and p has increasing differences), and Xy is contracting, we have by Lemma 4, line 3
(resp. line 4), that Mn is decreasing on X. Hence, the claim follows for n = 1.

Next, suppose that inequality (6) holds for all n ∈ {1, 2, ..., k − 1}. We have to show
that it holds for k = n. Consider the maximand in equation (4), i.e.,

m̂(z, x) + δMk−1(z).

Since both m and p have decreasing differences (resp. both m and p have increasing
differences), we have by Lemma 3 (i), line 2 (resp. line 1), that m̂(z, x) has increasing
differences in (z, x). Mn(z) has decreasing differences in (n, z) on {1, 2, ..., k − 1} ×
X by the induction hypothesis. Hence Mn(z) has increasing differences in (−n, x) on
{−(k−1), ...,−2,−1}×X. We conclude that the maximand is supermodular in (z, x,−n)
on Xy × X × {−(k − 1), ...,−2,−1}.12 By Topkis’s (1998, Theorem 2.7.6), Mn(x) has
increasing differences in (x,−n) on X×{−k,−(k−1), ...,−2,−1}. Thus it has decreasing

12A real-valued function f on a lattice X is supermodular on X if f(x′′∨x′)−f(x′′) ≥ f(x′)−f(x′′∧x′)
for all x′′, x′ ∈ X (see Topkis, 1998, p. 43).
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differences in (x, n) on X ×{1, 2, ..., k}. This proves the claim that Mn(x) has decreasing
differences in (n, x) on N × X.

Finally, the dual result for decreasing differences to Topkis (1998, Theorem 2.8.3 (a))
implies that both s̄n+1 ≤ s̄n and sn+1 ≤ sn. This completes the proof of line 3 (resp. line
4) in Proposition 1 (ii). �

Auxiliary Result to Proposition 1 (ii) Proposition 1 (ii) makes no mentioning of
four other cases in which the monotone differences of m and p may differ. The following
proposition show that analogous results for those cases can not be obtained.

Proposition 3 (i) If [m has positive externalities and decreasing differences, and p
has increasing differences] or [m has negative externalities and increasing differ-
ences, and p has decreasing differences], and Xy is expanding, then Mn(x) has
neither increasing nor decreasing differences in (n, x) unless it is a valuation.

(ii) If [m has positive externalities and increasing differences, and p has decreasing
differences] or [m has negative externalities and decreasing differences, and p has
increasing differences], and Xy is expanding, then Mn(x) has neither increasing nor
decreasing differences in (n, x) unless it is a valuation.

Proof. We just prove here part (i). Part (ii) follows analogously.

Suppose to the contrary that Mn(x) has decreasing differences in (n, x). We want
to show inductively that for x′′ ≥ x′ we have for all n ∈ N inequality (6). For n = 1,
inequality (6) reduces to M1(x

′′) ≤ M1(x
′) since M0 ≡ 0. Since either [m has positive

externalities and p has increasing differences] or [m has negative externalities and p has
decreasing differences], and Xy is expanding, we have by Lemma 4, line 3 (resp. line 4),
that Mn is increasing on X. Hence, a contradiction unless M1(x

′′) = M1(x
′).

Suppose now to the contrary that Mn(x) has increasing differences in (n, x). We want
to show inductively that for x′′ ≥ x′ we have for all n ∈ N,

Mn(x′′) − Mn(x′) ≥ Mn−1(x
′′) − Mn−1(x

′). (7)

For n = 1, inequality (7) reduces to M1(x
′′) ≥ M1(x

′) since M0 ≡ 0. Since either [m has
positive externalities and p has increasing differences] or [m has negative externalities
and p has decreasing differences], and Xy is expanding, we have by Lemma 4, line 3
(resp. line 4), that Mn is increasing on X, which implies M1(x

′′) ≥ M1(x
′).

Furthermore, suppose that inequality (7) holds for all n ∈ {1, 2, ..., k − 1}. We
have to show that it holds for k = n. Consider the maximand in equation (4), i.e.
m̂(z, x)+ δMk−1(z). Since [m has decreasing differences and p has increasing differences]
or [m has increasing differences and p has decreasing differences], we have by Lemma 3 (i),
line 3 or 4, that m̂(z, x) has decreasing differences in (z, x). Hence m̂(z, x) has increasing
differences in (z,−x). Mn(z) has increasing differences in (n, z) on {1, 2, ..., k−1}×X by
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the induction hypothesis. We conclude that the maximand is supermodular in (z,−x, n)
on Xy × X × {1, 2, ..., k − 1}. By Topkis’s (1998, Theorem 2.7.6), Mn(x) has increasing
differences in (−x, n) on X ×{1, 2, ..., k− 1}. Thus it has decreasing differences in (x, n)
on X × {1, 2, ..., k}, a contradiction unless it is a valuation. �

Proof of Proposition 1 (iii) The proof is essentially analogous to the proof of Theorem
2 (ii) in Amir (1996a). We explicitly state where we require that m̂ is increasing on X
and Xy is expanding.

We show by induction on n that Mn(x, δ) has increasing differences in (x, δ) ∈ X ×
(0, 1). For n = 1, the claim holds trivially since M1 is independent of δ.

Assume that Mk−1(x, δ) has increasing differences in (x, δ). We need to show that
Mk(x, δ) has increasing differences in (x, δ) has well. We rewrite equation (4) with explicit
dependence on δ and n = k,

Mk(x, δ) = max
z∈Xy

{m̂(z, x) − δMk−1(z, δ)}. (8)

Since [both m and p have increasing differences] or [both m and p have decreasing dif-
ference], we have by Lemma 3 (i), line 1 or 2, that m̂(z, x) has increasing differences in
(z, x). Mk−1(z, δ) has increasing differences in (δ, z) by the induction hypothesis. That
is, for δ′′ ≥ δ′ and z′′ ≥ z′,

Mk−1(z
′′, δ′′) − Mk−1(z

′, δ′′) ≥ Mk−1(z
′′, δ′) − Mk−1(z

′, δ′). (9)

Since [m has positive externalities and p has increasing differences] or [m has negative
externalities and p has decreasing differences] and Xy is expanding, we have by Lemma 4,
line 1 or 2, that Mk−1(z, δ) is increasing in z on Xy. Hence both the LHS and the RHS
of inequality (9) are positive. Therefore, multiplying the LHS with δ′′ and the RHS with
δ′ preserves the inequality. We conclude that δMk−1(z, δ) has increasing differences in
(δ, z). Hence the maximand in equation (8) is supermodular in (δ, z, x) on (0, 1)×Xy×X.

By Topkis’s (1998, Theorem 2.7.6), Mn(x, δ) has increasing differences in (δ, x) on
X × (0, 1). Finally, Topkis (1998, Theorem 2.8.3 (a)) implies that s̄n(·, δ′′) ≥ s̄n(·, δ′) and
sn(·, δ′′) ≥ sn(·, δ′). This completes the proof of Proposition 1 (iii). �

Auxiliary Results to Proposition 1 (iii) Proposition 1 (ii) is silent on a number of
cases:

Proposition 4 Suppose that [m has positive externalities, m has decreasing differences,
and p has increasing differences] or [m has negative externalities, m has increasing dif-
ferences, and p has decreasing differences] and Xy is expanding. Then Mn(x, δ) has NOT
increasing differences in (δ, x) on (0, 1) × X unless it is a valuation.

Proof. Suppose to the contrary that Mn(x, δ) has increasing differences in (δ, x) ∈
(0, 1) × X. For n = 1 the claim is trivial since Mn is independent of δ.
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Assume that Mk−1(x, δ) has increasing differences in (x, δ). We need to show that
Mk(x, δ) has increasing differences in (x, δ) has well. Consider the maximand in equa-
tion (8). Since [m has decreasing differences and p has increasing differences] or [m has
increasing differences and p has decreasing difference], we have by Lemma 3 (i), line 3 or
4, that m̂(z, x) has decreasing differences in (z, x). Hence, it has increasing differences
in (z,−x). Mk−1(z, δ) has increasing differences in (δ, z) by the induction hypothesis so
that inequality (9) holds.

Since [m has positive externalities and p has increasing differences] or [m has negative
externalities and p has decreasing differences] and Xy is expanding, we have by Lemma 4,
line 1 or 2, that Mk−1(z, δ) is increasing in z on Xy. Hence both the LHS and the RHS of
inequality (9) are positive. Therefore, multiplying the LHS with δ′′ and the RHS with δ′

preserves the inequality. We conclude that δMk−1(z, δ) has increasing differences in (δ, z).
Hence the maximand in equation (8) is supermodular in (δ, z,−x) on (0, 1) × Xy × X.

By Topkis’s (1998, Theorem 2.7.6), Mn(x, δ) has increasing differences in (δ,−x) on
X × (0, 1). Hence it has decreasing differences in (δ, x), a contradiction unless it is a
valuation. �

Two other cases, namely

(i) [m has positive externalities and both m and p have decreasing differences] or [m
has negative externalities and both m and p have increasing differences] and Xy is
contracting,

(ii) [m has positive externalities, increasing differences, and p has decreasing differ-
ences] or [m has negative externalities, decreasing differences, and p has increasing
differences] and Xy is contracting,

can not be dealt with the method used to prove Proposition 1 (iii) and Proposition 4.
Both cases are such that according to Lemma 4 we have that Mn(x, δ) is decreasing on
X. Therefore the analogous inequality to (9) may be reversed if multiplying the LHS
with δ′′ and the RHS with δ′.

Proof of Proposition 2 (i) Note that the first-order condition for the maximization
in equation (5) (analogously for equation (4)) is

∂m̂(x, s(x))

∂z
+ δ

∂M(s(x))

∂x
= 0. (10)

Suppose that for some x′′ > x′, s(x′′) = s(x′). Then from equation (10) we conclude
∂m̂(x′′,s(x′′))

∂z
= ∂m̂(x′,s(x′))

∂z
, which contradicts that m̂ has strongly decreasing differences in

(x, z). Hence, s(x′′) = s(x′) is not possible, and then by Proposition 1 (i), s(x′′) < s(x′).
This completes the proof of part (i). �
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Proof of Proposition 2 (ii)

The proof is essentially “dual” to the proof of Amir (1996a, Theorem 3 (ii)).

By Proposition 1 (ii) that sn+1(x) ≥ sn(x) for all x ∈ X. Suppose that for some
xn ∈ X, sn+1(xn) = sn(xn). We will show that there exists x′ ∈ X such that sn−1(x

′) =
sn−2(x

′).

Plugging sn+1(xn) = sn(xn) in the Euler equations corresponding to the problem
given in equation (4) for n = 2, 3, ...

∂m̂(sn(xn), xn)

∂z
+ δ

∂m̂(sn−1(sn(xn)), sn(xn))

∂x
= 0, (11)

∂m̂(sn+1(xn), xn)

∂z
+ δ

∂m̂(sn(sn+1(xn)), sn+1(xn))

∂x
= 0, (12)

leads to
∂m̂(sn−1(sn(xn)), sn(xn))

∂x
=

∂m̂(sn(sn+1(xn)), sn+1(xn))

∂x
.

Since m̂ has strongly increasing differences by Lemma 3 (i) we must have sn−1(sn(xn)) =
sn(sn+1(xn)). Hence sn−1(sn(xn)) = sn(sn(xn)). Set xn−1 ≡ sn(xn). Thus sn−1(xn−1) =
sn(xn−1). Plugging into the Euler equations,

∂m̂(sn−1(xn−1), xn−1)

∂z
+ δ

∂m̂(sn−2(sn−1(xn−1)), sn−1(xn−1))

∂x
= 0, (13)

∂m̂(sn(xn−1), xn−1)

∂z
+ δ

∂m̂(sn−1(sn(xn−1)), sn(xn−1))

∂x
= 0, (14)

leads to

∂m̂(sn−2(sn−1(xn−1)), sn−1(xn−1))

∂x
=

∂m̂(sn−1(sn(xn−1)), sn(xn−1))

∂x
.

Since m̂ has strongly increasing differences by Lemma 3 (i) last equation implies that
sn−1(sn(xn−1)) = sn−2(sn−1(xn−1)) = sn−2(sn(xn−1)). Hence there exists x′ ∈ X such
that sn−1(x

′) = sn−2(x
′).

By induction we obtain the existence of x2 ∈ X for which s1(x2) = s2(x2). The Euler
equations for the one- and two-period problems at x2 are given by

∂m̂(s1(x2), x2)

∂z
= 0, (15)

∂m̂(s2(x2), x2)

∂z
+ δ

∂m̂(s1(s2(x2)), s2(x2))

∂x
= 0. (16)

Since x2 ∈ X is such that s1(x2) = s2(x2), the Euler equations imply ∂m̂(s1(s2(x2)),s2(x2))
∂x

=
0.

Note that the conditions of line 3 or 4 in Proposition 2 (ii) imply by Lemma 3 (ii)

that ∂m̂(z,x)
∂x

< 0, a contradiction. �
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