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Abstract 

In this paper we claim that the disadvantage in the pollution control is not primarily 

the accumulated stock of pollutants, which is an accomplished fact, but the use of the 

available inputs in production in conjunction with the available equipment are the 

sources of pollutants accumulation. In most cases pollution is an irreversible fact and 

consequently, the main concern of a social planer should be the discovery of effective 

ways to reduce the sources (inputs and equipment) that generate pollutants. Using 

both optimal control and differential game approaches, we study the intertemporal 

strategic interactions between polluters and the social planer. We find that the 

establishment of cyclical strategies in a polluter’s optimal control problem requires 

that the polluter’s discount rate must be greater than the marginal resources’ growth. 

For the saddle point stability, the marginal resources growth has to be equal or less 

than zero. Assuming constant elasticity for the polluters’ resources reduction function 

and linearity for the rest of the functions, we find that the pollution game yields 

constant optimal Nash strategies. Finally, we provide analytical expressions of these 

strategies as well as the steady state value of the resources’ stock. 
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1. Introduction 

Analyzing pollution control issues for developed and developing countries has 

become an important multi–disciplinary topic. Since the design of efficient action 

against pollution has to take into consideration the response of victims, game theory 

can be used as an appropriate tool. In this paper we claim that the disadvantage in the 

pollution control is not the accumulated stock of pollutants, which is an accomplished 

fact, but the use of the available inputs in production is the causality of the pollutants 

accumulation. In most cases, pollution is an irreversible fact and consequently, the 

main concern of the social planer should be the discovery of effective ways to reduce 

the sources (inputs and equipment) that generate pollutants. We use both optimal 

control and differential game approaches to study the intertemporal strategic 

interactions between the polluters and the social planer. 

The pollutants accumulation is a major problem in our world and finding a 

way to effectively reduce, while maintaining the standards of the production process, 

is a great challenge facing capitalistic societies. The clean environment is obviously a 

public good. Conversely, all the “dirty” production process that creates pollutants 

accumulation, e.g. emissions caused by uncontrolled production, constitutes a public 

bad. But which of the factors of production process generates pollutants? Clearly 

uncontrolled, with respect to the environment, production involves antiquated 

equipment that emits more than permissible and therefore constitutes a polluters’ “bad 

weapon”. It is a usual phenomenon the old production equipment - which used to be 

the main production equipment for the Western developed countries - to change hands 

moving to the Southern or Eastern developing countries at a low acquisition cost. 

Similarly, all the extracted depletable resources which are used as inputs in the 

production are sources of pollution. The power of such a “dirty” production process 

rests upon the accumulation of a stock of resources, consequently depending on the 

financial capital for these resources that emits more and therefore accumulates 

pollutants.  

On the other hand, in early days of applications of dynamic systems to 

economic problems, it was recognized that the optimal solution of infinite time 

problems may be characterized by multiple equilibrium points. Finding multiple 

equilibrium points in economic models is not an attractive solution for the policy 

makers. But the recognition of multiple optimal stable equilibria may be crucial in 

order to locate the thresholds separating the basins of attraction surrounding these 
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different equilibria. Starting at a threshold, a rational economic agent is indifferent 

between moving toward one or the other equilibrium, but a small movement away 

from the threshold can “destroy” this indifference, leading in a unique optimal course 

of action.  

Since the introductory one sector, with a convex – concave production 

function, optimal growth model of Skiba (Skiba, 1978), there has been a lot of 

progress towards the cyclical solution strategies generated in intertemporal dynamic 

economic models. Wirl (1995) exploring the optimality of cyclical exploitation of 

renewable resources stocks, reconsidering a model of Clark et al (1979), concludes 

that equilibrium that falls below the maximum sustainable yield but that exceeds the 

intertemporal harvest rule due to the positive spillovers allows for optimal, long run, 

cyclical harvest strategies.  

Limit cycles, according to Poincare – Bendixson condition (Hartman, 1982) 

which also restricted in planar systems, has the intuitive explanation which says that if 

a trajectory of a continuous dynamical system stays in a bounded region forever, it 

has to approach “something”. This “something” is either a point or a cycle. So if it is 

not a point, then it must be a cycle. This gives rise to cyclical policies in economic 

models, e.g. if a policy trajectory, say an abatement pollution policy, is restricted in a 

bounded planar space then this policy sooner or later will retrace its previous steps.   

The Poincare – Andronov – Hopf theorem (Kuznetsov, 2004), which applies 

in a higher than the two dimensional systems, gives sufficient conditions for the 

existence of limit cycles of nonlinear dynamical systems. Informally, one can think of 

this theorem as requiring that equilibrium must suddenly change from a sink to a 

source with variation of a parameter. Arithmetically this requires that a pair of purely 

imaginary eigenvalues exists for a particular value of the bifurcation parameter and 

that the real part of this pair of eigenvalues changes smoothly its sign as the parameter 

is altered from below its actual value to above.  

Hence, analogously to equilibrium, the stability of limit cycles is of great 

importance for the long run behavior of a dynamical system. But since the existence 

and therefore stability of a limit cycle is highly dependent on an arbitrarily chosen 

bifurcation parameter we have to deal with the qualitative analysis of such a problem. 

Economic mechanisms that may be a source of limit cycles, as mentioned by Dockner 

and Feichtinger (1995) are: (i) complementarity over time, (ii) dominated cross effects 

with respect to capital stocks, and (iii) positive growth of equilibrium. 



 4

The main contribution of our paper is that it considers the pollution control 

problem not in its irreversible aspect, as a stock of accumulated pollutants, but also as 

a stock of resources that potentially may damage the environmental quality. 

Consequently, from this perspective, one can prevent the accumulated stock by 

weakening the polluters’ resources. As such resources, one may take the example of 

non-renewable: as far as equipment is concerned, we take into consideration that the 

antiquated equipment once used by the Western countries end-up at the less 

developed once, at a low acquisition cost; and these resources are considered as the 

polluters’ bad resources.  

The problem is modeled first as an optimal control problem and then as a 

differential game for which we explore the Nash equilibrium and try to investigate the 

existence of limit cycles and consequently the existence of cyclical strategies of the 

instrument variables. The environmental pollution control game takes place between 

the government, acting as the social planer, and polluters for which the resources used 

in production accumulate pollutants. Such pollutants accumulation and regulation 

control models can be fount, among others, in Forster (1980) concerning optimal 

energy use model; in Xepapadeas (1992) regarding environmental policy design and 

non-point source pollution and so on. 

The remainder of the paper is organized as follows. Section 2 introduces the 

polluter’s optimal control model and gives a necessary condition for cyclical 

strategies. Section 3 investigates the differential game between the government and 

the polluter and calculates the Nash equilibrium strategies and the players’ value 

functions. The last section concludes the paper.   

 

2. The Polluter’s Optimal Control Model 

Let us denote by ( )x t  the instantaneous resources available to the 

representative polluter at time t . Without any counter pollution action undertaken, 

and also without any actions on behalf of the polluters, the stock of resources grows 

according to the function ( )e x , which is considered as growth function, obviously 

dependent on the available resources. 

Every polluter wishes to maximize the present value of utility, which is 

derived from two sources: first, the stock of its available resources, which is ready to 

send out emissions; second, from the emissions realization today, which causes 
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damages to the available resources and, therefore, reduces the availability of the 

polluter’s resources. The second part of utility, i.e. emission realizations, is certainly a 

kind of utility enjoyed by the polluter, measured in terms of damages made in the 

resources, e.g. big damages stems from the resource’s intensive usage which causes 

higher emissions and, in turn, the polluter enjoys a higher amount of utility which is 

derived from the high level of emissions. For the sake of simplicity, the utility 

function is separable into these different kinds of benefits, and is, moreover, linear in 

the state variables. Thus, the objective of the representative polluter is  

           ( )21
2

0

max t
e ax D u dt

ρ β γ
∞

− + −∫                    

Maximization process that takes place is subject to the available resources 

equation of motion. The change in this stock is equal to the difference between the 

resources’ growth, mentioned above, less the damages in the resources caused by 

emissions realizations. Moreover, the resources’ growth function, ( )e x , follows the 

logistic law ( ) ( )1e x x x= − . This specification is chosen because of its wide use in 

the literature, its plausibility and its convenience, but is not crucial for the model. 

Logistic growth, first proposed by Verhulst (1845), arises from the more general 

equation ( )1 sign 1
a

x rx x K x K= − − , where r  the intrinsic growth, K the carrying 

capacity and a  a positive constant playing the role of the penalty in a population 

model. Gatto et al. (1988) prove the optimality of the logistic growth function in both 

linear ( 1a = ) and nonlinear ( 1a ≠ ) cases, and draw the optimal trajectories in both 

cases. 

In the optimal control model we introduce a second state variable, D , which 

describes losses made in the resources from the emissions realizations, i.e. from the 

intensive use both of equipment and from the ‘dirty’ resources that generate 

pollutants. Clearly, the polluter losses, D , is a function dependent on the intensity of 

the inputs and equipment usage ( )tν . Thus, we accept for simplicity the following 

form of the losses function: ( )( ) ( )D t tν ν= . Moreover, the second state variable 

changes sluggishly due to the necessary installation of equipment, to hiring and firing 

workers, etc. To simplify as far as possible, the original control ν  now becomes the 

sum of historical adjustments. Current adjustments, the new control u , may be costly. 

For the sake of simplicity the changes in available resources reductions entails a 
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quadratic cost of the form 21
2

uγ , which is separated from the original objective to 

differentiate from other mechanisms for limit cycles. After the above simplified 

assumptions the two state variables optimal control problem denoted as follows: 

                  ( )21
2

0

max t
e ax u dt

ρ βν γ
∞

− + −∫          (1)  

                      ( ) ( ) 01 ,    0x x x x xν= − − =                    (2) 

                      uν =                                                        (3) 

The following equations summarize the sufficient optimality conditions for the 

optimal control problem (1) – (3). 

         ( )21
1 22

1H ax u x x uβν γ λ ν λ⎡ ⎤= + − + − − +⎣ ⎦                 (4) 

            2 0
u

H uγ λ=− + =                                                       (5) 

          ( )( ) ( ) ( )1 1 11 2 ,       lim 0t
x a e t x t

ρλ ρ λ λ−= − − − =        (6) 

             ( ) ( )2 2 1 2,                lim 0te t tρλ ρλ β λ λ ν−= − + =        (7) 

where H  is the Hamiltonian function, 1 2,   λ λ  are the costate variables associated with 

the states ,   x ν  respectively. Substituting equation (5), 2u λ γ= , into the second 

state equation we derive the canonical system without the control, as follows 

                                        ( )1 ,    x x x ν= − −                                               (8.1) 

                                           2ν λ γ=                                                             (8.2) 

                                           ( )( )1 11 2 ,x aλ ρ λ= − − −                                     (8.3) 

                                           2 2 1λ ρλ β λ= − +                                                 (8.4) 

Differential equations (8.1) – (8.4) determine the optimal intertemporal evolution of 

the system. 

2.1. Stability Properties of Equilibrium 

We continue exploring the existence of stable limit cycles, by considering system 

(8.1) – (8.4) on a bifurcation parameter. For the existence of stable limit cycles, 

therefore for the possibility of cyclical strategies, the following three conditions must 

hold:  

i. The existence of a pair of purely imaginary roots of the characteristic 

equation of the Jacobian of the dynamic system for a particular 

parameter value 
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ii. The crossing of the imaginary axis at non – zero velocity when the 

bifurcation parameter is changed 

iii. A negative coefficient of the so called normal form, which guarantees 

the stability of cycles. 

Given these three conditions, stable limit cycles generically exist for a one – sided 

neighborhood around the bifurcation point. 

The well known Dockner’s formula is useful to check the first two conditions 

of the Hopf bifurcations (Dockner, 1985). With this formula we are able to calculate 

the four eigenvalues ,   1,...4
i

r i = of the Jacobian of the canonical equations in 

( )1 2, , ,x ν λ λ . The eigenvalues are given by the following expression 

              ( )
2

2

1,2,3,4

1
4

2 2 2 2

K
r K J

ρ ρ⎛ ⎞⎟⎜= ± − ± −⎟⎜ ⎟⎜⎝ ⎠
               (9) 

where                  
1 2 2

1 1 2 2 1 1

1 2 2

2

x x x x

x
K

x x

ν ν
λ ν λ ν λ

λ λ λ λ λ λ
λ ν λ ν λ

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

                        (10) 

              Condition (i) requires a parameter constellation such that two purely 

imaginary eigenvalues, denoted 1,2r wi=± , result from (9). This in turn implies the 

following necessary conditions, as Lemma 2, in Dockner and Feichtinger (1991). 

More precisely, the same lemma considers the positive quadrant of the ( ),  K J  plane 

as the set of potential candidates for limit cycles. 

                     0K >  and 0J >  so that 

2

2

2 2

K K
J ρ

⎛ ⎞⎟⎜= +⎟⎜ ⎟⎜⎝ ⎠
               (11) 

Equation (11) determines the bifurcation point. Condition (ii) of the Hopf’s theorem 

states that the derivative ( )( )d Re d
i

r υ υ , with υ the chosen bifurcation parameter, 

must not vanish at the bifurcation point. Moreover conditions (i) and (ii) are the 

necessary conditions for the existence of the limit cycle, while condition (iii) is the 

sufficient one. The Jacobian J  of the canonical equations (8.1) – (8.4), evaluated at 

an equilibrium, is given below: 
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1 2 1 0 0

0 0 0 1

2 0 1 2 0

0 0 1

x

J
b x

γ
ρ

ρ

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥− +⎢ ⎥
⎢ ⎥
⎣ ⎦

                          (12) 

The determinant of the Jacobian is  

                          2J b γ=                                                    (13) 

while  

        ( )
1

1 2 0 0 1 0 0
2

2 1 2 0 0 0

x
K e e

x

ν
ρ

λ ρ ρ
−

′ ′= + + = −
− +

                (14) 

where e′  is the first derivative of the resource’s logistic growth function ( )1e x x= − . 

The analysis is straightforward. The solution of the system (8.1) – (8.4) in the 

steady states, eliminating the controls and making the appropriate substitutions, is the 

following  

                                    ( )* 1
   1

2

a
x ρ

β

⎡ ⎤
⎢ ⎥= − −
⎢ ⎥⎣ ⎦

                                       (15) 

                                    ( ) ( )
2

* 1 1
1 1

2 4

a a
ν ρ ρ

β β

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − − − −
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                (16) 

                                     *

1λ β=                                               (17) 

                                     *

2 0λ =                                               (18) 

Hence, the properties ( ) 0,   2 0K e e Jρ β γ′ ′= − > = >  are necessary for the 

Jacobian to posses a pair of purely imaginary eigenvalues, while the latter is the 

necessity for a Hopf bifurcation. The first property 1 2 0e x′ = − >  is satisfied only if 

* 1
2

x < . It remains to show that eρ ′>  is valid at the steady states. The positive 

externality of the stock implies 0e′ > . From a simple inspection of (8.3) and (17), at 

the steady state, we see that *

1 0λ β= >  and ( )*

1 1 eλ ρ ′= − . Consequently, it remains 

the denominator of the last expression of the shadow price *

1λ  to be positive, 

therefore, we always have eρ ′> . The second condition, 0J > , is always valid. 

From now onwards it remains to choose the bifurcation parameter, i.e. parameter γ , 

and find an explicit and analytical expression of the critical value, γ , for the 

bifurcation point. Figure 1 outlines that no concern for resources, 0a = , and a 
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sufficiently conservational attitude, which means a β  quite large, restrict the domain 

where complex patterns may be optimal. In economic terms, moderate concern for the 

polluter’s resource stock, a  small relative to β , may give raise to cyclical strategies, 

while strong concern or respectively no concern, 0a = , are stabilizing. 

 

  ( ) ( )1e x x x= −  

                Stable                               0e′ =  

      1 2e xρ ′= = −                                           stable 

 

 

 

 

                                                    

                    

                                                    x                                      ( )* 1
2

1
a

x ρ
β

⎛ ⎞⎟⎜= − − ⎟⎜ ⎟⎟⎜⎝ ⎠
 

                         0                                                                                                         a β  

 

Figure 1: Stability properties with respect to a β and associated stationary polluter’s 

resource stock 

 

The following proposition summarizes previous discussion about the existence of 

cyclical strategies for the representative polluter’s optimal control problem and also 

gives the necessary condition for the saddle point stability of the same system. 

 

 

Proposition 1:  

 

The necessary condition to establish cyclical strategies for the representative 

polluter’s optimal control problem (1) – (3) requires that the polluter’s discount rate 

must be greater than the marginal resources’ growth, i.e. eρ ′> . For the same 

problem and for the saddle point stability, it suffices the marginal resources growth to 

be equal or less than zero. That is ( ) 0e x′ ≤ . 
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3. The differential game  

Let us, as in previous section, denote by ( )x t  the instantaneous resources 

available to the polluters at time t . Without any counter pollution action undertaken 

and also without any actions of the polluters the stock of resources grows according to 

the function ( )e x , which is considered as growth function, obviously dependent on 

the available resources, satisfying the conditions ( ) ( )0 0,   0e e x= >  for all 

( )0,x K∈ , ( ) 0e x <  for all ( ),x K∈ ∞ , ( ) 0e x′′ ≤ . Carrying out emissions is costly 

for the polluters, e.g. compliance costs and damages in the available equipment, also 

reducing their capital available to the production process. This clearly affects 

negatively the resources of the polluters. The reduction of the growth of the resource 

stock, however, does not only depend on the intensity of emissions ( )tν , but is also 

influenced by the counter pollution measures ( )u t  undertaken by the government or 

by any groups of agents e.g. volunteers they fight against pollution. We set as 

instrument variables for both sides the intensity of emissions ( )tν  and antipollution 

actions ( )u t , which are assumed non-negatives ( ) ( )0,    0t u tν ≥ ≥ . 

Analogously to the models of optimal harvesting natural resources one can thought as 

“harvesting” the resources of polluters and this harvesting is denoted by ( ),h u ν . 

Combining the growth ( )e x  with the harvesting ( ),h u ν  the state dynamics can be 

written as 

                      ( ) ( ),x e x h u ν= − ,         ( ) 00 0x x= >                                    (19) 

Along a trajectory the non negativity constraint is imposed, that is  

                                 ( ) 0     0x t t≥ ∀ ≥                                                          (20) 

With the assumption of emission’s compliance costs and the damages incurred in 

equipment due to the intensive usage, a higher intensity of emissions and also the 

counter pollution measures leads to stronger reduction of the polluters’ resources and 

therefore we assume the partial derivatives of the harvesting function that reduces 

polluters’ resources ( ),h u ν  to be positive, i.e. 0,   0
u

h hν> > . Moreover the law of 

diminishing returns is applied only for the antipollution actions undertaken, that is 

0
uu

h <  and for simplicity we assume 0hνν = .  Additionally, we assume that the 
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Inada conditions, which guarantee that the optimal strategies are nonnegative, holds 

true, i.e.  

                      
( ) ( )

( ) ( )
0

0

lim , ,        lim , 0

lim , 0,          lim ,

u u
u u

h u h u

h u h uν νν ν

ν ν

ν ν
→ →∞

→ →∞

=∞ =

= =∞
                             (20a) 

The utility functions the two players want to maximize defined as follows: 

Player 1, say the government or any group of pollution fighters, derive instantaneous 

utility, on one hand from the emission reductions, on the other hand from their 

antipollution effort ( )u t  which gives rise to increasing and convex costs ( )a u . 

Additionally a high stock of resources that generates pollutants and a high level of 

emissions cause disutility, which are described by the increasing functions ( )d x  and 

( )ψ ν , respectively. After all the present value of utility is described by the following 

functional 

                              ( ) ( ) ( ) ( )1

1

0

,
t

J e h u d x a u dt
ρ ν ψ ν

∞
− ⎡ ⎤= − − −⎣ ⎦∫                     (21) 

Player 2, the polluters, enjoy utility ( )xυ from the available resources ( )x t , but also 

from their emissions at intensity ν , which is described by the function ( )β ν . For the 

utilities ( )xυ  and ( )β ν  we assume that are monotonically increasing functions with 

decreasing marginal returns, that is ( ) ( )0,   0xυ β ν′ ′> >  and ( ) ( )0,   0xυ β ν′′ ′′< < . 

So, player’s 2 utility function is defined, in its additively separable form, as: 

                                 ( ) ( )2

2

0

t
J e x dt

ρ υ β ν
∞

− ⎡ ⎤= +⎣ ⎦∫                                      (22) 

3.1 Nash Equilibrium  

In this section we calculate the Nash equilibrium of the pollution differential 

game. The concept of open loop Nash equilibrium is based on the fact that every 

player’s strategy is the best reply to the opponent’s exogenously given strategy. 

Obviously, equilibrium holds if both strategies are simultaneously best replies. 

Following Dockner et al (2000), we formulate the current value Hamiltonians 

for both players, as follows 

             ( ) ( ) ( ) ( ) ( ) ( )( )1 , ,H h u d x a u e x h uν ψ ν λ ν= − − − + −  

            ( ) ( ) ( ) ( )( )2 ,H x e x h uυ β ν μ ν= + + −  
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The first order conditions, for the maximization problem, are the following system of 

differential equations for both players: 

First, the maximized Hamiltonians are 

                       ( ) ( ) ( )1 1 , 0u

H
h u a u

u
λ ν

∂ ′= − − =
∂

                               (23) 

                              ( ) ( )2 , 0
H

h uνβ ν μ ν
ν

∂ ′= − =
∂

                                     (24) 

and second the costate variables are defined by the equations 

  ( ) ( )1
1 1

H
e x d x

x
λ ρ λ λ ρ

∂ ⎡ ⎤′ ′= − = − +⎣ ⎦∂
                          (25) 

              ( ) ( )2
2 2

H
e x x

x
μ ρ μ μ ρ υ

∂ ⎡ ⎤′ ′= − = − +⎣ ⎦∂
                        (26) 

The Hamiltonian of the player 1, 1H , is concave in the control u  as far as long 1λ<  

and is guaranteed by the assumptions on the signs of the derivatives, i.e. 

0,   0
uu

h hνν< =  and from the decreasing marginal returns on the polluters’ utilities, 

i.e. ( ) ( )0,   0xυ β ν′′ ′′< < . Moreover, optimality condition (23) implies that the 

adjoint variable λ  is positive only if the regulator’s marginal utility 
u

h  exceeds the 

marginal costs, since  ( ) ( )( ) ( ), ,u uh u a u h uλ ν ν′= −  . 

We also assume linearity of the model. To be more precise we specify the 

following functions of the game to be in linear form: 

i. the polluters resources growth function in the form ( )e x xω= ⋅ , where ω  is 

the growth rate,  

ii. the disutility function, ( )d x , which stems from the high stock of the 

polluters resources, in the form ( )d x d x= ⋅  

iii. the disutility ( )ψ ν , derived from the level of emissions realizations, in the 

form ( )ψ ν ψ ν= ⋅ , and finally 

iv. the abatement cost is in the form ( )u t a u= ⋅  

and all the constants involved are positive numbers, that is ,  ,  ,    0d aω ψ > . From the 

polluters’ side, the functions that maximized are specified linear, i.e. the utilities 

arisen from the resources stock and emissions realizations are written as 

( ) ( )x x tυ υ= ⋅  and ( ) ( )tβ ν β ν= ⋅  respectively. 
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After the above simplified specifications the canonical system of equations 

(23) - (26) can be rewritten as follows 

                              ( ) ( )1 1 , 0u

H
h u a

u
λ ν

∂
= − − =

∂
                                        (27) 

                             ( )2 , 0
H

h uνβ μ ν
ν

∂
= − =

∂
                                               (28) 

                            [ ]1
1 1

H
d

x
λ ρ λ λ ρ ω

∂
= − = − +

∂
                                       (29) 

                            [ ]2
2 2

H

x
μ ρ μ μ ρ ω υ

∂
= − = − −

∂
                                     (30) 

and the limiting transversality conditions has to hold 

               ( ) ( ) ( ) ( )1 2lim 0,     lim 0
t t

t t
e x t t e x t t

ρ ρλ μ− −

→∞ →∞
= =                                (31) 

The analytical expressions of the adjoint variables ( ),  λ μ , solving equations  (29)-

(30), are respectively: 

                              ( ) ( )1

1

1

td
t e C

ρ ωλ
ρ ω

−= +
− +

                                             (32)         

                              ( ) ( )2

2

2

t
t e C

ρ ωυ
μ

ρ ω
−=− +

− +
                                        (33) 

In order the transversality conditions to satisfied it is convenient to choose the 

constant steady state values, and therefore the adjoint variables collapses to the 

following constants 

                        
1 2

,     
d υ

λ μ
ρ ω ρ ω
−

= =
− −

                                         (34) 

To ensure certain signs for the adjoints (34) we impose another condition on the 

discount rates, which claim that discount rates are greater than the resource’s growth, 

i.e. we impose the condition 

               ,      1, 2
i

iρ ω> =  

thus, the constant adjoint variables has the negative and positive signs respectively. 

The above condition seems to be restrictive but can be justified as otherwise optimal 

solutions do not exist. Indeed, choosing 2ρ ω< , the polluters’ discount rate to be 

lower than the resource’s growth rate, their objective functional becomes unbounded 

in the case they choose to send out no emissions. Similarly, choosing the 

government’s discount rate lower than the growth rate the associated adjoint variable 
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λ  becomes a positive quantity in the long run. As a shadow price is implausible to be 

positive for optimal solutions, the above reasoning is sufficient for the assumption  

,  1, 2
i

iρ ω> = . 

Once the concavity of the Hamiltonians, with respect to the strategies, for both 

players is satisfied the first order conditions guarantee its maximization. Now, we 

choose the function’s ( ),h u ν  specification, i.e. the specification of the function that 

reduces the polluters’ resources. This function is depending on the intensity of 

emissions and also depending on the abatement actions undertaken by the regulator. 

We choose a similar to Cobb – Douglas production function specification, which 

characterized by constant elasticities, and is in the following form 

                                    ( ),h u uσ ζν ν=       0 1σ ζ< < <  

The rest of the paper is devoted to the calculations of the explicit formulas at the Nash 

equilibrium. 

 

3.2. Optimal Nash Strategies 

Applying first order conditions ( ) ( )9 ,   10  for the chosen specification function  

                              ( ) 1,           
1 1

u

a a
h u u

σ ζν σ ν
λ λ

−= ⇔ =
− −

                                (35) 

                           ( ) 1,                h u u
σ ζ

ν
β β

ν ζ ν
μ μ

−= ⇔ =                              (36) 

The combination of (35) and(36), using the Cobb–Douglas type of specification,  

reveals an existing interrelationship between the strategies, that is 

     ( ) ( ) ( )
( ) ( )

* *
* * * * * *,                    

1 1

au a
h u u u

σ ζ βν ζμ
ν ν ν

σ λ ζμ σ λ β
= ⇔ = ⇔ =

− −
            (37) 

Expression (37) now predicts the interrelationship between the player’s Nash 

strategies, for which the result of comparison between them is dependent on the 

constant parameters and on the constant adjoint variables, as well. 

Substituting back (37) into (36) we are able to find the analytical expressions 

of the strategies, after the following algebraic calculations. Expression (36) now 

becomes: 

              ( )
( ) ( )

1 11 1
1

*

1 1

a a
u

ζ ζζ ζ
σ ζ ζμ μζ μζ

σ λ β β σ λ β

− −− − −
+ − ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎢ ⎥ ⎢ ⎥= =⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎢ ⎥ ⎢ ⎥⎟ ⎟ ⎟⎜ ⎜ ⎜− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 



 15

and from the latter the analytical expressions for the equilibrium strategies is derived 

in a more comparable form now: 

                                 
( )

1

1 1
*

1

a
u

ζ ζ
σ ζ σ ζμζ

σ λ β

− −
+ − + −⎡ ⎤ ⎛ ⎞⎟⎜⎢ ⎥= ⎟⎜ ⎟⎢ ⎥ ⎟⎜− ⎝ ⎠⎢ ⎥⎣ ⎦

                          (38) 

                              
( )

1
1 1

*

1

a

σ σ
σ ζ σ ζζμ

ν
σ λ β

−
+ − + −⎡ ⎤ ⎛ ⎞⎟⎜⎢ ⎥= ⎟⎜ ⎟⎢ ⎥ ⎟⎜− ⎝ ⎠⎢ ⎥⎣ ⎦

                             (39) 

Further substitutions in the equation of the resources accumulation, x x u
σ ζω ν= − , 

yield the following steady state value of the stock  

                                
( )

1 11

1

ss a
x

σ ζ
σ ζ σ ζζμ

ω λ σ β

−
+ − + −⎡ ⎤ ⎛ ⎞⎟⎜⎢ ⎥= ⎟⎜ ⎟⎢ ⎥ ⎟⎜− ⎝ ⎠⎢ ⎥⎣ ⎦

                      (40) 

 

We summarize the above discussion in a proposition. 

 

Proposition 2:  

 

Assuming the function which reduces the polluters’ resources to exhibit constant 

elasticity and all the other functions to be linear, then the pollution game yields 

constant optimal Nash strategies. The analytical expressions of the strategies are 

given by (38) and (39) for the government and the polluters respectively. The steady 

state value of the resources’ stock is given by the expression (40). 

 

3.3. The Value Functions 

In this section we compute the analytical expressions for the values of 

objective functions of the players. For this purpose we make use the constancy of the 

strategies (38), (39) computed above. We denote the pair of the constant strategies as 

( ),u ν . Note that constant strategies, leads to a constant function ( ),h h u ν=  which 

is the aforementioned function that reduces the polluters resources. The equation of 

the resources’ accumulation, now can be solved explicitly with the following 

analytical solution  

                           ( ) 0

th h
x t x eω

ω ω

⎛ ⎞⎟⎜ ⎟= − +⎜ ⎟⎜ ⎟⎜⎝ ⎠
                             (41) 
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0x  is the initial stock of the polluters resources. Note that expression (41) leads us to 

assume a sufficiently high initial stock of resources, specifically 0x h ω≥ , in order to 

satisfy the non-negativity condition ( ) 0x t > . 

The earlier computed constant strategies and the linearity assumption of the 

value functionals for both government and polluters, gives us the advantage to 

calculate a linear integral. Thus, for the value function of player 1, we have: 

                    ( ) ( )1

1

1 0

1 t
J h a u d e x t dt

ρψ ν
ρ

∞
−= − ⋅ − ⋅ − ∫                  (42) 

 

The value of the integral in (42) can be computed, giving 

                                   ( )
( )

1 1 0

1 10

t x h
e x t dt

ρ ρ
ρ ρ ω

∞
− −

=
−∫  

 

The government’s value function (42) now takes the following form: 

                    0
1

1 1 1 1 1

1
dxh d au

J
ψν

ρ ρ ω ρ ρ ρ ω

⎛ ⎞⎟⎜ ⎟= + − − −⎜ ⎟⎜ ⎟⎜ − −⎝ ⎠
                   (43)  

which is again a constant. 

 

Similarly, thanks to the model’s linearity, the polluters’ value function can be 

calculated analytically yielding the following constant expression: 

            
( )

( )
2 0 0

2

2 2 2 2 2 2

1 x h xh
J

υ ρ υυ βν
βν

ρ ρ ω ρ ρ ω ρ ρ ω

⎛ ⎞− ⎟⎜ ⎟⎜= + =− + +⎟⎜ ⎟⎜ − ⎟ − −⎟⎜⎝ ⎠
            (44) 
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4. Conclusions 

This paper investigates the dynamics of pollution together with the actions 

undertaken for counter pollution. For this purpose a model of environmental pollution 

is setup, for which the crucial assumption made is not the traditional one for the 

pollutants accumulation. Instead, we claim that the disadvantage in the pollution 

control is not the accumulated stock of pollutants, an irreversible fact, but rather the 

use of the available “bad” inputs together with the antiquated equipment, used in the 

production process. We called the production inputs and the available equipment used 

“the polluter’s resources”, as the causality of the pollutants accumulation.  

We model the polluter’s resources as an accumulated stock and the damages 

made in the resources, due to the intensive use, as the sum of the historical 

adjustments. Thus, the simple model became an optimal control model with two state 

variables. In the solution, we explore the possibility of cyclical strategies and we 

found a necessary condition to establish that cyclical strategies. We extend the one 

person optimal control model in a simultaneous (Nash) differential game, for which 

the government undertakes the usual role of regulation.  

Specifically, we find that the necessary condition for establishing cyclical 

strategies in a polluter’s optimal control problem requires that the polluter’s discount 

rate must be greater than the marginal resources’ growth. Similarly and for the saddle 

point stability, the marginal resources growth has to be equal or less than zero. 

Assuming constant elasticity for the polluters’ resources reduction function and 

linearity for the rest of the functions, we show that the pollution game yields constant 

optimal Nash strategies. The analytical expressions of the strategies for the 

government and the polluters as well as the steady state value of the resources’ stock 

are provided.  

The government’s instrument variable was the counter pollution actions 

undertaken, while the polluter’s instrument variable was the intensity of emissions 

realizations. In the Nash equilibrium of the game we calculate the optimal strategies 

for both players, and we found under linearity assumptions and for a specific 

resources’ growth function that the strategies are constants. Finally, the analytical 

expressions of the value functions for both players are computed. 
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