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I Introduction

Responding to the vastly increasing need of applied economists in business and government for

accurate economic forecasts using as much information as possible, academic econometricians

have recently devoted significant effort to develop and test various methods for handling large

macroeconomic and financial datasets. For many years, the dynamic factor model of Geweke

(1977) has been used to successfully address the problem of summarizing datasets with hun-

dreds of variables. In that respect, Stock and Watson (2002a,b), among many others, show

that estimating dynamic factors, or just extracting principal components, can improve forecasts

over simple ARMA models and also more complicated nonlinear time series models. In the last

few years, many new statistical methods have emerged that do not explicitly summarize all the

information in large datasets. Rather, they shrink their dimension by reducing or completely re-

moving the impact of irrelevant predictors. These methods include statistical algorithms adopted

in econometric forecasting, such as bagging (Inoue and Kilian, 2008), least absolute shrinkage

and selection operator (LASSO) (De Mol, Giannone, and Reichlin, 2008), boosting (Bai and Ng,

2007), Bayesian model averaging (Koop and Potter, 2004) and dynamic model averaging (Koop

and Korobilis, 2009).

More recently, Stock and Watson (2011) provide a flexible shrinkage representation of dy-

namic regression models with many orthogonal predictors. Their results are encouraging be-

cause they show that a global representation of many shrinkage estimators is possible, including

pretest methods, Bayesian model averaging, empirical Bayes, and bagging. Their contribution

is twofold since the theoretical properties of various shrinkage methods presented in previous

literature depend on the specific modelling assumptions made, and empirical differences in the

performance of these shrinkage methods rely on the data and implementation details of each

study. Similarly, De Mol, Giannone, and Reichlin (2008) compare in one integrated setting the

shrinkage and model selection properties of Bayesian LASSO and ridge regression estimators as

opposed to principal component shrinkage. Both sets of authors identify that there is large po-

tential in forecasting performance by shrinking the coefficients of a large number of predictors.

From a Bayesian point of view, the idea of a unified approach to shrinkage is not new. Long

ago Bayes and Empirical Bayes priors which lead to shrinkage posterior estimators have been

used successfully, with probably the most notable example in economics being the Minnesota

prior for vector autoregressions of Litterman (1979) and the g-prior of Zellner. Empirical Bayes

estimators in particular depend on a few hyperparameters which control the amount of shrink-

age of each regression coefficient based on some information in the data sample. Additionally,

early research identified the connection of Empirical Bayes methods with admissible estimators

which dominate unrestricted simple least squares, like the Bayesian variant of the James-Stein

estimator (see the results of Efron and Morris, 1975). Nowadays, modern Markov Chain Monte

Carlo (MCMC) simulation methods can be used to consider a larger set of regularization ill-

posed regression problems. In particular, the stochastic form of MCMC methods can be used to

provide adaptive shrinkage and recover many estimators which may dominate least squares in a

mean-square error sense.

In this paper I provide a quite general representation of Bayesian variants of penalized re-

gression estimators. I show that by using hierarchical Normal-Gamma priors many popular

estimators can be recovered such as the LASSO (Tibshirani,1996) , fused LASSO (Tibshirani et

al., 2005) and Elastic Net (Zou and Hastie, 2005). These priors are straightforward extensions
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of the typical Bayesian ridge regression priors used in regression models (Koop, 2003), and sim-

ple posterior expressions are available. In fact, following Kyung et al. (2010) the Bayes posterior

mode of regression coefficients � in the typical regression problem y = �x + " under a hierar-

chical Normal-Gamma prior admits a single general form which corresponds to the solution to

a “generic” penalized regression problem of the form

e�BAY ES = argmin
�

n
ky � �xk`2 + �1 kh1 (�)k`1 + �2 kh2 (�)k`q

o
;

where k�k`p denotes the `p-norm. This representation restricts the least squares estimator by

adding two penalty terms �1 kh1 (�)k`1 and �2 kh2 (�)k`q . Various specifications of the Normal-

Gamma prior correspond to specific choices of h1 (�), h2 (�) and q, as well as the use of one or

two regularization parameters �1, �2. The benefit of a Bayesian approach using MCMC is that

it is trivial to treat uncertainty about the regularization parameters �1, �2, as well as relax the

assumption of using the same amount of shrinkage for each regression coefficient (“adaptive

shrinkage”) to obtain the oracle property (Zou, 2006).

The main goal of this paper is to empirically examine the shrinkage performance of the

Normal-Gamma Bayes estimators using a data set with 129 quarterly macroeconomic and fi-

nancial time series. For that reason I focus on five special cases of shrinkage estimators from

the Normal-Gamma family and I set near improper (uninformative) priors on the regulariza-

tion parameters �1, �2 as a default automatic choice. As Park and Casella (2008) note, scale

invariance is not a compelling criterion for these parameters because they are unitless. However

the purpose of this paper is to examine from a “practitioner’s point of view” if such automatic

uninformative prior choices make sense for macroeconomic forecasting. In that case the fre-

quentist econometrician can view hierarchical Bayes shrinkage as a pragmatic device and a

useful tool for statistical inference (see for example the popularity of Bayesian model averaging

in macroeconomic forecasting; Koop and Potter, 2004). The paper concludes with an application

of shrinkage on forecasting GDP using many predictors focusing only on the Bayesian LASSO

estimator. In this case I also perform a sensitivity analysis and compare the uninformative pri-

ors on the regularization parameters with some informative values (selected “subjectively”), as

well as a semi-automatic method to estimate the regularization parameters based on marginal

maximum likelihood.

The paper is organized as follows. Section 2 describes the econometric methodology: the

general dynamic regression problem with many predictors; a unified shrinkage representation

of Bayes estimators; their tuning; and how they compare with traditional shrinkage. Section

3 reports the results from the out-of-sample exercise for five special shrinkage estimators ap-

plied on 129 series. This section concludes with a sensitivity analysis. Section 4 concludes and

provides an assessment of the empirical value of hierarchical shrinkage priors.

II Bayes shrinkage formulations for dynamic regressions

In this paper I consider univariate forecasting models of the form

yt+h = �zt + �xt + "t+h; (1)
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where "t+h is the h-quarters ahead forecasts error distributed "t
iid� N

�
0; �2

�
, for t = 1; :::; T .

In this type of regressions yt+h is the h-quarters ahead value of the variable of interest, zt is

the q � 1 vector of unrestricted predictors always included in the forecasting model, like the

intercept, dummies and lags of the dependent variables, and xt is the p� 1 vector of many (say

p ! 1 or p grows at a faster rate than T ) standardized exogenous predictors whose dimension

we would like to shrink.

The unrestricted coefficients � and the variance �2 can be integrated out using the unin-

formative priors � (�) / 1 and �
�
�2
�
/ 1=�2 respectively. This allows closer focus on the

regression coefficient vector � which has individual elements �j , j = 1; :::; p.

II.1 Classical shrinkage

A noninformative prior, like the one assigned to the coefficients a, leads to a Bayes estimator

centered at the unrestricted LS quantities. This choice would obviously pose a problem for

estimating the “large” number of coefficients �, especially when p > T . Traditionally, Normal

priors of the form

� (�) � N (0; V ) ; (2)

have been used, because they are conjugate to the likelihood and allow easy calculations of the

Bayes posterior. The p� p matrix V is the prior covariance matrix of the regression coefficients

which we want to elicit for this “large p” problem. For instance, a common choice is the case

V = �2Ip which leads to the classical ridge regression shrinkage. Ignoring for now the effect of

the regressors zt, this ridge regression prior implies the penalized least squares representation

� =

�
X 0X +

1

�2
Ip

��1
X 0Y

where X = (x01; :::; x
0
T )
0 and Y =

�
y01+h; :::; y

0
T+h

�0
.The dependence of all parameters �j , j =

1; :::; p, on the unknown parameter �2 can reduce the risk over the traditional LS estimator. For

� !1 we can see that � = (X 0X)�1X 0Y = �LS .

Following a different path, Judge and Bock (1978) suggested an Empirical Bayes (i.e. data-

based) estimator of V , of the form V = �2 (X 0X)�1 where �2 = b�2

b�
2 , and

b�2 =
�
Y �X�LS0

�0 �
Y �X�LS0

�
=T

b�2 =
�LS0�LS

tr (X 0X)�1
� b�2

This empirical Bayes rule is Stein-like, shrinking �LS towards 0, since the posterior mean writes

e� =
 
1� b�2

b�2 + b�2

!
�LS :

Nowadays, priors of the form V = �2�2 (X 0X)�1, which are called g-priors or Zellner’s prior

(Zellner, 1986), tend to be very popular in economics; see for instance Koop and Potter (2004)

and references therein. Over the course of the years there have been many connections between
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values of �2 and information criteria; see for example Fernandez, Ley and Steel (2001) for a

review. Nevertheless, Zellner originally proposed this prior to provide a shrinkage representation

since the posterior mean writes

� =
�2

1 + �2
�LS

This formulation implies a shrinkage factor � = �2=
�
1 + �2

�
which regulates the proportion

(0%-100%) of shrinkage over the unrestricted OLS estimator. Note that priors which are data-

based have desirable shrinkage properties, compared to the weak shrinkage of a ridge-regression

prior.

We can immediately observe that these two typical examples of Bayesian shrinkage have

undesirable properties for very demanding problems with many predictors. The ridge regression

prior is based on a global shrinkage parameter �2 for all p regressors. In sparse regression

problems, i.e. when p is very large and we expect that only a tiny proportion of regressors

are relevant for prediction, weighting a-priori all regression coefficients by the same factor �2

is guaranteed not to work well. Empirical Bayes priors partly solve this problem since �2 is

scaled by the Information Matrix, giving a varying degree of prior weight to each regression

coefficient based on the information in the likelihood. Nevertheless, the Information Matrix

cannot be estimated precisely (for large p), or cannot be estimated at all (for p > T )1. Thus,

the next subsection develops on shrinkage representations which are automatic (i.e. they allow

minimal input by the researcher about the expected shrinkage factor) and can be applied in

sparse regressions within the “large p, small T ” paradigm.

II.2 Full Bayes (hierarchical) priors for adaptive shrinkage

Modern computational methods allow to estimate the parameter(s) in the prior covariance ma-

trix V in a formal way, by placing hyper-prior distributions on these parameters. Moreover,

adding an extra layer of hierarchy on the prior covariance matrix (and hence treating this ma-

trix as a parameter to be estimated from the likelihood) allows to implement many popular

formulations of adaptive shrinkage. For that reason, the prior covariance matrix on the coeffi-

cients � is formulated as V = diag
�
�21; :::; �

2
p

	
. This formulation allows the individual elements

�2j , j = 1; :::; p, to be independently updated towards 0 which eventually results in shrinkage of

the coefficient �j to a point mass at zero. All hierarchical priors presented below are special

cases of a Normal-Gamma prior, i.e. a Normal prior for �, and a Gamma prior for �2j of the form

�
�
�j�2

�
� Np (0; V )

�
�
�2j
�
� Gamma (a; b)

This formulation is very flexible and nests many cases used previously in the shrinkage literature.

Given the properties of the Gamma distribution I will give special attention to the cases

1. �2j � Gamma (a = 0+; b = 0+) which is equivalent to log
�
�2j

�
� Uniform� [0;+1)

2. 1=�2j � Gamma (a = �; b = �) which is equivalent to �2j � iGamma (�; �), and

1It is only recently that Maruyama and George (2010) derived a particular decomposition of Zellner’s g-prior that

can be used when more predictors than observations are present.
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Figure 1: The left panel of the figure plots the ridge regression prior which is informative on

the support of the parameters �. For large � , this prior is locally uninformative (flat) around

zero and has no shrinkage properties. The right panel shows how the shrinkage towards zero is

achieved using the Laplace prior.

3. �2j � Gamma
�
a = 1; b = 2

�2

�
which is equivalent to �2j � Exponential

�
�2

2

�

where Uniform� denotes the unnormalized (and hence improper) Uniform distribution, and

iGamma is the inverse Gamma distribution.

These hierarchical priors basically transform the typical independent Normal prior in (2)

into a scale mixture of Normals prior. These examples can basically be generalized to even

more cases. However, for the specific choices made above, various known distributions can be

recovered. For instance, case 2 (the Normal-inverse Gamma density) is a mixture representa-

tion for the t-density (Geweke, 1993), while case 3 (the Normal-Exponential density, also called

“double-exponential” density) is a mixture representation of the Laplace density. Figure 1 shows

intuitively why a mixture prior (right panel) is to be preferred over the traditional ridge regres-

sion prior (left panel). While the ridge regression prior is informative on the support of the

parameters (it is bell-shaped, as opposed to being completely flat like a uniform prior), it is

locally uninformative in a neighborhood zero (the point of shrinkage). In contrast, the Laplace

prior (which is constructed in such a way that it has similar support to the ridge regression prior)

provides faster rates of shrinkage in the neighborhood of zero.

Adaptive shrinkage Jeffreys’ prior Hobert and Casella (1996) studied first the shrinkage

properties of the Jeffreys’ prior on the covariance matrix of the regression coefficients. One can

think of Jeffreys’ prior as the simplest, default choice because it is not dependent upon further

hyperparameters.

Let V = diag
�
�21; :::; �

2
p

	
, then the scale-invariant, improper Jeffrey’s (hyper-)prior on each

�2j takes the form

�
�
�2j
�
� 1=�2j , for j = 1; :::; p (3)
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Adaptive shrinkage t-priors For a covariance matrix V = diag
�
�21; :::; �

2
p

	
we can consider

a specific form of a Gamma prior on �2j , j = 1; :::; p, i.e. the inverse Gamma prior. Following

Geweke (1993) we can show that this Normal-inverse Gamma mixture prior is equivalent to a

Student-t prior on �. The t-density has heavy tails and is more leptokurtic around the origin,

but in general is much “smoother” than the Laplace density plotted in panel B of Figure 1. The

priors on �2j are of the form

�
�
�2j
�
� iGamma (�; �) , for j = 1; :::; p (4)

where � is the shape parameter and � the scale parameter of the inverse Gamma density; see

also Armagan and Zaretzki (2010). Once the �2j ’s are integrated out from the joint posterior,

this prior is analogous to the regularized least squares problem which solves (ignoring once

again the regressors zt for simplicity)

argmin
�

1

2�2

TX

t=1

(yt+h � xt�)2 +
�
�+

1

2

� pX

j=1

log
�
2� + �j

�

Finally, notice that this formula also applies for the Jeffrey’s prior case (for �; � ! 0).

Hierarchical LASSO Tibshirani (1996) proposed the Lasso algorithm which can be viewed as

a L1-penalized least squares estimate which solves

argmin
�

1

2�2

TX

t=1

(yt+h � xt�)2 + �
pX

j=1

���j
��

Tibshirani (1996) also noted that this form of penalty is equivalent to the posterior mode of the

Bayes estimate under the Laplace prior

�
�
�j�2

�
�
Yp

j=1

�

2
p
�2
e
� �p

�2
j�jj

One can take advantage of the fact that the Laplace density can be written as a scaled mixture

of Normals (see Park and Casella, 2008). Notice that the formulation above implies that for the

Bayesian LASSO prior (as well as the Fused LASSO and the Elastic Net) we need to condition

on the error variance �2. Park and Casella (2008) underline that this conditioning ensures

that the posterior of the regression coefficients � is unimodal, otherwise expensive simulation

methods would be needed to handle multimodal posteriors (for instance, simulated tempering).

Subsequently, assume for this case a diagonal prior covariance matrix of the form V = �2 �
diag

�
�21; :::; �

2
p

	
. The hierarchical version of the LASSO uses a normal prior for � of the form in

eq. (2) augmented with the hyperprior

�
�
�2j
�
� Exponential

�
�2

2

�
, for j = 1; :::; p (5)

where � is a hyperparameter, which is the rate parameter of the Exponential distribution.
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Hierarchical Fused LASSO The Fused LASSO was proposed by Tibshirani et al. (2005) as a

means to account for a possible meaningful ordering of variables2. Thus, this estimator penalizes

the L1-norm of both the coefficients and their differences

argmin
�

1

2�2

TX

t=1

(yt+h � xt�)2 + �1
pX

j=1

���j
��+ �2

p�1X

j=1

���j+1 � �j
��

The representation of the Bayesian prior for � in the penalized regression using the Fused LASSO

is

�
�
�j�2

�
� e

��1
�

Xp

j=1
j�jj��2

�

Xp�1

j=1
j�j+1��jj

Kyung et al. (2010) show that the hierarchical representation of this prior is

�
�
�2j
�
� Exponential

�
�21
2

�
, for j = 1; :::; p (6a)

�
�
!2j
�
� Exponential

�
�22
2

�
, for j = 1; :::; p� 1 (6b)

where the correlation between �j+1 and �j enters through the prior covariance matrix V . In

this case V is a tridiagonal matrix with main diagonal
�
�2i + !

2
i�1 + !

2
i

	
for i = 1; ::; p and

off-diagonal elements
�
�!2i

	
, and for simplicity we can set !0 = !p = 0.

Hierarchical Elastic Net Zou and Hastie (2005) proposed the Elastic Net as a more stabilized

version of the LASSO that also allows grouping effects and is particularly useful when p > T .

The Elastic Net estimator is the solution to the minimization problem

argmin
�

1

2�2

TX

t=1

(yt+h � xt�)2 + �1
pX

j=1

���j
��+ �2

pX

j=1

�2j

A Bayesian prior for � in the penalized regression using this estimator is

�
�
�j�2

�
� e

� �1p
�2

Xp

j=1
j�jj� �2

2�2

Xp

j=1
�2j

Kyung et al. (2010) show that a hierarchical representation of this density exists, and it is of

double-exponential form, as in the simple LASSO. This means that the hyperprior on �2j is

�
�
�2j j�21

�
� Exponential

�
�21
2

�
, for j = 1; :::; p (7a)

where in this case the difference with the standard LASSO prior is that the covariance matrix is

of the form V = �2 � diag
n�
��21 + �2

��1
; :::;

�
��2p + �2

��1o
.

2The data set in this paper implies such an ordering. Many disaggregated and component series of the same

aggregated series appear in order. Additionally, all variables in this dataset are ordered according to statistical

releases.
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As opposed to maximizing the likelihood using no prior information, estimation for the

Bayesian means that the likelihood function has to be averaged using each of the five priors pre-

sented above. This weighted average is the posterior distribution of the regression coefficients

�, and the mode of the posterior is identical to frequentist shrinkage estimators. In Appendix B

I give all the necessary details on how to get samples from the posterior distribution of all re-

gression coefficients � =
�
�; �; �2

	
by sampling from their conditional posteriors using Markov

Chain Monte Carlo (MCMC) methods. These are fairly easy to implement and computationally

efficient.

It should be noted here that other extensions of these priors are possible, although many

of these extensions can become cumbersome computationally. For instance one can use the

fact that a Gamma (a = v=2; b = 2) distribution is equivalent to a �2 � (v) distribution, with

the cost that a Normal-Chi-square mixture is not a representation of any known distribution

with known desirable shrinkage properties. Similarly, Park and Casella (2008) discuss some

alternative priors based specifically on the LASSO, such as the extension proposed by Rosset and

Zhu (2004). These authors propose to robustify the LASSO by considering a quadratic Huber-

type loss function H which has the property that the coefficients � are shrunk quadratically

around zero, while outside the neighborhood of zero this function becomes piecewise linear.

This “Huberized LASSO” takes the form

min
�

TX

t=1

H (yt+h � xt�) + �
pX

j=1

���j
��

but Park and Casella (2008) note that in this case it is not straightforward to marginalize over

�zt (which was purposely ignored in our discussion so far, since as Appendix B shows, it is

easy to marginalize over �zt when assuming the five priors presented above). Lastly, Hobert

and Geyer (1998) proved geometric ergodicity of the two-stage Gibbs sampler from hierarchical

models of a general Normal-Gamma form, a result which can be generalized to the LASSO,

Fused LASSO and Elastic Net priors (see Kyung et al., 2010).

II.2.1 Tuning the hyperparameters

Hierarchical priors provide the advantage of allowing the data to determine the prior hyperpa-

rameter of interest (covariance of the Normal prior in our case). However from the formulations

above we can observe that introducing a second layer of hierarchy (the Gamma-type densities)

means that at least one new hyperparameter is introduced; it is only for the Normal-Uniform

prior that this is obviously not the case. For the Normal-inverse Gamma prior (Student-t) we

need to select values for the hyperparameters (�; �) of the inverse Gamma density. Although

one can easily set a prior on the scale parameter �3, typical uninformative values for the inverse

Gamma distribution in Bayesian analysis are usually � = � = 0:01 or � = � = 0:001 (see Gel-

man, 2006). Since for these very low values of (�; �) the inverse Gamma becomes equivalent

to a Jeffrey’s prior for �2j (which is the first shrinkage prior examined), I will examine the more

informative prior iGamma (� = 3; � = 0:001) which concentrates �2j around the neighborhood

of zero (note that for � � 2 the variance of the inverse Gamma does not exist).

3A conjugate prior on � is the Gamma (�0; �0) density. Then the posterior of the inverse Gamma prior is again

an inverse Gamma density with parameters
�
�0 + p�; �0 +

Pp

i=1
��2i

�
.
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In the Hierarchical LASSO prior case, in the absence of other information, we should find

uninformative values for the Exponential prior distribution of �2j . Therefore we would want to

make a specific choice of the rate parameter � that would give a combination of a low prior mean

value for �2j (ideally zero) and a quite large prior variance. Given that the mean and variance

of an Exponential (�) distribution are ��1 and ��2 respectively, this is not a straightforward

combination to achieve (both mean and variance increase or decrease at the same time). In that

respect, one can introduce an additional hierarchical layer for the parameters �. A conjugate

prior which would facilitate posterior computations when using the Exponential prior, is the

Gamma prior on �2 (not �) of the form

�
�
�2
�
� Gamma (r; �)

Similarly, an additional layer on the hyperparameters �1, �2 of the Fused Lasso and Elastic

Net priors is of the form

�
�
�21
�
� Gamma (r1; �1)

�
�
�22
�
� Gamma (r2; �2)

and hence now it easy to verify that setting r = � = 0:01 (similarly r1 = �1 = r2 = �2 = 0:01)
we have a near-Uniform (noninformative) prior on the hyperparameters �, �1, �2.

III Empirical Results

The data-set consists of 129 quarterly U.S. macroeconomic time series spanning the period

1959:Q1 to 2010:Q2 (the effective sample size, after converting to stationary and taking lags

is 1960:Q1-2010:Q2). The series were downloaded from the St. Louis Fed FRED database

(http://research.stlouisfed.org/fred2/) and a complete description is given in Table A.1 in the

Appendix. The whole dataset is quite standard for this type of application, and includes among

others data releases like personal income and outlays, GDP and components, assets and lia-

bilities of commercial banks in the United States, productivity and costs measures, exchange

rates and selected interest rates. All series are seasonally adjusted, where this is applicable,

and transformed to be approximately stationary. All transformations are summarized in column

“T” in Table A.1 and explained in detail in Appendix A. Bottom line is that when the series are

used as predictors in xt, standard stationarity transformations are applied, like first and second

(log) differences. In contrast, when the series are used as the series to be predicted (yt+h), then

h-quarter growth or differences transformations are used.

In the dataset there are series which are higher level aggregates (mainly sums) of individual

disaggregated series. There are 14 series like that in the dataset which are excluded when

extracting factors, as it is not sensible to extract a common factor between, say, two series and

their sum. Column “F” in Table A.1 denotes with 1 only the 115 disaggregated variables which

are used to extract factors. This restriction does not hold when using the shrinkage priors and

all series are used as predictors.
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III.1 Forecasting with many predictors

All forecasts are from the univariate regression (1) where iteratively I use one of the 129 vari-

ables as the dependent variable (yt+h) and the remaining 128 variables enter the regression as

the matrix of standardized exogenous predictors (xt). Then the five Bayesian shrinkage priors

are applied to estimate b�j , j =Jeffreys, Student-t, Lasso, Fused Lasso, Elastic Net, and forecasts

are produced using the original, unstandardized matrix of predictors x�t . In order to forecast

with the dynamic factor model (DFM), xt is replaced with the first five principal components of

the 115 disaggregated series in xt and b�DFM is estimated with simple OLS. The variables which

are always included in each of the six forecasting models (zt) are the intercept and two lags of

the one-quarter growth rates or differences of the dependent variable (i.e. lags yt and yt�1 using

the same stationarity transformations as in the variables in xt).
The first estimation period is 1960:Q1 (after taking lags and transforming to stationarity) to

1984:Q4 and the sample 1985:Q1 to 2010:Q2 (last 102 observations) is kept for evaluation of

h-step ahead forecasts, h = 1; 2; 4: In particular, using the initial sample (where yt+h is observed

from 1960:Q1+h to 1984:Q4 and (zt; xt) is observed from 1960:Q1 to 1984:Q4-h) estimation of

the regression (1) provides parameter estimates b�; b�; b�2, and then forecasts can be computed for

y1984:Q4+h by plugging-in the regression the realization of the predictors in 1984:Q4, i.e. the val-

ues (z1984:Q4; x1984:Q4). Then one data point is added and the same procedure is followed until

the sample is exhausted. Since the models with shrinkage priors are estimated using MCMC (see

Appendix B), which provides draws from the whole posterior density of the parameters, predic-

tive simulation is used to obtain the whole predictive density. For each of the 129 dependent

variables, the five prior distributions, the three forecast horizon, and the 102-h out-of-sample

observations, 7.000 post-burn in draws from the conditional posteriors of the regression para-

meters
�
�; �; �2

�
are saved (see Appendix B for exact formulæ), and using each parameter draw

10 forecasts are generated leading in 70.000 draws from the predictive density of each of the

129 variables.

In a similar comparison of shrinkage estimators for regressions with many predictors, Stock

and Watson (2011) use 4 lags in each of their 143 univariate regressions and report all their

results relative to an AR(4) model. Del Mol, Giannone and Reichlin (2008) consider only an un-

restricted intercept in their shrinkage regressions and report results relative to a random walk.

In this paper, since the effects of an intercept and two lags are partialled out in each forecasting

model, it is natural to consider forecast performance statistics relative to an AR(2) model. In

this paper Mean Absolute Forecast Errors (MAFE) and Mean Squared Forecast Errors (MSFE) are

considered. Unless stated otherwise, all results are based on the MAFE and MSFE statistics of

model j relative to the MAFE and MSFE of the AR(2) model (i.e. MAFEj = mafej=mafeAR(2)
and MSFEj = msfej=msfeAR(2)). Consequently, MAFEj > 1 means that the AR(2) domi-

nates in terms of absolute forecast error, while the opposite is true when MAFEj < 1.
Tables 1 to 3 present the average absolute forecast errors for 1,2 and 4 quarters ahead. Since

the relative MAFE results are averaged over many series, three decimals are used in this table

because otherwise the differences are quite small (see also Stock and Watson, 2011). First,

based on the median MAFE using the total number of series, the simple LASSO and the Elastic

Net give the smallest forecast errors in all cases (note that for h = 2 there is a difference

but this is minimal). This might suggest that taking into account the correlation among the

predictors, which is what the Elastic Net algorithm adds to the simple LASSO algorithm, is not
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that important with these data. However, the Elastic Net consistently has the smallest maximum

MAFE, and consequently has the smallest variance across all 129 series. The same shrinkage

algorithm clearly dominates in most of the 17 data categories for h = 1, and on average. For

h = 4 all three srhinkage estimators (LASSO, Elastic Net and the DFM) are doing equally well.

Hierarchical shrinkage priors based on the Uniform and inverse Gamma distributions are do-

ing very poorly on average, although for some data categories they provide the smallesat MAFE

among all shrinkage estimators. Looking at the MAFE descriptives based on the total number of

series, Student-t shrinkage is always doing better than Jeffreys shrinkage in lowering the median

MAFE. Note however that for the Student-t prior, a single default choice of hyperparameters ap-

plied to all 129 series. Although this choice works well on average (median MAFEs), in some

series it completely collapses. For example, there are cases where this estimate leads to MAFEs

up to ten times higher (see the maximum MAFE based on total number of series in Table 3)

than the benchmark model. On the other hand, Jeffrey’s prior is not dependent on a choice of

hyperparameters, and we can safely say that its shrinkage and forecasting performance is very

unsatisfactory for the specific design of this study. Finally, the idea behind the fused LASSO,

i.e. taking into account the correlation among consecutive predictors, does not help improve

forecasting performance at all. In fact forecasts from this estimator are always dominated from

the LASSO and the Elastic Net.

Once we turn to Tables 4 to 6 with the MSFE results based on the total number of series,

it is obvious that the DFM is dominating all Bayesian shrinkage estimators at all three forecast

horizons. Although the LASSO and the Elastic Net improve over the benchmark AR(2) forecasts,

they are still not as good as the DFM. Nevertheless, by looking at the individual data categories,

the Elastic Net is the best in forecasting GDP and its components at horizons h = 1; 2, as well

as the various Consumer Price Indexes at all forecast horizons. Note that this pattern was also

true for the MAFE results in Tables 1 to 3. Therefore, summarizing the results in Tables 1 to 6,

from a mean forecast error point of view the Elastic Net and the LASSO are the best Bayesian

shrinkage estimators. However, these might not improve too much over principal component

shrinkage using a factor model and the final result is dependent on the series being forecasted

each time.

Table 7 gives a better view of the total performance of each shrinkage estimator. Hit rates

are calculated based on MAFEs, MSFEs and predictive likelihoods. These are estimated as the

proportion of times (among the 129 series) a specific shrinkage estimator had the lowest MAFE,

the lowest MSFE and the highest average predictive likelihood (APL). The average predictive

likelihood can be used to evaluate the whole predictive density of each regression model; see

Geweke and Amisano (2010) and references therein. Although in Tables 1 to 6 we saw that

based on the total number of series, the Elastic Net had exactly the same median MAFE and

MSFE as the LASSO, Table 7 shows that the LASSO has better hit rates for all three measures.

In terms of mean forecasting, the LASSO always does better in MSFE and MAFE hit rates by 8

to 15% compared to the Elastic Net. In terms of density forecasting, the LASSO improves even

more the density forecasts from the Elastic Net (an average improvement of 25% at all forecast

horizons). This is because parameter uncertainty feeds in the predictive likelihood evaluation.

Thus the Elastic Net having two regularization parameters �1 and �2, the uncertainty (posterior

variance) about both parameters feeds in the density forecasts of yt+h. The LASSO, having only

one regularization parameter, i.e. �1 = � and �2 = 0, has less forecast uncertainty/variance

(given that for this specific case-study, forecasts of the mean coming from both estimators are
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more or less identical).

The similarity among the five shrinkage forecasts is assessed in Table 8. The lower triangular

entries in this table show the correlation coefficients of all MSFEs for all 129 variables for horizon

h = 1. The correlations among all shrinkage forecast errors is one, except for the Student-t

forecasts which are less correlated to the other four shrinkage methods. This is simply because

the other four hierarchical shrinkage priors (Jeffreys, LASSO, Fused LASSO and Elastic Net)

are based on noninformative priors on the lower level of their hierarchies. Entries above the

diagonal of Table 8 are the mean absolute difference between the row/column method RMSEs,

averaged across series. The results confirm that the Student-t forecasts, which were the worst

according to Tables 1-6, are the most distant from the forecasts generated from the other four

priors. In contrast, the LASSO and Elastic Net forecasts have the smallest difference among any

other method, something also confirmed by their equal forecasting performance shown in Tables

1-6.

No matter how correlated on average are the forecasts from the different shrinkage priors,

we saw in Tables 1-6 that their differences were substantial across different data releases and

across forecasts horizons. The LASSO and Elastic Net priors have a better ability to take into

account the correlation patterns in the predictor variables, while the Fused LASSO is less good

at this task (because of the very specific correlation pattern it has to find, i.e. penalize less/more

consecutive predictors as a group). The Jeffreys and Student-t priors do not explicitly account for

correlation in the predictor variables and, hence, their performance can be very risky sometimes,

with forecast errors which are multiples of those produces by the other three methods.

If correlation among the predictors is a crucial determinant of the performance of these

algorithms, then a natural question to ask is what happens if we forecast with orthogonal pre-

dictors (the case that Stock and Watson, 2011, examine). Table 9 presents MAFE, MSFE and

APL descriptive statistics based on all 129 series for h = 1, when the exogenous predictors are

orthogonalized. For that reason the MATLAB function ORTH is used, which creates an orthonor-

mal basis for the range of the matrix of exogenous predictors xt, and which is based on simply

taking the singular value decomposition of xt. Consequently, this orthogonalization is like tak-

ing all possible principal components from the 128 exogenous predictors and then apply each

of the five shrinkage algorithms to select the number of components to forecast with (while the

rest are shrunk to zero). In fact, as seen on Table 9, orthogonalization of the data amounts to

almost identical forecasting performance of the five Bayesian algorithms. Additionally their per-

formance is equal to the best performing method, the LASSO, when using correlated predictors

(compare the total MAFE and total MSFE results in Tables 1 and 4). This shows that orthogo-

nalization is enough to guarantee that any of these shrinkage priors will always perform well in

forecasting. However the reader should note that this happens due to the effect of the default,

uninformative priors used in this paper. For informative choices on the regularization parame-

ters the shrinkage penalty induced will - in general - be different among the five shrinkage priors

(see the discussion in the following subsection).

III.2 Forecasting one year ahead US GDP growth using the LASSO

The previous subsection focused on evaluating default semi-automatic shrinkage priors using

129 variables. In practical situations, the applied macroeconomist will most probably want to

focus on a few variables of interest (like inflation, an output-gap or stock prices). Additionally,

the previous subsection does not answer the question if other hyperparameter choices exist that
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could possibly make Bayesian shrinkage perform even better. Subsequently, here I focus on

forecasting U.S. GDP using only the simple hierarchical LASSO prior, with various choices on

the regularization parameter �. In particular, following Del Mol et al. (2008) I use a regression

model with an intercept and the 128 remaining variables as predictors (no own lags used).

The main difference with the previous subsection is that I compare four choices for �

1. �2 � Gamma (r; �) with r = � = 0:01 (as in the benchmark case examined so far)

2. �2 � Gamma (r; �) with r = 1 and � = 0:1

3. �2 � Gamma (r; �) with r = 3 and � = 1

4. � estimated by finding the maximum marginal likelihood (MML) using the Monte Carlo

EM algorithm described in Park and Casella (2008)

Forecasts are generated for h = 4 steps ahead, and MAFE and MSFE statistics relative to the

random walk model are reported in Table 10. The benchmark prior is the best performing for

US GDP and in fact forecasts are highly correlated with the DFM model. Using the full sample,

estimates of the posterior median estimate of the regularization parameter � in the four LASSO

models are 87.2, 33.7, 10.8 and 10.6, respectively. The prior choice �2 � Gamma (3; 1) gives

posterior parameter estimates (and hence forecasts) identical to MML estimation of �, and this

actually occurs for a wide range of choices of r � 3.
As � ! 1 all coefficients are penalized heavily, i.e. �LASSO�!1 = 0 which further implies that

in the limit the dynamic regression model with many predictors reduces to yt+h = �zt+ "t+h. In

this case, the scale invariant prior (benchmark case) provides the largest posterior estimate of

� which implies posterior estimates of � which are heavily penalized (but not exactly zero). As

we allow informative priors (cases 2 and 3), more and more variables are left unrestricted and

the results resemble the case of selection of regressors. For the third case, 14 coefficients are

“sufficiently” different than zero, while the remaining 115 are very “low” (remember that the

regressors are standardized, so it makes some sense to talk about “large” and “small” coefficients

as being important or not). Nevertheless, one-year ahead forecasts of GDP growth are not

improved when forecasting with these “14 predictors”, and hence the benchmark case which

penalizes heavily all predictors performs better than using an informative prior on �. This result

is robust at other forecast horizons as well (results not presented here). The only difference is

that as the forecast horizon increases (for h = 8 for instance) more predictors are relevant for

forecasting GDP, so that the �2 � Gamma (3; 1) prior leads to forecasts much closer to (but still

dominated from) the choice �2 � Gamma (0:01; 0:01).

IV Concluding remarks

This paper has investigated the properties of Bayesian shrinkage using hierarchical priors. A

general shrinkage representation is provided using Normal-Gamma distributions and five special

cases of interest have been evaluated in forecasting using a large macroeconomic dataset. A

default semi-automatic approach using noninformative, near-improper priors was given special

attention in this paper, but also a sensitivity analysis with more informative priors has been

carried out for forecasting US GDP.
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The results suggest that Bayesian shrinkage can compete favorably with dynamic factor mod-

els, although it is not straightforward to say whether one method clearly dominates over the

other. Both methods are efficient in reducing the dimension of large datasets and help achieve

smaller forecast errors (especially for long–run forecasts), however extra care has to be taken

when selecting a prior for Bayesian shrinkage. From an applied econometrician’s point of view

(whether “frequentist” or “Bayesian”), the form of Bayesian shrinkage analyzed in this paper can

be seen as a pragmatic tool useful for out-of-sample forecasting in the presence of many pos-

sible predictor variables (a typical every-day task for a researcher at the Fed, where thousands

of series are available) or when time series are short (what is part of the life of a researcher in

the ECB, with most Euro-Area macro series beginning around 1995). Subsequently, this paper

argues that, similarly to the very popular Bayesian Model Averaging (BMA) and the empirical

Bayes Minnesota prior for vector autoregressions, “formal” (i.e. hierarchical) Bayesian treat-

ment of the shrinkage problem should also become a standard technique for handling modern

medium to large amounts of information.
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Appendices

A. Data and transformations

All series were downloaded from St. Louis’ FRED database in December 2010 and cover the

quarters Q1:1959 to Q2:2010. All series were seasonally adjusted: either taken adjusted from

FRED or by applying to the unadjusted series a quarterly X11 filter based on an AR(4) model

(after testing for seasonality). Some series in the database were observed only on a monthly

basis and quarterly values were computed by averaging the monthly values over the quarter

(as opposed to keeping the mid-month of the quarter). All variables are transformed to be

approximately stationary and the transformation codes for each variable appear in the column

‘T’ on the table below.

In particular, if wi;t is the original un-transformed series in levels, when the series is used as a

predictor (R.H.S. of equation (1)) the transformation codes are: 1 - no transformation (levels),

xi;t = wi;t; 2 - first difference, xi;t = wi;t �wi;t�1 ; 3- second difference, xi;t = �wi;t ��wi;t�1 4

- logarithm, xi;t = logwi;t; 5 - first difference of logarithm, xi;t = logwi;t � logwi;t�1; 6 - second

difference of logarithm, xi;t = � logwi;t �� logwi;t�1.
When the series is used as the variable to be predicted (L.H.S. of equation (1)) the transfor-

mation codes are: 1 - no transformation (levels), yi;t+h = wi;t+h; 2 - first difference, yi;t+h =
wi;t+h�wi;t ; 3- second difference, yi;t+h =

1
h
�hwi;t+h��wi;t 4 - logarithm, yi;t+h = logwi;t+h;

5 - first difference of logarithm, yi;t+h = logwi;t+h � logwi;t; 6 - second difference of logarithm,

yi;t+h =
1
h
�h logwi;t+h�� logwi;t. In the transformations above, I define �wt = wt�wt�1 and

�hwt+h = wt+h � wt.
From the 129 series, 14 are higher level aggregates and do not add information when ex-

tracting principal components. These series are indicated with a 0 in column ‘F’ of the table

below, and only the rest 115 series are used for estimating factors.

Table A.1: Description of series
No Series ID T F Title

1 GDPC96 5 1 Real Gross Domestic Product, 3 Decimal
2 GDPDEF 5 1 Gross Domestic Product: Implicit Price Deflator
3 PCECC96 5 1 Real Personal Consumption Expenditures
4 PCECTPI 5 1 Personal Consumption Expenditures: Chain-type Price Index
5 GPDIC96 5 1 Real Gross Private Domestic Investment, 3 Decimal
6 IMPGSC96 5 1 Real Imports of Goods & Services, 3 Decimal
7 EXPGSC96 5 1 Real Exports of Goods & Services, 3 Decimal
8 CBIC96 1 1 Real Change in Private Inventories
9 FINSLC96 5 1 Real Final Sales of Domestic Product
10 GSAVE 5 1 Gross Saving
11 GCEC96 5 1 Real Government Consumption Expenditures & Gross Investment
12 SLEXPND 6 1 State & Local Government Current Expenditures
13 SLINV 6 1 State & Local Government Gross Investment
14 DPIC96 6 1 Real Disposable Personal Income
15 PINCOME 6 1 Personal Income
16 PSAVE 5 1 Personal Saving
17 PRFI 6 1 Private Residential Fixed Investment
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No Series ID T F Title

18 PNFI 6 1 Private Nonresidential Fixed Investment
19 PCDG 5 1 Personal Consumption Expenditures: Durable Goods
20 PCND 5 1 Personal Consumption Expenditures: Nondurable Goods
21 PCESV 5 1 Personal Consumption Expenditures: Services
22 GPDICTPI 6 1 Gross Private Domestic Investment: Chain-type Price Index
23 WASCUR 6 1 Compensation of Employees: Wages & Salary Accruals
24 DIVIDEND 6 1 Net Corporate Dividends
25 CP 6 1 Corporate Profits After Tax
26 CCFC 6 1 Corporate: Consumption of Fixed Capital
27 HOUST 4 0 Housing Starts: Total: New Privately Owned Housing Units Started
28 HOUST1F 4 1 Privately Owned Housing Starts: 1-Unit Structures
29 HOUST5F 4 1 Privately Owned Housing Starts: 5-Unit Structures or More
30 HOUSTW 4 1 Housing Starts in West Census Region
31 HOUSTMW 4 1 Housing Starts in Midwest Census Region
32 HOUSTS 4 1 Housing Starts in South Census Region
33 HOUSTNE 4 1 Housing Starts in Northeast Census Region
34 INDPRO 5 0 Industrial Production Index
35 IPCONGD 5 1 Industrial Production: Consumer Goods
36 IPDCONGD 5 1 Industrial Production: Durable Consumer Goods
37 IPNCONGD 5 1 Industrial Production: Nondurable Consumer Goods
38 IPMAT 5 1 Industrial Production: Materials
39 IPDMAT 5 1 Industrial Production: Durable Materials
40 IPNMAT 5 1 Industrial Production: Nondurable Materials
41 IPBUSEQ 5 1 Industrial Production: Business Equipment
42 IPFINAL 5 1 Industrial Production: Final Products (Market Group)
43 UTL11 1 1 Capacity Utilization: Manufacturing
44 UEMPLT5 5 1 Civilians Unemployed - Less Than 5 Weeks
45 UEMP5TO14 5 1 Civilians Unemployed for 5-14 Weeks
46 UEMP15T26 5 1 Civilians Unemployed for 15-26 Weeks
47 UEMP27OV 5 1 Civilians Unemployed for 27 Weeks and Over
48 UNRATE 2 1 Civilian Unemployment Rate
49 PAYEMS 5 0 Total Nonfarm Payrolls: All Employees
50 NDMANEMP 5 1 All Employees: Nondurable Goods Manufacturing
51 DMANEMP 5 1 All Employees: Durable Goods Manufacturing
52 USCONS 5 1 All Employees: Construction
53 USGOOD 5 0 All Employees: Goods-Producing Industries
54 USFIRE 5 1 All Employees: Financial Activities
55 USWTRADE 5 1 All Employees: Wholesale Trade
56 USTPU 5 1 All Employees: Trade, Transportation & Utilities
57 USTRADE 5 1 All Employees: Retail Trade
58 USMINE 5 1 All Employees: Natural Resources & Mining
59 USPBS 5 1 All Employees: Professional & Business Services
60 USLAH 5 1 All Employees: Leisure & Hospitality
61 USINFO 5 1 All Employees: Information Services
62 USEHS 5 1 All Employees: Education & Health Services
63 SRVPRD 5 1 All Employees: Service-Providing Industries
64 USPRIV 5 0 All Employees: Total Private Industries
65 USGOVT 5 1 All Employees: Government
66 AHEMAN 6 1 Average Hourly Earnings: Manufacturing
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No Series ID T F Title

67 AHECONS 6 1 Average Hourly Earnings: Construction
68 AWHMAN 5 1 Average Weekly Hours of Production: Manufacturing
69 AWOTMAN 5 1 Average Weekly Hours: Overtime: Manufacturing
70 EMRATIO 5 1 Civilian Employment-Population Ratio
71 CIVPART 5 1 Civilian Participation Rate
72 OPHPBS 5 1 Business Sector: Output Per Hour of All Persons
73 ULCNFB 5 1 Nonfarm Business Sector: Unit Labor Cost
74 BUSLOANS 6 1 Commercial and Industrial Loans at All Commercial Banks
75 REALLN 6 1 Real Estate Loans at All Commercial Banks
76 CONSUMER 5 1 Consumer (Individual) Loans at All Commercial Banks
77 INVEST 5 0 Total Investments at All Commercial Banks
78 LOANS 6 0 Total Loans and Leases at Commercial Banks
79 MPRIME 2 1 Bank Prime Loan Rate
80 GS1 2 1 1-Year Treasury Constant Maturity Rate
81 GS3 2 1 3-Year Treasury Constant Maturity Rate
82 GS5 2 1 5-Year Treasury Constant Maturity Rate
83 GS10 2 1 10-Year Treasury Constant Maturity Rate
84 FEDFUNDS 2 1 Effective Federal Funds Rate
85 TB3MS 2 1 3-Month Treasury Bill: Secondary Market Rate
86 TB6MS 2 1 6-Month Treasury Bill: Secondary Market Rate
87 AAA 2 1 Moody’s Seasoned Aaa Corporate Bond Yield
88 BAA 2 1 Moody’s Seasoned Baa Corporate Bond Yield
89 M1SL 6 1 M1 Money Stock
90 M2SL 6 1 M2 Money Stock
91 CURRSL 6 1 Currency Component of M1
92 DEMDEPSL 6 1 Demand Deposits at Commercial Banks
93 SAVINGSL 6 1 Savings Deposits - Total
94 TCDSL 6 0 Total Checkable Deposits
95 TVCKSSL 6 1 Travelers Checks Outstanding
96 CURRCIR 6 1 Currency in Circulation
97 MZMSL 6 1 MZM Money Stock
98 M1V 5 1 Velocity of M1 Money Stock
99 M2V 5 1 Velocity of M2 Money Stock

100 NONREVSL 6 0 Total Nonrevolving Credit Outstanding
101 TOTALSL 6 0 Total Consumer Credit Outstanding
102 CPIAUCSL 6 0 Consumer Price Index for All Urban Consumers: All Items
103 CPILEGSL 6 0 Consumer Price Index for All Urban Consumers: All Items Less Energy
104 CPIULFSL 6 0 Consumer Price Index for All Urban Consumers: All Items Less Food
105 CPIENGSL 6 1 Consumer Price Index for All Urban Consumers: Energy
106 CPIUFDSL 6 1 Consumer Price Index for All Urban Consumers: Food
107 CPIAPPSL 6 1 Consumer Price Index for All Urban Consumers: Apparel
108 CPIMEDSL 6 1 Consumer Price Index for All Urban Consumers: Medical Care
109 CPITRNSL 6 1 Consumer Price Index for All Urban Consumers: Transportation
110 PPIACO 6 0 Producer Price Index: All Commodities
111 PPIFCG 6 1 Producer Price Index: Finished Consumer Goods
112 PPIFCF 6 1 Producer Price Index: Finished Consumer Foods
113 PFCGEF 6 1 Producer Price Index: Finished Consumer Goods Excluding Foods
114 PPIFGS 6 1 Producer Price Index: Finished Goods
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No Series ID T F Title

115 PPICRM 6 1 Producer Price Index: Crude Materials for Further Processing
116 PPICPE 6 1 Producer Price Index Finished Goods: Capital Equipment
117 PPIITM 6 1 Producer Price Index: Intermediate Materials: Supplies & Components
118 SP500 5 1 S&P 500 Index
119 EXUSUK 5 1 U.S. / U.K Foreign Exchange Rate
120 EXSZUS 5 1 Switzerland / U.S. Foreign Exchange Rate
121 EXJPUS 5 1 Japan / U.S. Foreign Exchange Rate
122 EXCAUS 5 1 Canada / U.S. Foreign Exchange Rate
123 PMI 1 1 ISM Manufacturing: PMI Composite Index
124 NAPMNOI 1 1 ISM Manufacturing: New Orders Index
125 NAPMII 1 1 ISM Manufacturing: Inventories Index
126 NAPMEI 1 1 ISM Manufacturing: Employment Index
127 NAPMPRI 1 1 ISM Manufacturing: Prices Index
128 NAPMPI 1 1 ISM Manufacturing: Production Index
129 NAPMSDI 1 1 ISM Manufacturing: Supplier Deliveries Index

Table A.2: Categories of data series based on statistical releases
Group Release Number of series

1 Gross Domestic Product 26
2 New Residential Construction 7
3 G.17 Industrial Production and Capacity Utilization 10
4 The Employment Situation 28
5 Productivity and Costs 2
6 H.8 Assets and Liabilities of Commercial Banks in the United States 5
7 H.15 Selected Interest Rates 10
8 H.6 Money Stock Measures 7
9 H.4.1 Factors Affecting Reserve Balances 1

10 Money Zero Maturity (MZM) 1
11 Money Velocity 2
12 G.19 Consumer Credit 2
13 Consumer Price Index 8
14 Producer Price Index 8
15 Standard & Poors 1
16 G.5 Foreign Exchange Rates 4
17 Manufacturing ISM Report on Business 7
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B. Bayesian hierarchical shrinkage priors

Note that I denote the inverse Gaussian distribution with parameters c, d as IG (c; d), while the

inverse Gamma with parameters a, b is denoted as iGamma (a; b). A variable coming from the

inverse Gamma distribution is the reciprocal of a variable distributed as gamma, while the same

is not true for the inverse Gaussian variate (i.e. if z � IG (c; d) , then
�
z�1
�
� N(c; d)). There

are many parametrizations of the Gamma distribution, and the one I am using in this article is

Gamma (a; b) � f (y; a; b) = CGya�1bae�by

for a; b non-negative, real numbers, where CG = � (a) = (a� 1)! is the gamma function.

The parameters on the unrestricted variables zt are integrated out with the noninformative

prior � (�) / 1, leading to a conditional posterior

�j�; �2; data � Nq
��
Z 0Z

��1
Z 0ey� ; �2

�
Z 0Z

��1�
(B.1)

with Z = (z01; :::; z
0
T )
0. That is, in the formulas of the conditional posteriors below, we need

to add in each and every case of hierarchical prior the sampling step in equation (B.1) above.

For notational convenience, in (B.1) and in the conditional posteriors below some or all of

the quantities ey�, eya and 	 show up, which are defined as ey� = y � X�, ey� = y � Z� and

	 = (y � Z��X�)0 (y � Z��X�), respectively. Finally, in the formulas for the conditional

posteriors we have to condition on the data matrices (y; Z;X), but this is omitted for notational

simplicity (to keep the formulas more compact).

B.1 Adaptive shrinkage Jeffrey’s prior

The priors are defined using the following hierarchy

�
�
�j�21; :::; �2p

�
� Np (0; V )

�
�
�2j
�
� 1=�2j , for j = 1; :::; p

where V = diag
�
�21; :::; �

2
p

	
. The posteriors of � and �2j can be obtained by sampling recursively

from (B.1) and the full conditionals

�ja; �2;
�
�2j
	p
j=1

� Np

��
X 0X + �2V �1

��1
X 0eya; �2

�
X 0X + �2V �1

��1�
(B.2a)
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B.2 Adaptive shrinkage t-prior

The prior for this case is of the hierarchical form

�
�
�j�2; �21; :::; �2p

�
� Np

�
0; �2V

�

�
�
�2j
�
� iGamma (�; �) , for j = 1; :::; p

where V = diag
�
�21; :::; �

2
p

	
.Draws from the posterior can be obtained by sampling recursively

from (B.1) and the full conditionals
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�
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B.3 Hierarchical Lasso

The full hierarchical representation of the LASSO prior is

�
�
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� Np
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�
� Gamma (r; �) (B.4c)

where V = diag
�
�21; :::; �

2
p

	
.

Given these priors, the posterior can be obtained by sampling recursively from (B.1) and the

full conditionals
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B.4 Hierarchical Fused Lasso

The hierarchical representation of the Fused Lasso prior is

�
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where in this case V is the tridiagonal matrix
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Given these priors, the posteriors can be obtained by sampling recursively from (B.1) and

the full conditionals
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B.5 Hierarchical Elastic Net

For a covariance V = �2�diag
n�
��21 + �2
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net prior is
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Given these priors, the posterior can be obtained by sampling recursively from (B.1) and the

full conditionals
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C. Results: Tables

Table 1: MAFE results for the five Bayes shrinkage estimators and the DFM, h = 1

Jef St-t LASSO
Fused

LASSO

Elastic

Net
DFM

Median MAFE’s based on statistical releases

GDP and components 1.064 1.001 0.987 1.016 0.986 1.030

Housing 1.255 1.020 1.039 1.019 1.040 0.924

IP 1.016 1.027 0.988 1.013 0.988 0.928

Employment situation 1.058 1.024 1.012 1.033 1.012 0.976

Productivity/Costs 1.018 1.169 0.986 1.043 0.987 0.959

Assets/Liabilities of banks 0.966 0.973 0.970 0.973 0.971 0.957

Interest rates 1.056 0.970 0.967 0.991 0.966 1.066

Money stock 0.917 0.910 0.905 0.908 0.904 1.050

Currecny in circulation 0.677 0.680 0.678 0.671 0.677 0.678

MZM 0.910 0.894 0.896 0.900 0.893 1.294

Money velocity 0.994 0.976 0.981 0.990 0.979 1.092

Consumer Credit 1.001 0.985 0.985 0.998 0.980 1.043

CPI 1.006 0.914 0.916 0.914 0.909 0.963

PPI 0.913 0.917 0.916 0.918 0.919 0.931

Stock prices 1.003 1.008 1.006 1.004 1.005 1.072

Exchange rates 0.999 1.004 1.003 0.997 1.003 0.999

ISM surveys 1.108 1.276 1.031 1.038 1.028 0.987

MAFE descriptives based on total number of series

median 1.017 0.998 0.987 1.004 0.987 0.993

variance 0.045 0.509 0.008 0.015 0.007 0.015

min 0.677 0.680 0.678 0.671 0.677 0.678

max 1.857 2.342 1.435 1.645 1.286 1.582

Note: Entries are MAFE-based statistics relative to the MAFE of an AR(2) model.
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Table 2: MAFE results for the five Bayes shrinkage estimators and the DFM, h = 2

Jef St-t LASSO
Fused

LASSO

Elastic

Net
DFM

Median MAFE’s based on statistical releases

GDP and components 1.100 1.025 0.988 1.025 0.988 1.005

Housing 1.208 1.045 1.040 1.035 1.043 1.017

IP 1.050 1.086 0.987 1.026 0.989 0.989

Employment situation 1.089 1.029 1.017 1.039 1.016 0.982

Productivity/Costs 1.160 1.386 1.081 1.184 1.082 0.942

Assets/Liabilities of banks 0.967 1.072 0.973 0.977 0.969 0.968

Interest rates 1.294 0.998 0.986 1.082 0.987 1.000

Money stock 0.929 0.933 0.932 0.930 0.931 1.002

Currecny in circulation 0.737 0.736 0.737 0.733 0.735 0.746

MZM 0.855 0.855 0.845 0.847 0.849 1.112

Money velocity 1.000 0.995 0.996 1.002 0.998 1.029

Consumer Credit 0.990 0.999 0.996 0.990 0.996 1.010

CPI 1.080 0.962 0.955 0.979 0.954 0.994

PPI 0.958 0.942 0.941 0.957 0.945 0.975

Stock prices 0.987 0.995 0.997 0.992 0.996 1.049

Exchange rates 1.026 1.007 1.008 1.005 1.009 1.030

ISM surveys 1.041 1.415 1.021 1.057 1.021 1.050

MAFE descriptives based on total number of series

median 1.038 1.015 0.990 1.019 0.991 0.999

variance 0.296 0.625 0.009 0.029 0.008 0.007

min 0.491 0.494 0.487 0.495 0.482 0.488

max 3.230 4.536 1.458 1.931 1.289 1.222

Note: Entries are MAFE-based statistics relative to the MAFE of an AR(2) model.
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Table 3: MAFE results for the five Bayes shrinkage estimators and the DFM, h = 4

Jef St-t LASSO
Fused

LASSO

Elastic

Net
DFM

Median MAFE’s based on statistical releases

GDP and components 1.094 1.061 0.990 1.022 0.990 0.994

Housing 1.043 1.071 1.061 1.062 1.062 0.979

IP 1.030 1.040 0.983 1.022 0.987 0.997

Employment situation 1.188 1.029 1.004 1.075 1.004 0.937

Productivity/Costs 1.320 1.544 1.112 1.397 1.109 0.891

Assets/Liabilities of banks 0.968 1.128 0.979 0.998 0.970 0.969

Interest rates 1.624 1.050 1.002 1.113 1.000 0.969

Money stock 0.933 0.933 0.935 0.934 0.938 1.019

Currecny in circulation 0.916 0.920 0.918 0.925 0.920 0.884

MZM 0.928 0.931 0.930 0.922 0.934 1.117

Money velocity 1.000 0.987 0.985 0.993 0.987 1.013

Consumer Credit 0.967 1.006 0.964 0.990 0.968 1.015

CPI 1.190 1.698 0.964 1.051 0.968 1.031

PPI 0.983 0.964 0.964 0.989 0.962 1.010

Stock prices 0.968 0.948 0.952 0.951 0.959 1.031

Exchange rates 1.093 1.053 1.029 1.027 1.033 1.036

ISM surveys 1.045 1.289 0.982 1.026 0.984 0.990

MAFE descriptives based on total number of series

median 1.046 1.029 0.989 1.025 0.989 0.989

variance 0.693 1.776 0.009 0.081 0.007 0.009

min 0.578 0.575 0.576 0.574 0.578 0.610

max 6.707 9.883 1.609 3.386 1.364 1.275

Note: Entries are MAFE-based statistics relative to the MAFE of an AR(2) model.
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Table 4: MSFE results for the five Bayes shrinkage estimators and the DFM, h = 1

Jef St-t LASSO
Fused

LASSO

Elastic

Net
DFM

Median MSFE’s based on statistical releases

GDP and components 1.036 0.996 0.993 1.002 0.994 1.047

Housing 1.236 1.068 1.059 1.059 1.059 0.974

IP 1.017 1.022 0.998 1.024 1.000 0.843

Employment situation 1.036 1.026 1.019 1.037 1.019 0.899

Productivity-Costs 1.003 1.108 0.986 1.023 0.985 0.896

Assets-Liabilities of banks 0.970 0.973 0.969 0.973 0.972 0.960

Interest rates 1.045 0.954 0.959 0.995 0.956 0.995

Money stock 0.948 0.949 0.945 0.946 0.943 1.094

Currecny in circulation 0.746 0.747 0.750 0.748 0.747 0.563

MZM 0.920 0.905 0.907 0.904 0.904 1.668

Money velocity 1.009 0.994 0.996 1.007 0.994 1.129

Consumer Credit 0.989 0.978 0.976 0.985 0.976 1.087

CPI 0.995 0.940 0.936 0.945 0.936 0.945

PPI 0.939 0.947 0.942 0.945 0.945 0.906

Stock prices 1.007 1.007 1.006 1.006 1.003 1.133

Exchange rates 0.999 1.002 0.999 1.000 0.998 1.016

ISM surveys 1.091 1.236 1.026 1.016 1.025 0.932

MSFE descriptives based on total number of series

median 1.007 0.994 0.991 1.002 0.991 0.958

variance 0.041 0.084 0.006 0.010 0.006 0.054

min 0.671 0.747 0.666 0.706 0.664 0.452

max 2.380 2.797 1.474 1.545 1.370 2.498

Note: Entries are MSFE-based statistics relative to the MSFE of an AR(2) model.
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Table 5: MSFE results for the five Bayes shrinkage estimators and the DFM, h = 2

Jef St-t LASSO
Fused

LASSO

Elastic

Net
DFM

Median MSFE’s based on statistical releases

GDP and components 1.074 1.028 1.004 1.022 0.998 1.004

Housing 1.168 1.082 1.072 1.074 1.071 1.161

IP 1.041 1.152 1.012 1.049 1.011 1.013

Employment situation 1.055 1.035 1.020 1.036 1.022 0.985

Productivity-Costs 1.128 1.327 1.075 1.155 1.077 0.882

Assets-Liabilities of banks 0.976 1.037 0.980 0.970 0.977 0.912

Interest rates 1.260 1.008 0.994 1.084 0.998 0.946

Money stock 0.974 0.974 0.976 0.972 0.973 1.062

Currecny in circulation 0.785 0.783 0.786 0.788 0.785 0.627

MZM 0.915 0.911 0.907 0.904 0.910 1.392

Money velocity 1.021 1.003 1.002 1.019 1.005 1.026

Consumer Credit 0.986 0.994 0.991 0.996 0.993 0.993

CPI 1.048 0.967 0.966 0.986 0.965 0.999

PPI 0.979 0.968 0.967 0.976 0.968 0.975

Stock prices 0.994 1.000 1.000 1.000 1.000 1.073

Exchange rates 1.020 1.012 1.011 1.010 1.011 1.023

ISM surveys 1.036 1.697 1.007 1.020 1.010 1.043

MSFE descriptives based on total number of series

median 1.035 1.018 0.998 1.017 0.999 0.995

variance 0.144 0.205 0.007 0.017 0.006 0.026

min 0.563 0.568 0.557 0.562 0.554 0.304

max 3.392 3.536 1.420 1.667 1.313 1.897

Note: Entries are MSFE-based statistics relative to the MSFE of an AR(2) model.
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Table 6: MSFE results for the five Bayes shrinkage estimators and the DFM, h = 4

Jef St-t LASSO
Fused

LASSO

Elastic

Net
DFM

Median MSFE’s based on statistical releases

GDP and components 1.061 1.057 0.997 1.022 0.999 1.004

Housing 1.065 1.097 1.087 1.092 1.087 1.106

IP 1.016 1.025 0.996 1.023 0.998 0.986

Employment situation 1.112 1.025 1.006 1.048 1.005 0.916

Productivity-Costs 1.222 1.614 1.099 1.289 1.093 0.815

Assets-Liabilities of banks 0.975 1.094 0.977 0.988 0.975 0.924

Interest rates 1.571 1.084 1.001 1.096 1.003 0.957

Money stock 0.973 0.974 0.975 0.973 0.975 1.114

Currecny in circulation 0.905 0.906 0.905 0.908 0.907 0.782

MZM 0.932 0.934 0.934 0.927 0.938 1.194

Money velocity 1.020 0.999 0.996 1.013 0.998 0.987

Consumer Credit 0.969 1.026 0.971 0.987 0.973 1.032

CPI 1.085 1.354 0.969 1.014 0.968 1.081

PPI 0.972 0.962 0.964 0.977 0.963 0.999

Stock prices 0.984 0.976 0.978 0.979 0.981 1.090

Exchange rates 1.098 1.060 1.035 1.035 1.036 1.062

ISM surveys 1.052 1.521 0.998 1.032 0.996 1.026

MSFE descriptives based on total number of series

median 1.039 1.022 0.995 1.026 0.996 0.987

variance 0.386 0.417 0.008 0.047 0.006 0.028

min 0.620 0.610 0.611 0.612 0.612 0.414

max 5.389 6.784 1.573 2.771 1.378 1.620

Note: Entries are MSFE-based statistics relative to the MSFE of an AR(2) model.
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Table 7: Hit-rates of the five Bayes estimators, total no. of series

Jeffreys’ Student-t LASSO
Fused

LASSO

Elastic

Net

Hit rates, h = 1
% of lowest MAFE 14.0 17.1 35.7 10.9 22.5

% of lowest MSFE 15.5 20.9 34.9 7.8 20.9

% of highest APL 0.8 2.3 62.0 7.8 27.1

Hit rates, h = 2
% of lowest MAFE 18.6 13.2 34.1 11.6 22.5

% of lowest MSFE 17.1 20.9 28.7 11.6 21.7

% of highest APL 1.6 0.8 60.5 13.9 23.3

Hit rates, h = 4
% of lowest MAFE 17.8 12.4 31.8 10.9 27.1

% of lowest MSFE 13.2 17.1 34.9 10.1 24.8

% of highest APL 0.0 0.0 55.8 8.5 35.7

Note: This table shows the proportion of times (over the 129 series being forecasted) that

each estimator achieved the lowest value of the MAFE and MSFE statistics, and the

highest value of the Average Predictive Likelihood (APL).

Table 8: Average similarity of Bayes forecasts, h = 1: correlation (lower

left) and mean absolute difference of forecasts (upper right)

Jeffreys’ Student-t LASSO
Fused

LASSO

Elastic

Net

Jef 0.088 0.037 0.032 0.037

St-t 0.944 0.080 0.083 0.080

LASSO 1.000 0.944 0.015 0.002

Fused LASSO 1.000 0.945 1.000 0.015

Elastic Net 1.000 0.944 1.000 1.000
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Table 9: MAFE, MSFE and Predictive Likelihoods for all 129 series,

orthogonal predictors, h = 1

Jeffreys’ Student-t LASSO
Fused

LASSO

Elastic

Net

MAFE descriptives based on total number of series

median 0.9876 0.9871 0.9873 0.9846 0.9863

25% quantile 0.9539 0.9536 0.9523 0.9551 0.9505

75% quantile 1.0166 1.0128 1.0183 1.0139 1.0167

variance 0.0061 0.0068 0.0060 0.0062 0.0061

min 0.6768 0.6812 0.6813 0.6800 0.6821

max 1.2988 1.3151 1.2797 1.3053 1.2803

MSFE descriptives based on total number of series

median 0.9901 0.9923 0.9901 0.9903 0.9904

25% quantile 0.9558 0.9558 0.9559 0.9548 0.9510

75% quantile 1.0156 1.0227 1.0182 1.0178 1.0175

variance 0.0046 0.0049 0.0046 0.0048 0.0047

min 0.6714 0.6726 0.6666 0.6676 0.6670

max 1.2197 1.2750 1.2150 1.2397 1.2160

PL descriptives based on total number of series

median 0.4190 0.4175 0.4711 0.4837 0.4724

25% quantile 0.2241 0.2232 0.2636 0.2717 0.2636

75% quantile 0.7112 0.7050 0.7839 0.7968 0.7854

variance 0.2065 0.1679 0.1867 0.1954 0.1876

min 0.0380 0.0379 0.0487 0.0510 0.0487

max 3.7777 3.2578 3.3826 3.4491 3.3998

Table 10: LASSO forecasts of US GDP, corr. predictors, h = 4
LASSO 1 LASSO 2 LASSO 3 LASSO 4 DFM

MAFE 0.38 0.97 0.88 0.87 0.37

MSFE 0.24 0.93 0.81 0.79 0.22

Corr.with

DFM forecasts
0.90 0.27 0.49 0.48 1

Note: The LASSO 1,2,3,4 models are the four univariate regressions described in the

text, with estimation of � using 1) (r; �) = (0:01; 0:01), 2) (r; �) = (1; 0:1),
3) (r; �) = (3; 1) and 4) marginal maximum likelihood.
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