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Abstract 
In this paper we classify competitive markets using a new form of normalized Herfindahl 

index and the degree of dominance of the leader. For this purpose we use the notion of copula, 

which connects two or more random variables with given marginals. 

The parameters of the two marginals (which are supposed to be normal) are estimated by the 

moments' method, and the parameter of the copula is computed using the value τ  of Kendall.  

 

1. Introduction 
 

In [7] there is defined the market share of the company i by the formula 
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where iCA  is the benefit of the company i. We denote next by ii Cpp = , and we reorder the 

companies such that npp ≥≥ ...1 . In this case 1p  is the weight of the leader (see [7]). 

The Herfindahl index, or the informational energy of Onicescu is (see [9,10,7,11]) 
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In [7] there are considered 553 clustered markets, 235 in 2004 and 318 in 2008 as follows 

1)   In the year 2004: 

a) 174 markets clustered CAEN Rev. 1 at group level (three digits) 

b) 47 markets clustered CAEN Rev. 1 at division level (two digits) 

c) 13 markets clustered CAEN Rev. 1 at section level (one alphabetic character) 

d) one national system 

2)   In the year 2008: 

a) 218 markets clustered CAEN Rev. 2 at group level (three digits) 

b) 80 markets clustered CAEN Rev. 2 at division level (two digits) 

c) 19 markets clustered CAEN Rev. 2 at section level (one alphabetic character) 

d) one national system 

If we denote by n the number of companies and by p1 the weight of the leader we obtain the 

regression 

                                  [ ] [ ] [ ]016634.0008147.0016777.0

164457.0log163945.0log239375.1log 1 +−= npH
                              

(3) 

with the determination coefficient 97060142.02 =R  and  the estimated standard deviation 0.10470. 

Becausethe Herfindahl index has a high variation degree (in the above case the ratio between 



maximum and minimum is 832.2702) Mereuţă (see [7]) introduced the normalized Herfindahl 

index: 
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The above cohesion measure is the normalized quadratic Rényi entropy, where the quadratic 

Rényi entropy is HR ln−= .  

Another parameter used to measure the cohesion of the market shares is the degree of 

dominance of the leader (see [7]) 

                                                                     

n

nH

p

Gdl
1

1

1

2
1

−

−
= .                                                               (5) 

Noticing that 10 ≤≤ M  and 10 ≤≤Gdl  Mereuţă defines the matrix of cohesion degrees. 

There are obtained nine regions of the unit square using the lines 4.0=Gdl , 6.0=Gdl , 4.0=M  

and 6.0=M . 

Definition 1 ([12,8,13])  A copula is a function [ ] [ ]1,01,0: →n
C  such that 

1) If there exists i such that 0=ix  then ( ) 0,...,1 =nxxC . 

2) If 1=jx  for all ij ≠  then ( ) in xxxC =,...,1 . 

3) C is increasing in each argument. 

We have the following theorem (see [12,8,13]). 

Theorem 1 (Sklar)  Let 1X , 2X ,..., nX  be random variables with the cumulative distribution 

functions 1F , 2F ,..., nF , and the common cdf ( ) ( )nnn xXxXPxxH ≤≤= ,...,,..., 111 . In this case 

there exists a copula ( )nuuC ,...,1  such that ( ) ( ) ( )( )nnn xFxFCxxH ,...,,..., 111 = . The copula C  is well 

defined on the chartesian product of the images of the marginals 1F , 2F ,..., nF . 

Definition 2 ([12,14,15])  If 2=n  the copula C  is Archimedean if ( ) uuuC <,  for any ( )1,0∈u  

and ( )( ) ( )( )wvCuCwvuCC ,,,, =  for any [ ]1,0,, ∈wvu . If 2>n  the copula C  is Archimedean if 

there exists a  1−n   Archimedean copula  1C   and a −2 Archimedean copula 2C  such that  

( ) ( )( )nnn uuuCCuuC ,,...,,..., 11121 −=  . 

Consider a function ( ] R→1,0:ϕ  decreasing and convex with ( ) 01 =ϕ  and its pseudo-inverse 

g ( ( )yg  has the value x if there exists x such that ( ) yx =ϕ  and 0  in the contrary case). We know 

(see [5,12]) that a copula C  is Archimedean if and only if there exists a function ϕ  as above such 

that for any [ ]1,0, ∈yx  we have 

                                                            ( ) ( ) ( )( )yxgyxC ϕϕ +=, .                                                       (6) 

In [14,15] there are presented methods to simulate Archimedean copulas, and in [2] there are 

presented algorithms to simulate queueing systems with one channel with arrivals and services 

depending through copulas. 

In [4] there are found analytical formulae for the copulas that connect the number of 

customers in a Gordon and Newell queueing network, and their corresponding Spearman ρ  and 

Kendall τ . This value is (see [8]): 

                                

( )( )( ) ( )( )( )
( ) .411,4

00
1

0

1

0

1

0

1

0

21212121

2

dudvdudvvuC

YYXXPYYXXP

v
C

u
C

vu
C

∂
∂

∂
∂

∂∂
∂ ⋅∫∫−=−∫∫

=<−−−>−−=τ
 

Sometimes we need the overlay probabilities, and we need in this case the notion of co-copula 

(see [14]) 
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The probabilistic interpretation of the co-copula is that if 1X ,..., nX  are random variables 



having the marginals 1F ,..., nF  and they are connected by the copula C , we have 

                               ( ) ( ) ( ) ( )( )nnnnn xFxFCxXxXPxxH ,...,,...,,..., 11111

∗=≥≥= ,                         (8’) 

where ( ) ( )iiii xFxF −=1 . 

 

2. The new matrix of cohesion degrees using isolines 
 

In the matrix of cohesion degrees defined by Mereuţă (see [7]) the regions are separated by 

α=X , or by β=Y . The regions created by these lines are 
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where F  and G  are the marginals of the Gdl  (first axis) and M  (second axis). But they do not 

take into account on the relation between the random variables Gdl  and M . 

Suppose that the above random variables have normal marginals, as in [7], but they are 

connected by the copula C . The marginal parameters are estimated using the moments’ method, 

and the parameter θ  of the copula C  is estimated as follows. 

First we estimate τ  using the empirical probabilities in the above formula, and next we 

compute the last term: we find τ  in function of θ . For instance, in the case of Farlie-Gumbel-

Morgestern copula (see [8,12]) we find 
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For the Fréchet family the copula is a mixture between the upper Fréchet bound, min  and the 

copula product (the independence case) with the weights θ , respectively θ−1 . Due to the fact that 

in the min  case we have 1=τ , and in the product case we have 0=τ  we obtain 

                                                                           τθ = .                                                                    (11) 

When the copula is Archimedean and we know the function ϕ  in (6) we use the variables 

change ( )ux ϕ=  and ( )vy ϕ= , and finally we obtain 
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In the case of Clayton family we have 
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 we obtain first ( ) 1−−−=′ θϕ uu , and from here 
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Using (7’) we obtain 
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Other family of Archimedean copulas presented in [5,6,8] and simulated in [2] is the Frank 

family. In this case for  ∗∈Rθ   we have 
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We obtain also the copula Prod for  0=θ   and the copula min  for ∞→θ . For −∞→θ  we 

obtain the lower Fréchet bound W . 
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For this family we obtain 

                                                                 I⋅−= 41τ , where                                                          (15) 
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In the case 0≠θ  we multiply the relation (18’)  by ( )γ+1ln 2 , and in the case 0=== τγθ  

and 
4
1=I  we compute ( )

36
10 =′I  using the Taylor series for ( )x+1ln  and 

x+1
1 . We obtain the 

Cauchy problem 
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Because 
4

1 τ−=I  we obtain the Cauchy problem 

( ) ( )( )
( )( )

( ) ( )
( ) ( )( )

( )

( )
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

=
−=′

≠=′
+

+⋅−⋅
+

+ +−⋅

+

00

90

0
1

1ln12

1

41ln

2

4

1ln

γ
γ

ττγ
τγ

τγτ
τγτγ

τγ
τγ

for

. 

Finally we take into account that ( ) 1−= −θθγ e  and ( ) ( )τθτγ θ ′⋅−=′ −e . We obtain 
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The above Cauchy problem is solved using the Runge-Kutta method. 

In the case of the Gumbel-Hougaard family (see [5,8,13]) we have for 1≥θ  and θβ 1=  

                                                            ( ) ( ) ( )( )βθθ
vuevuC lnln, −+−−= .                                                     (17) 

For 1=θ  we obtain the copula Prod  and for ∞→θ  we obtain the copula min . 
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                                                                      ( ) βxexg −= .                                                              (17”) 

For this family we obtain 
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The Gumbel-Barnett copula is 

                                              ( ) ( )( )( )vuevuvuC lnln, θ−⋅⋅= , with 10 ≤< θ .                                       (19) 

We notice that we have also the copula product (independence) for 0→θ . 
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Using (7’) we obtain 
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where θβ 2= . 

The Ali-Mikhail-Haq copula is 
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We notice that we have the copula Prod (independence) for 0=θ . 
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Using (7’) we obtain 
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In the above formula τ  is increasing on θ , and we have ( )
3

2ln851 −=−τ  and ( )
3

11 =τ . If we 

know τ  we obtain θ  using the bisection method. 

Definition 3  Let ( )YX ,  be a bi-variate random variable such that the random variables X  and Y  

are connected by the copula C . 

The copula of non-overlay, non-overlay for ( )YX ,  is ( ) ( )vuCvuC ,,11 = . 

The copula of overlay, overlay for ( )YX ,  is ( ) ( )vuCvuC −−= ∗ 1,1,00 . 

The copula of non-overlay, overlay for ( )YX ,  is ( ) ( )vuCuvuC ,,10 −= . 

The copula of overlay, non-overlay for ( )YX ,  is ( ) ( )vuCvvuC ,,01 −= . 

Remark 1 If the marginal distributions are uniform on [ ]1,0  then, if we denote by H  the common 

cumulative distribution function, we have: ( ) ( ) ( )vYuXPvuHvuC ≤≤== ,,,11 , ( ) =vuC ,00  

( ) ( )vYuXPvuH ≥≥= ,, , ( ) ( )vYuXPvuC ≥≤= ,,10  and ( ) ( )vYuXPvuC ≤≥= ,,01 . For other 

marginal distributions, F  and respectively G , we have ( ) ( ) ( )( )yGxFCyYxXP ,, 11=≤≤ , 

( ) ( ) ( )( )yGxFCyYxXP ,, 00=≥≥ , ( ) ( ) ( )( )yGxFCyYxXP ,, 10=≥≤  and  ( ) =≤≥ yYxXP ,   

( ) ( )( )yGxFC ,01 . 

We will find the isolines in vu,  given by 1α ,..., kα  with kαα <<< ...0 1  
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The corresponding isolines in yx,  are built from the isolines in vu,  such that ( )uFx 1−=  and 

( )vFy 1−= . These are the separators of the regions bordered by i
ni

Xx
,1

min min
=

= , i
ni

Xx
,1

max max
=

= , 

i
ni

Yy
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min min
=

=  and i
ni

Yy
,1

max max
=

= . The above regions have corresponding regions in the plane Ouv  

in the box bordered by ( )minmin xFu = , ( )maxmax xFu = , ( )minmin yGv =  and ( )maxmax yGv = . 

 

3. Application 
 

Consider the above 553  clustered markets (see [7]). We have 074.0min =Gdl , 

9997.0max =Gdl , 1954.0min =M , 9769.0max =M . In [7] the marginal distributions are considered 

normal. Using the moments method we obtain 47432.0ˆ == GdlGdlµ , 05801.0ˆ 22 == GdlGdl Sσ , 

51181.0ˆ == MMµ  and 01745.0ˆ 22 == MM Sσ . From these estimated parameters we obtain the box 

in the plane Ouv  0067.0min =u , 9988.0max =u , 0002.0min =v  and 9989.0max =v . 

The Kendal τ  is 53986.0 . The parameter θ  depending on the copula family is as in the 

following table. 

 

Table 1: The value of the estimated parameter θ  depending on the copula family. 

 

Family Constraints on  [ ]1,1−∈τ       θ  

Clayton: 0>θ                 0>τ    34646.2   

Frank: 0≠θ                0≠τ   00948.0   

Gumbel-Hougaard: 1≥θ                 0≥τ   17323.2   

Gumbel-Barnett: 10 ≤<θ                 0<τ  not our case 

Ali-Mikhail-Haq: 11 ≤≤− θ            
3
1

3
2ln85 ≤≤− τ  not our case 

FGM: 11 ≤≤− θ                  
9
2≤τ  not our case 

Fréchet: 0≥θ                   0>τ   53986.0   

 

In the following graphics there are represented first the above boxes in  Ouv   and  Oxy  , and 

the data points with  ( )ii GdlFU =   and  ( )ii MGV =  , respectively  ii GdlX =   and  ii MY =  . We 

represent also the isolines (23) in the plane Ouv  with 2=k , 4.01 =α  and 6.02 =α , and the 

corresponding isolines for the plane Oxy . These graphics are represented for each case of copula 

for which we have estimated the parameter θ  (the constraints for the above tables are fulfilled). 

In these graphics each class has a code given by four integer numbers: first number is for C00,  

the second number is for C01, the third number is for C10 and the last number is for C11.  The 

number corresponding to a copula type depends on the position of its value and iα , tacking 00 =α  

and 13 =α . For instance the code from the fourth position is k if ( ) 111 , +<≤ kk vuC αα  for any u, v 

in the considered region. The region from the center (containing the middle of the square) has the 

code (0,0,0,0), and the class from the corner (1,0) has the code (0,0,2,0). For each of the 553 points 

( )ii VU ,  obtained by the application of the (normal) cumulative distribution function on Gdli and Mi 

for the clustered market i we find the code of its class. When the point is in an old class we count it 



for this class, and we memorize its class’s code if the point is in a new class. In each of the obtained 

regions we write the class number, and, between parentheses, the number of clustered markets from 

the involved class. 

 

 
 

Fig. 1a: The graphics in the coordinates u, v in the case of Clayton copula 

 

 
 

Fig. 1b: The graphics in the coordinates x, y in the case of Clayton copula 

 

 



 

 

 

 
 

Fig. 2a: The graphics in the coordinates u, v in the case of Frank copula 

 

 
 

Fig. 2b: The graphics in the coordinates x, y in the case of Frank copula 

 

 



 

 
 

Fig. 3a: The graphics in the coordinates u, v in the case of Gumbel-Hougaard copula 

 

 
 

Fig. 3b: The graphics in the coordinates x, y in the case of Gumbel-Hougaard copula 

 

 

 

 



 
 

Fig. 4a: The graphics in the coordinates u, v in the case of Fréchet copula 

 

 
 

Fig. 4b: The graphics in the coordinates x, y in the case of Fréchet copula 

 

We notice that the two national systems from 2004 (represented by a circle in the above 

graphics, with 2287.0=Gdl , 4996.0=M , ( ) 1524.0== GdlFU  and ( ) 4579.0== MGV ) and 

2008 (represented by a square in the above graphics, with 2861.0=Gdl , 4856.0=M , 

( ) 2161.0== GdlFU  and ( ) 4191.0== MGV ) are in the same class having the code (1,0,0,0), i.e. 



( ) 6.0,4.0 00 <≤ VUC , ( ) 4.0,11 <VUC , ( ) 4.0,01 <VUC , ( ) 4.0,10 <VUC . 

The numbers of clustered markets in each class depending on the year (2004, 2008 or both) 

and on the level (group, division, section or all three levels) are listed in Appendix A. The line of 

the class that contains the two national systems is bolded. The star at the exponent at “Total” means 

that the total does not contain the national system. Two stars in the last total means that we did not 

take into account the two national systems. For instance, in the case of Clayton copula the totals are 

44
* 
for the year 2004, 53

*
 for the year 2008 and 97

**
 for both year. It means that, if we take into 

account the national systems, these totals would be 45 for the year 2004, 54 for the year 2008 and 

99 for both years. 

 

4. Conclusions 
 

Our classification has a probabilistic interpretation: each region obtained by isolines is such 

that the four probabilities resulting from the four copula types from definition 3 are in given 

intervals bordered by jα . It has also more possible classes than the nine regions from the case of 

Mereuţă (see [7]): in each case of copula family there are 13 possible classes. Even the effective 

number of classes is greater (11 in the cases of Clayton and Fréchet copula, respectively 12 in the 

cases of Frank and Gumbel-Hougaard copula). 

There are also similitudes between the classification of Mereuţă and those from this paper. In 

the classification of Mereuţă the regions with small Gdl and M, and with both values big (the heads 

of the main diagonal) there are relative big numbers of the contained clustered markets: both 

numbers are equal to 97. The same thing we can say about our case. For the smallest values of Gdl 

and M we obtain 180 clustered markets in the case of Clayton copula, 129 clustered markets in the 

case of Frank copula, 170 clustered markets in the case of Gumbel-Hougaard copula, respectively 

168 clustered markets in the case of Fréchet copula. For the highest values of Gdl and M we obtain 

114 clustered markets in the case of Clayton copula, 104 clustered markets in the case of Frank 

copula, 126 clustered markets in the case of Gumbel-Hougaard copula, respectively 117 clustered 

markets in the case of Fréchet copula. 

On the secondary diagonal the above numbers are small. The number of clustered markets 

with high Gdl and low M (the class from bottom-right corner) is 2 in the case of Mereuţă, 
respectively 3 in the case of this paper, for each case of copula. 

The number of clustered markets with low Gdl and high M (the class from top-left corner) is 5 

in the case of Mereuţă, 2 in the case of Frank copula, and 0 (no clustered market in the class) in the 

other cases. 

In the case of Frank copula there is also an interesting similitude between our classification 

and the classification of Mereuţă for the middle class (medium Gdl and M): the number of clustered 

markets is 110 in the case of Mereuţă, and 111 in our case. 
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Appendix A 

The numbers of clustered markets depending on the year and on the level 
 

Table 2: The number of clustered markets in the case of Clayton copula 
 

2004 2008 2004 and 2008 
Class 

number 
Group 

level 

Division 

level 

Section 

level 
Total 

Group 

level 

Division 

level 

Section 

level 
Total

Group 

level 

Division 

level 

Section 

level 
Total

1 37 7 2 46 53 12 3 68 90 19 5 114 

2 51 20 5 76 64 32 8 104 115 52 13 180 

3 37 6 1 44* 37 10 6 53* 74 16 7 97** 

4 27 7 1 35 26 13 1 40 53 20 2 75 

5 2 2 1 5 5 3 1 9 7 5 2 14 

6 9 3 2 14 17 6 0 23 26 9 2 37 

7 6 1 0 7 9 2 0 11 15 3 0 18 

8 2 0 0 2 1 0 0 1 3 0 0 3 

9 1 0 0 1 4 1 0 5 5 1 0 6 

10 1 1 1 3 2 1 0 3 3 2 1 6 

11 1 0 0 1 0 0 0 0 1 0 0 1 

 

Table 3: The number of clustered markets in the case of Frank copula 

 
2004 2008 2004 and 2008 

Class 

numb

er 

Grou

p 

level 

Divisio

n level 

Sectio

n 

level 

Tota

l 

Grou

p 

level 

Divisio

n level 

Sectio

n 

level 

Tota

l 

Grou

p 

level 

Divisio

n level 

Sectio

n 

level 

Tota

l 

1 31 7 2 40 49 12 3 64 80 19 5 104 

2 32 11 2 45* 26 16 2 44* 58 27 4 89** 

3 35 8 1 44 48 16 3 67 83 24 4 111 

4 19 5 1 25 14 5 0 19 33 10 1 44 

5 5 2 2 9 8 4 3 15 13 6 5 24 

6 35 12 4 51 49 21 8 78 84 33 12 129 

7 9 1 0 10 14 3 0 17 23 4 0 27 

8 3 1 1 5 3 1 0 4 6 2 1 9 

9 2 0 0 2 4 1 0 5 6 1 0 7 

10 2 0 0 2 1 0 0 1 3 0 0 3 

11 1 0 0 1 1 0 0 1 2 0 0 2 

12 0 0 0 0 1 1 0 2 1 1 0 2 

 

Table 4: The number of clustered markets in the case of Gumbel-Hougaard copula 

 
2004 2008 2004 and 2008 

Class 

numb

er 

Grou

p 

level 

Divisio

n level 

Sectio

n 

level 

Tota

l 

Grou

p 

level 

Divisio

n level 

Sectio

n 

level 

Tota

l 

Grou

p 

level 

Divisio

n level 

Sectio

n 

level 

Tota

l 

1 42 10 2 54 56 13 3 72 98 23 5 126 

2 49 19 5 73 61 28 8 97 110 47 13 170 

3 36 6 1 43* 35 13 6 54* 71 19 7 97** 

4 23 4 1 28 25 12 1 38 48 16 2 66 

5 2 2 1 5 5 3 1 9 7 5 2 14 

6 11 4 2 17 18 7 0 25 29 11 2 42 

7 6 1 0 7 8 2 0 10 14 3 0 17 

8 2 0 0 2 1 0 0 1 3 0 0 3 

9 1 0 0 1 5 1 0 6 6 1 0 7 



10 1 1 1 3 2 1 0 3 3 2 1 6 

11 1 0 0 1 1 0 0 1 2 0 0 2 

12 0 0 0 0 1 0 0 1 1 0 0 1 

 

Table 5: The number of clustered markets in the case of Fréchet copula 

 
2004 2008 2004 and 2008 

Class 

number 
Group 

level 

Division 

level 

Section 

level 
Total 

Group 

level 

Division 

level 

Section 

level 
Total

Group 

level 

Division 

level 

Section 

level 
Total

1 37 7 2 46 55 13 3 71 92 20 5 117 

2 49 19 5 73 59 28 8 95 108 47 13 168 

3 18 6 2 26 23 9 0 32 41 15 2 58 

4 25 6 1 32 22 8 1 31 47 14 2 63 

5 2 2 1 5 7 4 1 12 9 6 2 17 

6 31 5 1 37* 35 13 6 54* 66 18 7 91** 

7 6 1 0 7 10 3 0 13 16 4 0 20 

8 2 0 0 2 1 0 0 1 3 0 0 3 

9 1 0 0 1 3 1 0 4 4 1 0 5 

10 2 1 1 4 2 1 0 3 4 2 1 7 

11 1 0 0 1 1 0 0 1 2 0 0 2 

 


