Munich Personal RePEc Archive

Are realized volatility models good candidates for alternative Value at Risk prediction strategies?

Louzis, Dimitrios P. and Xanthopoulos-Sisinis, Spyros and Refenes, Apostolos P. (2011): Are realized volatility models good candidates for alternative Value at Risk prediction strategies?

[img]
Preview
PDF
MPRA_paper_30364.pdf

Download (770kB) | Preview

Abstract

In this paper, we assess the Value at Risk (VaR) prediction accuracy and efficiency of six ARCH-type models, six realized volatility models and two GARCH models augmented with realized volatility regressors. The α-th quantile of the innovation’s distribution is estimated with the fully parametric method using either the normal or the skewed student distributions and also with the Filtered Historical Simulation (FHS), or the Extreme Value Theory (EVT) methods. Our analysis is based on two S&P 500 cash index out-of-sample forecasting periods, one of which covers exclusively the recent 2007-2009 financial crisis. Using an extensive array of statistical and regulatory risk management loss functions, we find that the realized volatility and the augmented GARCH models with the FHS or the EVT quantile estimation methods produce superior VaR forecasts and allow for more efficient regulatory capital allocations. The skewed student distribution is also an attractive alternative, especially during periods of high market volatility.

UB_LMU-Logo
MPRA is a RePEc service hosted by
the Munich University Library in Germany.