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Abstract
In this paper, we assess the Value at Risk (VaR) prediction accuracy and efficiency of six

ARCH-type models, six realized volatility models and two GARCH models augmented with

realized volatility regressors. The a” quantile of the innovation’s distribution is estimated with
the fully parametric method using either the normal or the skewed student distributions and also
with the Filtered Historical Simulation (FHS), or the Extreme Value Theory (EVT) methods. Our
analysis is based on two S&P 500 cash index out-of-sample forecasting periods, one of which
covers exclusively the recent 2007-2009 financial crisis. Using an extensive array of statistical
and regulatory risk management loss functions, we find that the realized volatility and the
augmented GARCH models with the FHS or the EVT quantile estimation methods produce
superior VaR forecasts and allow for more efficient regulatory capital allocations. The skewed
student distribution is also an attractive alternative, especially during periods of high market

volatility.
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1. Introduction

The recent 2007 — 2009 financial crisis demonstrated, if nothing else, that the financial
institutions’ risk management systems were not as adept as previously thought in tracking and
anticipating the extreme price movements witnessed during that highly volatile period. Nearly all
financial institutions recorded multiple consecutive exceptions, i.e. days in which the trading
book losses exceeded the prescribed Value-at-Risk (VaR)l. In several instances, the total number
of exceptions during the previous trading year exceeded the threshold of ten violations which is
the set regulatory maximum (Campel and Chen, 2008)*. Consequently, much doubt was cast and
many questions were raised about the reliability and accuracy of the implemented VaR models,
systems and procedures.

However, the criticisms faced by the risk management departments can hardly be attributed
to a lack of allocated resources or research efforts. VaR measurement and forecasting has been
one of the most vigorously researched areas in quantitative risk management and financial
econometrics. It has also enjoyed significant investments both in terms of capex and in human
capital within banks and financial institutions. In this context, the evaluation of some recently
proposed volatility models which make use of the informational content in high frequency data
could reveal some attractive alternative VaR modelling specifications.

The foundations of modern risk management were laid with the seminal work of Engle
(1982) who introduced the AutoRegressive Conditional Heteroscedasticity (ARCH) model for
modeling the conditional heteroscedasticity in financial assets returns. Since then, a plethora of
ARCH-type models have been proposed in the open literature (see Bollerslev, 2010 for a short
description for almost all ARCH-type models) and most of them have been included in VaR
studies. Giot and Laurent (2003a and 2003b) for example, showed that flexible ARCH
specifications combined with fat tailed distributions can provide accurate VaR forecasts for a
wide range of assets.

More recently, Andersen and Bollerslev (1998), Andersen et al. (2001a), Andersen et al.
(2001b) and Barndorff-Nielsen and Shephard (2002) introduced and promoted the realized

volatility as a non-parametric approach for measuring the unobserved volatility. In Andersen et

! Value-at-Risk is the most common measure of downside market risk and is widely adopted by both the financial
services industry and the regulators. It reflects an asset’s market value loss not be exceeded over a specified holding
period, with a specified confidence level (see also Section 4).

* A. Campel and X. L. Chen are the authors of a VaR survey article in the “Risk” magazine on July 2008.



al. (2003), the authors also suggested that standard time series techniques can be used in order to
model the “observable” realized volatility. These concrete theoretical foundations coupled with
the increased availability of high quality intraday data for a wider range of assets, fuelled the
research interest on the use of high frequency data for measuring and forecasting the volatility of
financial assets. Several authors demonstrated the superiority of realized volatility models over
ARCH models for volatility forecasting (see Koopman et al., 2005; Martens et al., 2009;
Martens, 2002 among others), while Giot and Laurent (2004) first utilized high frequency
intraday data in a VaR forecasting context.

In Table 1, a concise literature review on the use of intraday data for VaR modeling is
presented. Nine out of ten studies therein perform a direct or indirect comparison between
ARCH-type and realized volatility models (except from Clements et al., 2008 who considered
only realized volatility models). The findings are mixed as five out of nine studies give evidence
in favor of the use of high frequency data, while the remaining four provide evidence in favor of
ARCH-type models. Almost all of the researchers implement a fully parametric approach for the
estimation of the VaR quantiles, i.e. they adopt a specific distributional assumption (e.g. the
normal or the skewed student distribution) for the innovation process. The use of alternative
assumptions is quite limited (see Kuester et al., 2006 for an excellent review of alternative VaR
methods). Finally, the VaR models are almost invariably evaluated in terms of the statistical
accuracy of their VaR forecasts (implementing Christoffersen’s, 1998 tests for example) and less
so by their efficiency with respect to specific regulatory provisions.

In this study, we contribute to this growing literature by examining the day-ahead 10%, 5%,
1% and 0.5% VaR forecasting performance of fourteen volatility models for three different
quantile estimation methods and under eight statistical and regulatory evaluation criteria. We
implement six ARCH - type specifications that include short memory, long memory and
asymmetric GARCH models, six realized volatility models including two AR(FI)MA and four of
the latest Heterogeneous Autoregressive (HAR) models and finally, two augmented GARCH
models that incorporate the realized volatility and the realized power variation introduced by
Barndoff-Nielsen and Shephard (2004) as explanatory variables.

Moreover, for each volatility model we implement three VaR quantile estimation methods:
the fully parametric method using both the normal and the skewed student distributions, the

semi-parametric filtered historical simulation (FHS) method and the conditional extreme value



theory (EVT) method. For the first time, the FHS and the EVT quantile estimation methods are
combined with the realized volatility models using Giot and Laurent’s (2004) two step
procedure. Hence, we have in total fifty-six unique VaR models, each estimated for four VaR
quantiles on an approximately thirteen years (from 1.1.1997 to 09.30.2009) of daily and intra-
daily returns for the S&P 500 cash index. The eight years out-of-sample period includes the
latest financial crisis, while we also repeat our analysis adjusting the out-of-sample period to
cover exclusively the 2007-2009 period.

The performance of the alternative VaR models is assessed using an extensive and diverse
range of evaluation measures. On top of the usual statistical accuracy tests (e.g. failure rates,
conditional and unconditional coverage tests, dynamic quantile test and quadratic loss functions),
we lay particular emphasis in implementing efficiency measures in the form of regulatory
oriented loss functions, including the one implied by the Market Risk Amendment (MRA) to the
Basel Accord and a loss function which considers the opportunity cost of capital. On the latter
two measures we additionally run equal and superior predictive ability tests (Diebold and
Mariano, 1995; Hansen, 2005) in order to identify the models that satisfy both the statistical
accuracy and efficiency conditions set herein.

The remaining of the paper is organized as follows: In section 2 we present the volatility
models used in this paper. In section 3 we describe the VaR methods while in section 4 the VaR
evaluation measures are presented. The empirical analysis is presented in Section 5. Section 6

summarizes and concludes this article.

[Insert Table 1 about here]

2. Volatility modelling and forecasting
The daily conditional heteroskedastic logarithmic returns of a financial asset,
r.=p(t)-p(t—1), where p(t) is the logarithmic asset price observed at day ¢, can be

t

described by the following process:

L= +E =H+0.2, (1)



where u, = E (r, |I . 1) is the conditional mean (7, , is the available information available

until £-1), o} =Var(r, |I,_1) is the conditional variance of the return process and z, is a zero

mean unit variance independently and identically distributed (i.1.d.) process. In order to account

for the often inherent serial autocorrelation in the financial assets returns process, we model the

latter using an AR (k) specification:
rn=c+¢(L)r, +¢ (2)

where L is the lag operator (Ly, =y, ) and ¢(L)=@L+¢L +...+¢L" is a polynomial of

order k. Here, we fit an AR(1) model as in Giot and Laurent (2004) and Kuester et al. (2006).
The conditional variance of the returns process can be modeled with one of the many volatility
models that have been proposed in the open literature. In this paper, we adopt fourteen volatility
models from three broad model classes: (i) ARCH — type models, (ii) Realized Volatility models
and (iii) Augmented GARCH models. The volatility models implemented here are briefly

presented in the following subsections.

2.1. ARCH - type models

In his seminal paper, Engle (1982) proposed the AutoRegressive Conditional
Heteroscedasticity (ARCH) model as a feasible approach for modeling the conditional
heteroscedasticity in financial assets return series. Since then, the ARCH based literature has
being growing fast (see for example the “Glossary to ARCH (GARCH)” by Bollerslev, 2010),
encompassing today a plethora of generalizations and extensions of the original ARCH model.
The implementation of (G)ARCH based models in financial asset price volatility forecasting
applications is considered today common practice among professionals and a benchmark in
academic research. The ARCH models employed here fall into three broad categories: (i)

symmetric GARCH models:

— The exponentially weighted moving average (EWMA) model:



o2 =(1-2)S A2, = (1-2) &2, + Ac?, 3)

t
i=1

where 2=0.94 as in RiskMetrics™ (JP Morgan, 1996) and Giot and Laurent (2004). The

value of A determines the persistence in the volatility process.

— The Bollerslev (1986) GARCH(1,1) model:

ol = w+ag, +po’, 4)

with >0, o, >0 and o+ <1

(ii) asymmetric GARCH models that capture the asymmetric impact’ of market news on the

volatility process:

— The Glosten et al. (1993) GJR-GARCH, or in short GJR(1,1), model:

0'2 = W+ a€,2,1 + 7/1(8[71 < 0) 8t2—1 +ﬂ0'1271 (5)

t

where I() is an indicator function. For y >0 the impact of past negative returns on the

conditional variance is greater than the impact of past positive returns.

— The Nelson (1991) Exponential GARCH, or in short EGARCH(1,1), model:

log(atz ) = a)+a(|zH| —E(|ZH|))+7/ZH +,Blog(ail) (6)

? The asymmetric impact of bad (good) news, or equivalently of negative (positive) returns on the volatility process
has been well documented in empirical studies (Bekaert and Wu, 2000; Engle and Ng, 1993; Glosten, Jagannathan
and Runkle, 1993; Nelson, 1991; Wu, 2001; Zakoian, 1994): negative shocks tend to increase volatility more than
positive shocks due to leverage effects (see Black, 1976), or volatility feedback (e.g. see Bekaert and Wu, 2000;
Campbell and Hentchel, 1992; French, Schwert and Stambaugh, 1987; Pindyc, 1984; Wu 2001).



where z, =¢, /o, are the standardized errors. The term a(|z,_1|—E(|z,_l|)) is referred to as

the “size effect” of past shocks while the term yz, , is referred to as the “sign effect” of past
shocks on current conditional variance. For y <0 a negative surprise would generate more

volatility than a same magnitude positive one.

— The Asymmetric Power ARCH (APARCH) model proposed by Ding et al. (1993). The
APARCH(1,1) is defined as:

Jzé = 0)+a(|81_1|—]/8f_1)5+ﬂ0'f_1 (7

where & (5 > O) is the Box-Cox transformation of the conditional standard deviation, while

the parameter y, with —1 <y <1, captures the leverage effects.

And finally, (iii) long memory GARCH models:*

— Bailie et al. (1996) proposed the Fractionally Integrated GARCH (FIGARCH) model. The
FIGARCH(1,d,1) is defined as:

0! = w+ﬂa,{l+[1_ﬁL_(l_aL_ﬁL)(l_L)d}gf )

where >0, a+ <1 and d is the long memory, or fractional differencing parameter
which captures the long range dependence in the conditional variance. For values of the
differencing parameter d between 0 and 1, the shock to the volatility process exhibits a slow
hyperbolic rate of decay. As the term (1 - L)d in (8) is an infinite summation, the FIGARCH

obtains an infinite order specification which in practice is truncated at 1000 lags, as

suggested in Baillie et al. (1996).

* In a short memory GARCH model, a shock to the volatility process would die out at a fast exponential rate.
Nonetheless, many authors (see for example Andersen and Bollerslev, 1997; Ding et al., 1993) have argued that the
impact of shocks on market volatility could persist for longer periods of time, before eventualy dying out.



2.2. Realized Volatility (RV) models

In this study, we implement the realized volatility models for Value at Risk forecasting
following the two step procedure proposed in Giot and Laurent (2004) and later used in
Angelidis and Degiannakis (2008) and in Shao et al. (2009). In the first step, the realized
volatility of the return series is modelled using either standard time series AR(FI)MA models, or
the recently proposed Heterogeneous Autoregressive (HAR) model (see Corsi, 2009; Andersen
et al.,, 2007) and some of its extensions. In the second step, the dynamics of the conditional
realized volatility are taken into account in the return process described in equation (1).

We model realized volatility as in Andersen et al. (2007) where the logarithmic asset price is

assumed to follow a continuous time jump diffusion semi-martingale process of the form:
dp(t) = pu(t)dt + o(t)dW () + x(t)dg(t), 0<t<T 9)

where u(t) is a continuous and locally bounded (finite) variation process, o(f) is the strictly
positive stochastic volatility process, W () is a standard Brownian motion, x(¢) is the jump size
and dg(¢) is the jump counting process which takes the value of one in the case of a jump and

zero otherwise. The resulting one-period cumulative return is defined as:

r(0)=p(0)-p(e-1)=[ u(s)is+ [ ()W (s)+ 3 x(s) (10)

t—1<s<t

while its corresponding quadratic variation is given by:

oV, :'[:_laz(s)ds+ 3 K3(s) (11)

t—1<s<t

The first part of the summation in equation (11) is the continuous path component, or

integrated variance (IV,) and the second part is the sum of squared jumps. Note that in the

absence of the discrete jump path component QV, =1V,.



The quadratic variation can be consistently estimated as the sum of intraday squared returns,
the so called realized volatility (RV) (see Andersen and Bollerslev, 1998; Andersen et al., 2001a;
Barndorff-Nielsen and Shephard, 2002).5 Here, if M is the total number of intraday returns for
each day, we define the j” continuous compounded intraday return of day ¢, as

nL= p(t—1+ﬁ)—p(t—l+%), with j=1,..,M . Hence, the realized volatility for day ¢ is

given by:
M 2
RV, = () (12)

Since the close-to-open price levels are often in practice quite different and the overnight

returns could bias the realized variance estimation, we scale the realized volatility calculated in

equation (12) as follows: RV, = [(0020 +o ) / afc}i(r )2 , where o and o, are the “open-to-

t,j
J=1

close” and “close-to-open” sample variances respectively (see Martens, 2002; Koopman et al.,
2005). As M — «, the realized volatility converges in probability to the quadratic variation
which is “by construction ... a prime candidate for formal volatility measure” (Andersen et al.,
2006, p. 830) and hence, the daily unobservable volatility can be consistently estimated by
realized volatility. The latter can be treated as an observable variable and thus standard time
series techniques can be applied for modeling and forecasting purposes.

Barndoff-Nielsen and Shephard (2004) generalized the quadratic variation process to the

power variation process by defining the integrated power variation of order p as:

IPVt(p)z llo"’(s)ds,0<pé2 (13)

t—

By cumulating absolute intraday returns raised to the p” power, the authors defined the

realized power variation (RPV) of order p as:

> The sum of squared intraday returns is actually the realized variance. Realized volatility is defined as the square
root of realized variance. However, the term realized volatility is used interchangeably with the term realized
variance.



p

(14)

M
RPY, (p)= 'S
j=1

where 0< p<2 and g, = E|z]" =2""T'(4(p+1))/T(£) with z~N(0,1). For values of p

P
between 0 and 2 and as M — oo, it holds that: RPV,( p)— IPV,. Since absolute intraday returns

are less sensitive to large price movements and mitigate the impact of outliers, it has been shown

that as long as p e (O, 2), the realized power variation is robust to jumps. Note that when p=2,

the realized power variation reduces to the realized volatility as defined in equation (12), i.e.
RPV,(2)=RV,°.

The appealing properties of the realized power variation have encouraged its use in volatility
forecasting applications. In particular, Forsberg and Ghysels (2007), Ghysels et al. (2006) and
Ghysels and Sinko (2006) demonstrated the ability of realized absolute variation, i.e. RPV, (1) ,

to produce superior volatility forecasts compared to the squared return volatility measures. They
argued that the realized power variation is a better predictor of realized volatility because of its

robustness to jumps, its smaller sampling error and its improved predictability. In Liu and Maheu

(2009) and Fuertes et al. (2009), the authors showed that an RPYV, () of order other than one can

significantly improve the accuracy of volatility forecasts. Next, the realized volatility models

employed in this study are briefly presented.

2.2.1. AR(FI)MA models for realized volatility

In Andersen et al. (2001a) and Andersen et al. (2003), the authors proposed a long memory
Autoregressive Fractionally Integrated Moving Average (ARFIMA) model in order to capture
the long range dependence in the realized volatility process. They also showed that the logarithm
of realized volatility is approximately normally distributed. This implies that one could model

the logarithmic realized volatility instead of the realized volatility itself and conveniently assume

% In this case, the realized power variation is not robust to jumps and converges to the integrated volatility plus the
jump component.

10



that the models’ errors are normally distributed. At the same time, the positivity of conditional

realized volatility estimates is reassured without imposing any nonegativity constraints on the

model’s parameters. The ARFIMA(l, dRV,l) model for the logarithm of realized volatility,

Irvi” =log(RV,), in terms of deviations from the mean 4, is defined as:
(1= L) (1=L)" (10 =gt} = (1+8,L)u, (15)

where d,, is the fractionally differencing parameter and u, are the normally distributed errors as
N (0, af). ARFIMA models have been extensively employed in volatility forecasting (e.g. see

Andersen et al., 2003; Pong et al., 2004; Koopman et al., 2005) and VaR forecasting applications
(e.g. see Giot and Laurent, 2004; Beltratti and Morana, 2005; Angelidis and Degiannakis, 2008).

2.2.2.  ARMA models for realized volatility

In order to examine whether a short memory implementation can provide accurate volatility
forecasts, we also include in our analysis an ARMA(2,1) model as in Pong et al. (2004). The
authors justified the suitability of an ARMA model for capturing the realized volatility process
based on the findings of Gallant et al. (1999) and Alizadeh et al. (2002). Therein, it was shown
that the sum of a two AR(1) processes could capture the persistent behavior of realized volatility
and thus describe the evolution of the volatility process better than a single AR(1) process. The
summation of two AR(1) processes is equivalently an ARMA(2,1) implementation (Granger and

Newbold, 1976), given by:

(1-p L=y, ) (I = ) = (1+6,L)u, (16)

2.2.3. Heterogeneous Autoregressive (HAR) models for realized volatility

Recently, Corsi (2009) proposed an approximate long memory realized volatility model, the
Heterogeneous Autoregressive (HAR) model. In contrast to the AR(FI)MA models, the HAR
model is based on the Heterogeneous Market Hypothesis of Muller et al. (1993) and the HARCH

11



model of Muller et al. (1997) and it approximates the persistence in realized volatility by
aggregating daily, weekly and monthly volatility components in an autoregressive structure.’

The logarithmic version of the HAR-RV model is defined as:

WY = a,+ a d)lrv,(fll) + a(w)lrv,(f? + a(m)lrv,(ﬁ) +u, (17)
where I is  the daily logarithmic  realized  variance and  In") =
(1/h)(lrvt +lrv,,  +lrv,, ,+. lrv,,FM) with h=w=5 and h=m =22 being the weekly and

monthly volatility components respectively. The embedded long lag structure, equivalent to a
restricted AR(22), is capable of reproducing the long memory behavior of realized volatility,
while its simple autoregressive functional form requires no more than OLS for the estimation of
its parameters.

Similarly, the HAR-RPV model is defined as:

,(f? + a(m)lrpvt(f? +u (18)

t

I = a, + a(d)lrpv(d) +a(w)lrpv

t-1

where Irpv” =log(RPV,) is the logarithm of the daily realized power variation and

Irpy™) = (1/h)(lrpv, +lrpv, _ +lrpv

t,t=2

+...+1lrpv,, ., ) with h=w=5 and h=m =22 being the

t,t-1
weekly and monthly realized power variation components respectively. Here, following Liu and

Maheu (2009), we use an RPV, () of order 1.5 as a regressor.

In Corsi et al. (2008), the authors accounted for the time varying conditional
heteroscedasticity of the normally distributed HAR errors, i.e. the so called “volatility of realized
volatility” by implementing a GARCH error process and thus improving the model’s fitting and

its predictive ability. The HAR-RV-GARCH model is given by:

7 The Heterogeneous Market Hypothesis (Muller et al., 1993) states that market agents differ with respect to their
investment horizon, risk aversion, degree of available information, institutional constraints, transaction costs, etc.
This diversity is identified as the root cause of asset volatility as market agents aim to settle at different asset
valuations according to their individual market view, preferences and expectations.

12



+ a(w)l”Vf(:) + “(m)l”"(ﬁ) +tu, (19)

= q,+ a(d)lrv(d) )

t—1

_ 2 _ 2 2
u = o, and o, = o+tou,_ + ,6’01,’,_1 (20)

where v, |1, ~N(0,1) with /,_, being the information available until 7 —1.

Extending the work in Corsi and Reno (2009), Louzis et al. (2010) proposed the Asymmetric
HAR-RPV model allowing for heterogeneous leverage or asymmetric effects modeled as lagged
standardized returns and absolute standardized returns (analogous to an EGARCH-type
structure) occurring at distinct time horizons: daily, weekly and monthly. Moreover, in order to
capture any remaining long range dependence in the volatility of realized volatility, they
proposed a FIGARCH implementation for the conditional heteroscedasticity of the residuals,
while at the same time utilizing the realized power variation as a regressor. Based on their

proposal, we define the AHAR-RPV-GARCH model as:

) _ (d) (w) (m) (d) (w) (m)
v = a, +a(d)lrpvz—1 +a(w)lrpvr—l +a(m)l’”pvr—1 + lg(d)zz—l + ‘9(w)zz—1 +‘9(m)zz—1 + 21)
(w)

(m)
Zt—l

Zt—l + ut

(d)
TV ) % ‘+7/(W) Y m

where 7" =Y"r ., / Y RV _. . are the daily (h=d =1), weekly (h=w=5) and monthly
(h=m=22) standardized returns, while the conditional variance of the errors, u,, is modeled as
in equation (20). The leverage effects are captured by the coefficient | which is expected to be

negative and statistically different from zero, should past negative shocks yield a greater impact

on future volatility.

2.2.4. Incorporating the conditional realized volatility into the return process
As previously mentioned, we use the two step procedure on the realized volatility estimates

from the ARFIMA(I,dRV,l), ARMA(2,1), HAR-RV, HAR-RPV, HAR-RV-GARCH and

AHAR-RPV-GARCH models in order to integrate the conditional realized volatility into the
return process. In the first step, the conditional realized volatility estimates are deduced as

described in Sections 2.2.1-2.2.3 for each of the t=1/,...,T in-sample data points using the

13



estimated model parameters and the following transformation (see Beltratti and Morana, 2005;

Giot and Laurent, 2004):

RVt = exp(im, -] +0.567) ) (22)

where ﬁf are the estimated residuals, j denotes henceforth the j’h realized volatility model and

oA'uz((lg) is the residuals variance. The ¢ in the subscript parenthesis denotes the time varying

conditional variance of the residuals in the HAR-RV-GARCH and AHAR-RPV-GARCH
models.
In the second step, the conditional variance in the return process of equation (1) is modeled

as a fraction of the estimated conditional realized volatilities i.e.:
Ulz’j = gRVt/t—l (23)

Given the distributional assumption for the innovation process z,, the scaling parameter g

and the parameters of the conditional mean process specified in equation (2) are estimated via
maximum likelihood (see also Section 2.4). This implementation allows for the different
dynamics of the realized volatility models to be incorporated in the conditional variance of the

return process, whilst we are able to assess their forecasting ability by ensuring that z, is a unit

variance process. In order to obtain the one step ahead conditional volatility forecast, the ;"

model’s day ahead realized volatility forecast , RV ,J+1/,, is multiplied by the estimated scaling

factor g.

2.3. Augmented GARCH-R(P)V models

An alternative approach for accessing the informational content of realized volatility and
realized power variation in VaR forecasting is to use them as explanatory variables in a GARCH

model as in Fuertes et al. (2009), Grané and Veiga (2007) and Koopman et al. (2005) i.e.:

14



ol = o+aeE  +po’, +bX, (24)

t

where X, | 1s either the realized volatility, or the realized power variation at t—1. Again, all

coefficients in equation (24) are estimated by maximizing the likelihood function. Empirical
evidence have shown that the GARCH model’s volatility forecasting performance can be
improved when realized volatility measures are used as additional explanatory variables (e.g. see
Fuertes et al., 2009; Koopman et al. 2005). However, there is limited empirical evidence on the
performance of the Augmented GARCH model in VaR forecasting applications (Grané and
Veiga, 2007).

2.4. Estimation of the models

The scaling factor g, the conditional mean equation’s coefficients vector and the coefficients
vector for all the ARCH-type and Augmented GARCH models are estimated with the Quasi
Maximum Likelihood (QML) method. Here, we consider two distributional forms for the
innovation process z,: the Normal (N in short) distribution and the skewed student (skst in short)
distribution (Lambert and Laurent, 2001).

When z, ~iid N(0,1), the QML estimates are deduced by maximizing the following

logarithmic likelihood function with respect to the coefficients vector:

L, = —%i [in(27) + In(o?)+ 22] (25)
t=1

However, the normality assumption has been shown to be inappropriate for the majority of
financial assets returns (see for example Giot and Laurent, 2004, Giot, 2005 and Ferreira and
Lopez (2005). Giot and Laurent (2003a, 2004) considered the skewed student distribution which
takes into account the asymmetry and the excess kurtosis usually observed in the returns series.

In this case, z, follows a standardized (zero mean and unit variance) skewed student distribution,

Le. z, ~iid skst(O, l,f,v), where v (with v>2) and & are the degrees of freedom and the

15



asymmetry coefficient respectively and both are estimated along with the coefficients vector.

The respective logarithmic likelihood function is then defined as:

1
fo =t IHF&J_lnr(%j_iln[”(v_l)]ﬂn E+- +In(S) -
d (26)
_%i{ln(af)Jr(l—kv)ln{l.F%g21, }}

where m and s are the mean and the standard deviation of the non-standardized skewed student

distribution and I, equals 1 if z, >2-m/s and -1 if z, <—m/s. The estimated coefficients are

used to compute day ahead forecasts for the conditional mean and variance.®

3. Value at Risk estimation methods

Value-at-Risk (VaR) has been adopted by practitioners and regulators as the standard method
of measurement of the market risk of financial assets. It encapsulates in a single quantity the
potential market value loss of a financial asset over a time horizon A, at a significance or

coverage level « . Alternatively, it reflects the asset’s market value loss over the time horizon A,

that is not expected to be exceeded with probability 1-«, i.e. Pr(r <VaR’ I,) =1-a, where

t+h — t+h
r.,, 1s the asset’s return over the period 4 and I, is the available information until time ¢. Hence,

VaR is the a" quantile of the conditional returns distribution defined as:

Var:, = Fil(a) @)

vt )y~
® m and s are defined as m = 1“(2—1/2(5 - é) and s = \/(52 +§—12 - 1) —m? respectively.

r(;)
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where F is the returns cumulative distribution function (cdf) and F~' denotes the inverse cdf.

For the returns process of equation (1), the next day’s VaR is given by:

@il»f = ﬂt+1,j+ 6, F. (0() (28)

where £, ; and G, ; are the j" model’s day ahead conditional mean and conditional volatility

forecasts respectively and F. ' is the inverse cdf of the standardized returns, or innovations, i.e.

z,=(r-u)/o,.

A pivotal decision in VaR forecasting is the assumed conditional distribution and several
authors have underlined the inappropriateness of the often used normal distribution (see for
example Giot and Laurent, 2004; Giot, 2005). Here, we estimate the a® quantile of the gz,
process using three alternative methods: the fully parametric method utilizing either the normal
or the skewed student distribution, the semi-parametric Filtered Historical Simulation (FHS)
method and the conditional Extreme Value Theory (EVT) method. In the following sections the

three methods are briefly discussed.

3.1.  Fully Parametric method

In the fully parametric method, the risk manager makes an explicit distributional assumption
for the innovation process. The conditional distribution of the standardized returns is assumed to
have a specific functional form and its shape parameters are estimated along with the parameters

of the conditional mean and of the volatility models, as described in Section 2.4. When normally

distributed innovations, i.e., z, ~iid N (0,1) , are assumed, given a data sample of r=1,...,T daily

returns tomorrow’s VaR is deduce