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An Analysis of the Relationship between WTI Term Structure and Oil Market Fundamentals  
in 2002-2009 δδδδ 

 
 

Mileno T. Cavalcante ∗ 
 

Abstract 
 
The main objective of this paper is to analyze the behavior of the term structure of the WTI futures market between 2002 and 2009, 
period known by a sustained price rise followed by a price slump and again by a new price rise. To achieve this goal, we use Principal 
Component Analysis (PCA) to decompose WTI futures price series into components which are used to explain series variability (e.g. 
changes in its term structure). After it, we try to identify how changes in oil markets fundamentals (physical and financial) may have 
contributed to oil futures term structure variability. The impact of these variables on WTI term structure is assessed using impulse-
response functions and variance decomposition analysis. This work is of interest to market analysts, hedgers, and traders, among 
others, because it helps to clarify how changes in oil markets may affect their strategies in these markets.       

 
 

JEL Classification: C14; C32; G13; Q49 
 
Keywords: WTI Term Structure; Principal Components Analysis; VARXs Models; Futures Pricing; Oil 
Market Fundamentals 
 
 
1. Introduction 

 
During the last few years, crude oil futures markets have attracted a lot of attention from specialised 

media and academics. However, while the first group has focused most of its attention on the possible 
influence of speculation in these markets on crude oil spot pricing, the second one has discussed a relatively 
broad array of topics, ranging from the mentioned subject (Merino & Ortiz (2005)), to segmentation in the 
crude oil futures (Lautier (2004a)) and the forecast of crude oil term structure (Chantziara & Skiadopoulos 
(2008)). In our view, considering the crude oil price rise between 2004 and 2008, this interest probably 
reflects the awareness that crude oil futures markets can be a useful tool to access market expectations about 
prices in the future. For example, for practitioners, the term structure of petroleum futures is of great 
importance in terms of risk management and price discovery. 

Within this context, the present work aims to answer the following questions: i) is it possible to find 
and establish a statistical significant relationship between the crude oil term structure and oil market 
fundamentals?; ii) are the changes in crude oil futures prices consistent with changes in market 
fundamentals?; iii) is there any linkage between crude oil spot prices and futures prices?; and iv) does the 
way crude oil term structure and market fundamentals relate to each other change when more information 
becomes available?  

In order to try answering these questions, our analysis will focus on the West Texas Intermediate (WTI) 
markets. This choice can be justified by the fact that this is the benchmark for most of the crude oil 
transactions that occur between the USA (the biggest national market in the world for this commodity, and 
also the most liquid) and crude oil exporters, and because of the large data availability on fundamental 
variables for this market (the USA). 

This paper is structured as follows. After this introduction, section two discusses briefly the statistical 
and econometric methodology we use in this work (namely, principal component analysis, and VARX 
models). Section three describes the dataset and discusses the results for stationarity tests for the variables in 
this dataset. Section four presents the empirical analysis, including the way we develop our approach to try to 
answer the questions put above, the statistical results, and our interpretation for them. Section five concludes 
this study. 
 
 

                                                 
δ I would like to thank Fernando Avellar (Petrobras S.A.), who read and commented on earlier versions of this work, and Petrobras 
for supporting my participation at the 33rd IAEE International Conference, held in Rio de Janeiro, Brazil, 6-9 June, 2010. Any 
remaining errors are my responsability only. 
∗ MsC in Economics, Universidade Federal do Ceara, Brazil. E-mail addresses: milenoc@petrobras.com.br, milenoc@yahoo.com. 
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2. Principal Component Analysis and VARX Analysis 
 
2.1. Principal Component Analysis 
 

The main objective of Principal Component Analysis (PCA) is to explain the systematic behavior of a 
given set of observable variables (e.g. 1x , 2x , ..., px ) through a (smaller) set of latent variables. Technically 

speaking, this method works by means of a transformation from the original set of random variables to a new 
(orthogonal) set which has a covariance matrix whose structure is similar to the original set.  

To see this, assume that there are two matrices, X  (=[ ]tptt xxx ...21 , with Tt ,...,2,1= ) as the 

original set of variables, and Z  which represents the original variables after a proper transformation (e.g. 
PCs, or principal components). Then,   

 
XAZ =  (1) 

 
where )( pxpA  is the matrix which represents the proper transformation (orthonormal matrix); Z has 

dimension )(Txp .1   
 
If you consider the i-th PC (iz ), where iA  is a column-vector of A  ( pji ,...,2,1== ), we have  

 

ii XAz =  (2) 

 

or 11 == iXAz , 22 == iXAz , ... , pip XAz == (each iz  with dimension 1Tx ). Notice that matrix A  contains 

the eigenvectors of X ´s covariance matrix (i.e. )( XXES T= ), where the variance of i-th principal 

component is equal to the i-th eigenvalue of X ( iλ ).  

Using the terminology of linear algebra, PCA is simply a change of basis, where the X matrix is re-
expressed in terms of a new (orthonormal) basis, which is a linear combination of the original basis. So, what 
would be an appropriate new basis (Z ) for X ? The principle behind this choice is to select p normalized 
directions in a p-dimensional space along which the variance in X  is “maximized” (i.e. the terms 
representing covariances are minimized such that they become zero), with each pair of directions orthonormal 
to each other. 

These choices are then ranked in the following fashion: first, the direction with the highest variance; 
second, the direction with the second highest variance, and so, on until (in some cases) p directions are 
selected. These are the PCs of X . 

 In order to achieve this goal, we need two assumptions: i) Z  must be an orthonormal matrix; ii) the 
directions with the largest variances are the most important (or most principal). With this in mind, the PCA 
objective can be summarized as follows: find an orthonormal matrix A  which satisfies (1) such that Z ´s 
covariance matrix is diagonalized. Following this idea, we can write this goal as a variance optimization 
(maximization) problem:  

  

i
TT

i
A

AXXA
i

)(max
1=

 (3) 

 

with a first order condition ( *
iA is the i-th vector which satisfies (3)) 2 

  

                                                 
1 If we use some intuition, we may think of Z and A as )(Txq and )( pxq matrices, with pq ≤ . This is so if we consider that 

most of (or all) variation in the original dataset may be accounted by q  PCs. 
2 Note that *

iA  is a vector which maximizes (3), with *
iA  associated to *

iλ , which is the highest eigenvalue of matrix S (for the first 

PC), the second highest eigenvalue of this matrix (for the second PC), and so on. 
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0)( ** =− ii
T AIXX λ  (4) 

  
where )( pxpI  is an identity matrix, iλ  ( pi ,...,2,1= ) is the i-th Lagrange multiplier (eigenvalue), iA  is a 

column-vector of A  (equal to the i-th XX T  eigenvector which corresponds to iλ ), and )1(0 px  is a null 

column-vector. 
Another way to write the maximization problem (whose first order condition is given by (4)) is  

 
)(maxarg

1
i

A
i XAVarA

i =
=  

s.t. 0, =ik AA , ik <∀  
(5) 

 

where the restriction 0, =ik AA  indicates that A ´s eigenvectors must be orthogonal in order to assure that 

(3) has nontrivial solutions. 3 
So, the Z ´s covariance matrix is given by   
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(6) 

 
where )( 11 == iXAVarλ , )( 22 == iXAVarλ , ..., )( pip XAVar ==λ , and 0),( =hi zzCov , hi ≠∀ , i.e. PCs 

are orthogonal to each other.  
  

2.2. VARX Analysis 
 

We use VAR(X) methodology to achieve two goals: i) to determine the sets of endogenous/exogenous 
variables which will enter VARX models using block exogeneity tests; and ii) after step (i), to estimate 
VARX models for each one of the aforementioned sets in order to generate impulse-response functions and 
decompose the variance of the endogenous variables in each set. These points will be discussed in more detail 
in subsections 4.2 and 4.3. 

The VARX methodology, which is used to generate impulse-response functions and decompose the 
variance for each set of variables in our analysis, can be described as follows: let Y  and W  be vectors of 
endogenous and exogenous variables, respectively. Then a VARX in reduced (or standard) form for each set 
of variables is   

 

tktkttktkttt WCWCWCYBYBYBBY Ψ+++++++++= −−−−−− KK 221122110  (7) 
 
where Y  has dimension )1(mx , jB  is )(mxm , C  is )(mxn , W  is )1(nx , and tΨ is a )1(mx  vector of error 

terms. Note that 11 +≤≤ rm and rn ≤  such that 1+=+ rnm , with lsfundamentar #= .  
So, one way to obtain impulse response functions is rewriting equation (7) in its structural form and 

using Cholesky decomposition. Also, variance decomposition can be obtained through the use of Cholesky 
factorization. 
 
 
 

                                                 
3 This condition implies that matrix A has no null eigenvalue, i.e. it is nonsingular. Otherwise there would be one or more perfect 
linear relationships among the column-vectors of A, resulting in a column dimension smaller than p (or 0=A ). So, we would have  

pn < PCs. See footnote 1. 
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3. Description of the Data Set and Stationarity Tests 
 

3.1. Data 
 
In this work, we use weekly data for the following variables: nominal WTI futures quotes from 1st to 

12th month in the New York Mercantile Exchange (NYMEX); US refining utilization rates; US crude oil and 
gasoline inventories; crude oil and diesel/gasoil inventories in Europe; OPEC spare capacity; commercial and 
noncommercial net positions in WTI futures and options markets; nominal interest rates for US T-Bills.4 The 
data sources are: Bloomberg; US Department of Energy (EIA-DOE); International Energy Agency (IEA); US 
Commodities, Futures, and Trading Commission (CFTC); and US Federal Reserve. 5    

The sample spreads from January 2002 to December 2009, comprising 418 data points (weeks) for each 
variable. Figure 1 shows WTI weekly average quotes for the following maturities 1st, 6th, and 12th month 
(CL1, CL6, CL12) for the time interval mentioned above. The time path for other maturities is very much like 
those depicted in Figure 1.   

 
Chart 1 – WTI Future Contract Prices (1st, 6th, 12th month) – Weekly Averages: January/2002-

December/2009 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Source: Bloomberg 
 

At a glance, it is easy to see that time paths for CL1, CL6, and CL12 are very similar for the time 
period considered, with small differences among them probably due to their volatilities (standard deviations) 
- as maturity increases, liquidity decreases, and volatility increases (see Table 1). Another way to look at 
Figure 1 is to fix t (choosing a specific week), and draw a vertical line from fixed t (bottom) to top, and then 
read the quotes for each contract – you´ve got a caricature for WTI term structure in any given week.    

Table 1 shows the main descriptive statistics for WTI futures contracts. 
 

                                                 
4 The weekly quotes for the first 12 months of WTI futures contracts are means of daily closing prices for these contracts in each 
corresponding week. In order to obtain weekly data from monthly data (OPEC spare capacity, crude oil and diesel/gasoil stocks in 
Europe), we used moving averages centered at each week for all months from January 2002 to December 2009. Each month was 
transformed in its equivalent number of weeks. So, the desired data point for each week is the weighted average between the previous 
and the following month, where the weight of a given month is directly proportional to its proximity to a specific week.  
5 We assume that each market agent works with his/her own inflation expectation (which is expected to be invariant to each agent´s 
choices), regardless of whether he or she is comparing either different portfolio alternatives or computing the effective cost of hedging 
a given amount of barrels of crude oil. So, in this paper all price and interest rate variables are nominal rather than real, which means 
that inflation market expectations are only implicitly considered in our modeling. 
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Table 1 – Descriptive Statistics for WTI Futures Contracts 
 

WTI (weekly prices, level) 
 CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8 CL9 CL10 CL11 CL12 

Mean 57.031 57.403 57.609 57.703 57.744 57.756 57.743 57.716 57.681 57.641 57.598 57.554 
Standard 
Deviation 

25.738 25.825 25.974 26.136 26.299 26.452 26.591 26.712 26.817 26.908 26.990 27.065 

Kurtosis 0.795 0.719 0.636 0.560 0.491 0.427 0.370 0.317 0.266 0.219 0.175 0.133 
Skewness 0.946 0.886 0.834 0.791 0.754 0.722 0.694 0.669 0.646 0.625 0.605 0.588 

Note: CLp ( 12,...,2,1=p ) denotes the WTI futures contract which expires at the beginning of j-th month. Source: 

Author´s estimates from Bloomberg data 
 

Finally, it is important to mention what our eyes cannot ignore: Figure 1 suggests that WTI futures 
prices may not be stationary, which takes us to the next subsection of this work.  

 
3.2. Stationarity and Unit Root Tests 

 
In this subsection we test for stationarity and the presence of unit roots for all data used in this work. 

The idea of performing both tests is to try to avoid an inappropriate choice when deciding to differentiate or 
not a series due to possible inconsistencies between the results of these tests. So, if a given variable, after 
taking its nth difference ( 2,1,0=n ), is considered stationary according to stationarity (KPSS) and unit root 
(ADF) tests, we can conclude there is no ambiguity regarding the number of differences one must take to 
make this variable stationary.6 The problem occurs when these tests give contradictory results. This point will 
be discussed in what follows when considering the test results for our dataset. 

It is important to say that, despite the usual methodology suggestion to standardize all series from a 
dataset before estimating PCs, in this paper we adopt Chantziara & Skiadopoulos (2008) approach, who 
worked with daily changes (first differences) of WTI, Brent, motor gasoline and heating oil future contracts.7 

Also, to obtain valid PC estimates, the futures contracts series must be (weakly) stationary, which 
means that they have to have constant mean and finite variance (i.e. the S covariance matrix must be constant 
for any t).8 If this condition is not met when ∞→t , the maximization problem in (2) will not have a 
solution.9 

Saying this, we now turn our attention to the results of the tests for stationarity (KPSS) and unit root 
(Augmented Dickey-Fueller (ADF)), which are shown in tables 2 and 3. The fundamental variables are 
defined in the following way: OPEC spare capacity (OPEC_Spare)10, crude oil commercial stocks in Europe 
(Crude_Stocks_Eur) and in the US (USA_Crude_Stocks), US gasoline stocks (USA_Gas_Stocks), gasoil and 
diesel stocks in Europe (Dest_Stocks_Eur), US refinery capacity utilization 4-weeks average 
(USA_Ref_FUT), commercial (WTI_Comm_net) and noncommercial (WTI_Noncomm_net) net positions in 
crude oil (WTI) futures and options markets (NYMEX), interest rates (T-Bills) from the Federal Reserve 
(USA) for varying maturities (US_Treas_1m_pm, US_Treas_3m_pm, US_Treas_3m_pq, US_Treas_6m_ps, 
US_Treas_1y_py), and interest rates spreads between different maturities (US_Treas_Spread_6m_1m, 
US_Treas_Spread_1y_3m).11 This set also includes a proxy for WTI spot price (i.e. WTI_front_mth or 
CL1).12 

                                                 
6 We do not make cointegration tests here because as it will become evident in the present subsection and in subsection 4.1, all sets of  
variables included in each VAR in the endogeneity/exogeneity tests and in the estimated VARXs are composed by series with 
different orders of integration (i.e. )0(I , )1(I , and )2(I ). In this situation, as Enders (2004) points out, according to Engle and 

Granger´s original definition of cointegration, “if two variables are integrated of different orders they cannot be cointegrated” (p. 322-
323). Consequently, it is preferable to estimate the VAR(X)s models only after taking the number of differences necessary to make 
the relevant series stationary.  
7 Manly (2008) and Tsay (2005) are examples of the traditional methodology.   
8 An additional condition for weak stationarity in this case is that the X ´s cross covariance matrix must be dependent only of the 
lag/lead between two variables in 

1t  and 
2t , for 

21 , tt∀ , 
21 tt ≠ (i.e. their covariance is time-invariant). 

9 To see this, recall that (5) is equivalent to (3). 
10 OPEC Spare Capacity refers to OPEC 12 + Iraq (i.e. Algeria, Angola, Ecuador, Indonesia, Iran, Kuwait, Libya, Nigeria, Qatar, 
Saudi Arabia, United Arab Emirates, Venezuela, and Iraq).   
11 Note that 1m denotes T-Bill at 1-month maturity, 3m T-Bill at 3-month maturity, 6m T-Bill at 6-month maturity, and 1y T-Bill at 
1-year maturity. Also, pm refers to monthly rates, pq to quarterly rates, ps to semestral rates, and py to yearly rates. For interest rate 
spreads, 6m_1m is the spread between 6-month and 1-month T-Bills; 1y_3m is the spread between 1-year and 3-month T-Bills. These 
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Table 2 – Stationarity/Unit Root Tests Results (WTI Futures Contracts) 
 

Variable (Contract) Stationary in Test (*) p-value (KPSS; ADF) (**)  Specification 

CL1 1st difference ADF, KPSS > 0.05; 0.0002 Constant, no time trend 

CL2 1st difference ADF, KPSS > 0.05; 0.0002 Constant, no time trend 

CL3 1st difference ADF, KPSS > 0.05; 0.0002 Constant, no time trend 

CL4 1st difference ADF, KPSS > 0.05; 0.0002 Constant, no time trend 

CL5 1st difference ADF, KPSS > 0.05; 0.0001 Constant, no time trend 

CL6 1st difference ADF, KPSS > 0.05; 0.0001 Constant, no time trend 

CL7 1st difference ADF, KPSS > 0.05; 0.0001 Constant, no time trend 

CL8 1st difference ADF, KPSS > 0.05; 0.0001 Constant, no time trend 

CL9 1st difference ADF, KPSS > 0.05; 0.0001 Constant, no time trend 

CL10 1st difference ADF, KPSS > 0.05; 0.0001 Constant, no time trend 

CL11 1st difference ADF, KPSS > 0.05; 0.0001 Constant, no time trend 

CL12 1st difference ADF, KPSS > 0.05; 0.0001 Constant, no time trend 

Notes: CLp ( 12,...,2,1=p ) denotes the WTI futures contract which expires at the beginning of j-th month; total number 

of observations: 418 (level); (*) ADF is the Augmented Dickey-Fueller Test for unit root (H0:ty  is )1(I ), KPSS is the 

Kwiatkowski-Phillips-Schmidt-Shin test for stationarity (H0: ty  is stationary), and JCH is the Joint Confirmation 

Hypothesis for ADF and KPSS tests (see Carrion-i-Silvestre et al. (2001) and Kębłowski & Welfe (2004)); (**) p-value is 
the significance level in the ADF (KPSS) test necessary to (not) reject H0; for JCH, p-value refers to critical values for the 
rejection of the null hypothesis (joint confirmation hypothesis) of unit root (see Kębłowski & Welfe (2004)). Source: 
Author´s estimates 

 
Table 3 – Stationarity/Unit Root Tests Results (Fundamentals) 

 
Variable Stationary in Test (*) p-value (KPSS; ADF) (**)  Specification 

WTI_front_mth (CL1)  1st difference ADF, KPSS > 0.05; 0.0002 Constant, no time trend 

OPEC_Spare 1st difference ADF, KPSS > 0.05; 0.0000 Constant, no time trend 

Dest_Stocks_Eur 1st difference ADF, KPSS > 0.05; 0.0000 Constant, no time trend 

Crude_Stocks_Eur Level JCH 0.05 Constant, no time trend 

USA_Crude_Stocks 1st difference ADF, KPSS > 0.05; 0.0000 Constant, no time trend 

USA_Gas_Stocks Level ADF, KPSS > 0.05; 0.0000 Constant, no time trend 

USA_Ref_FUT 1st difference ADF, KPSS > 0.05; 0.0000 Constant, no time trend 

WTI_Comm_net 1st difference JCH 0.01 Constant, no time trend 

WTI_Noncomm_net 1st difference JCH 0.01 Constant, no time trend 

US_Treas_1m_pm 2nd difference JCH 0.01 Constant, no time trend 

US_Treas_3m_pq 2nd difference JCH 0.01 Constant, no time trend 

US_Treas_6m_ps 2nd difference JCH 0.01 Constant, no time trend 

US_Treas_1y_py 2nd difference JCH 0.01 Constant, no time trend 

US_Treas_3m_pm 2nd difference JCH 0.01 Constant, no time trend 

US_Treas_Spread_6m_1m 1st difference ADF, KPSS > 0.05; 0.0000 Constant, no time trend 

US_Treas_Spread_1y_3m 1st difference JCH 0.01 Constant, no time trend 

Notes: Total number of observations: 418 (level); (*) ADF is the Augmented Dickey-Fueller Test for unit root (H0: ty  is 

)1(I ), KPSS is the Kwiatkowski-Phillips-Schmidt-Shin test for stationarity (H0: ty  is stationary), and JCH is the Joint 

Confirmation Hypothesis for ADF and KPSS tests (see Carrion-i-Silvestre et al. (2001) and Kębłowski & Welfe (2004)); 
(**) p-value is the significance level in the ADF (KPSS) test necessary to (not) reject H0; for JCH, p-value refers to critical 
values for the rejection of the null hypothesis (joint confirmation hypothesis) of unit root (see Kębłowski & Welfe (2004)). 
Source: Author´s estimates 

 
                                                                                                                                                                   
spreads were calculated using the following formula: 1))1()1(( −++= jttj iiSpread , where 

ti  is the interest rate of a bond 

with maturity at t, and 
ji  is the interest rate of a bond with maturity at j, with jt > . 

12 The reason for inclusion of a WTI spot price proxy in the set of fundamentals will become clear later. 
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When performing ADF tests for the presence of unit roots in one or more series from our dataset, we 

follow Patterson (2000) procedure, who suggests that one must first find the number of unit roots beginning 
with the alternative hypothesis H1: )2(~ Iyt , and then take the appropriate number of differences to make 

them stationary, if necessary. 13 Also, since the ADF test has low power for cases when the coefficient 

)1( −= φγ of 1−ty  in the test equation is such that 110 <−< φ  but 01 ≈−φ ,  this procedure has the 

advantage of reducing the probability of occurrence of type II error. 
With this in mind, we can see in table 2 that the hypothesis of nonstationarity (alternative hypothesis in 

KPSS test; null hypothesis in the ADF test) is rejected for all contract-months of WTI futures under 
consideration only when these series are taken in first differences. Table 3, on the other hand, shows a 
different picture, with few variables being stationary in levels, some variables being stationary only in first 
differences, while others only when taken in second differences. Also it is possible to see that some of the 
results shown in table 3 rely on KPSS and ADF tests, while others depend on what is known as ADF-KPSS 
test of joint confirmation hypothesis of unit root (henceforth JCH test, or simply JCH). 14 This is so because 
the results of KPSS and ADF tests were conflicting for some fundamental variables (Crude_Stocks_Eur, 
WTI_Comm_net, WTI_Noncomm_net, US_Treas_1m_pm, US_Treas_3m_pq, US_Treas_6m_ps, US_Treas_1y_py, 
US_Treas_3m_pm, and US_Treas_Spread_1y_3m), leading to ambiguity when deciding the appropriate number 
of differences to be taken to make them stationary.   

The approach suggested in the literature to overcome this kind of problem [Charemza & Syczewska 
(1998), Carrion-i-Silvestre et al. (2001), and Kębłowski & Welfe (2004)], is to test a joint hypothesis for the 
presence of unit root (H0) when the ADF and KPSS tests are applied simultaneously (JCH). So, to check if 
the JCH is rejected for a given variable, we worked with asymptotical approximations for the critical values 
of ADF and KPSS tests statistics estimated by Kębłowski & Welfe (2004) using Monte Carlo simulations. 15 

As one can conclude from table 3, this method allows the rejection of the nonstationarity hypothesis 
(i.e. JCH) for all variables whose ADF and KPSS tests results were conflicting, once these series are taken in 
level, in first or second differences, when appropriate.  

Finally, in terms of the previous studies, some of the results of this subsection are in line with 
Chantziara & Skiadopoulos (2008), who performed ADF tests for WTI futures contracts (CL1, CL2, …, 
CL9) for daily data from January 1993 to December 2003. Their results showed these series were stationary 
only when taken in first differences. 
 

  
4. Empirical Analysis  
 
4.1. Principal Components Estimation  
 

As pointed out in subsection 3.2, to obtain valid estimates for principal components from a dataset, the 
variables included in this set must be stationary, which in our case justify the use of first differences of WTI 
futures quotes (recall the results in Table 2). So, after taking the first difference for WTI first 12-contract 
months series, we estimated the principal components for this data, using weekly observations from January 
2002 to December 2009 (418 data points (weeks) for each series). 16 17  
                                                 
13 In other words, Patterson (2000) suggests inverting the usual ADF test approach, which works first checking if 

ty  is )1(I . In the 

case under consideration in the text, the null hypothesis is )3(~:0 IyH t
, which does not make sense for economic time series, once 

most of them become stationary when taken in second differences (i.e. the rate of change of the rate of change). So, it is expected to 
reject H0  in the first round of ADF tests.    
14 The joint confirmation hypothesis of unit root (JCH) is defined taking a joint probability density function of the KPSS and ADF 
tests statistics conditional on the direct equivalence between their test hypotheses. For more details, see Charemza & Syczewska 
(1998) and Carrion-i-Silvestre et al. (2001). 
15 Kębłowski & Welfe (2004) estimated approximations for the asymptotical critical values for the JCH test for the following joint 
probabilities: 0.85, 0.90, 0.95, 0.975, and 0.99.  
16 QQ-plot analysis of the first differences of 1st-12th contract-month quotes suggest that these series have univariate t-Student 
distributions with 3 degrees of freedom. Notwithstanding, it does not necessarily mean that these variables have a t-Student 
multivariate distribution. See Meucci (2005), p. 79. 
17 Some authors point out that if the X  variables are not normally distributed, PCA may not properly identify the original 
independent variables (e.g. the first PC may not necessarily reflect the direction with the first highest variance, etc.). However, in this 
work, we rely on Jolliffe (2002) and Dudziński et al. (1975), who say normality is not a necessary assumption for the multivariate 



 9 

Table 4 presents the results of principal component analysis (PCA) in terms of variance and cumulative 
variance explained by each PC, including also regressions R-squared (see table 4´s note for details). Figure 2 
shows the principal components (PCs) obtained as part of PC analysis. Results in Table 4 indicate that the 
first three PCs (considering a maximum theoretical possibility of 12 PCs ( 12=p )) explain 100% of the 

variance of the weekly changes in WTI futures quotes. It also shows that the first PC (1z ) explains 

approximately 98% of this variance, while the second and third PCs (2z  and 3z , respectively) appear to have 

a marginal role in explaining WTI weekly changes variance. Descriptive statistics for the first three WTI PCs 
( 1z , 2z , and 3z ) are shown in Table 5.  

 
Table 4 –WTI Term Structure Variance Explained by PCs and PCs Fit (%) 

 
 
 
 
 
 
 

 

Note: (*) Regressions R-squared refer to the coefficients of determination (R2) for linear 
regressions between each WTI contract-month and a given PC. The correlation loadings for 
each PC are the estimated slope coefficients of these regressions. Source: Author´s estimates 

 
 

Figure 2 – WTI Principal Components: January/2002-December/2009 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Author´s estimates 
 
 

                                                                                                                                                                   
distribution of variables in the X  matrix. In particular, according to Jolliffe (2002), PCA can be viewed as a descriptive technique, 
which means that many of its properties and applications have no need for explicit distributional assumptions. However, in some 
cases, it is also possible to hypothesize that X  has a multivariate elliptical distribution (of which the multivariate normal and the 
multivariate t-Student are special cases). For more details, see Jolliffe (2002), p 394-395. 

 WTI Total Explained Variance PCs Fit to Data 

PCs Cumulative Variance 
Explained 

Variance Explained  
by Each PC Regressions R-Squared (*) 

1z  97.9 97.9 Minimum 99.86 

2z  99.7 1.8 Median 99.98 

3z  100.0 0.3 Maximum 99.99 
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Table 5 – WTI PCs Descriptive Statistics 
 

 PCs Statistics 
 Mean Standard 

Deviation Kurtosis Skewness 

1z  0.503 8.378 3.341 -0.593 

2z  0.032 1.148 9.608 -0.935 

3z  0.012 0.414 7.789 0.715 

Source: Author´s estimates 
 

 
When interpreting WTI principal components we follow Litterman & Scheinkman (1991), who suggest 

that the first three PCs (i.e. 1z , 2z , and 3z ), should be seen as indicators of level, steepness, and curvature of 

the term structure, respectively. In this fashion, the 1st PC explains vertical changes in the futures curve, 
while the 2nd and 3rd PCs explain changes in market regimes (i.e. from contango to backwardation and vice-
versa). Following this argument, the 3rd PC can also be seen as a factor which is linked to changes in futures 
market volatility.18   

Figure 3 shows the correlation loadings obtained for each PC (1z , 2z , and 3z ), which are the 

components of each eigenvector iA  ( 3,2,1=i ) of  matrix A  in (1). The pia  element of eigenvector iA  

( 12,...,2,1=p ) is the weight that the price of pth contract month in WTI futures market has in the ith PC.  
 
 

Figure 3 – Correlation Loadings for WTI 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: Author´s estimates 

 
So, according to the proposed interpretation for the WTI correlation loadings, 1z  can be seen as a factor 

which causes parallel shifts and in the same direction in the WTI term structure (1st – 12th months). The 
second PC (2z ) causes changes in one direction for contracts with shorter maturity (i.e. 1st – 4th months), and 
at the same time, changes in the opposite direction for contracts with longer maturities (5th – 12th months). 
This is clearly the factor responsible for market regime changes (from contango to backwardation, and vice-

                                                 
18 For more details, see Litterman & Scheinkam (1991) and Litterman et al. (1991). 
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versa). Finally, the curvature factor (3z ) is responsible for shifts in the futures curve in one direction for the 

first contract-month and contracts after the 7th month, while it does exactly the opposite for 2nd – 7th months. 
This is so because it probably reflects the relationship between this factor and the greater impact of volatility 
on first month than on last months (10th, 11th, 12th months) of the term structure. 19    

Also, it is important to say that, generally speaking, the results of this subsection are consistent with 
previous works which applied PCA to the term structure of crude oil futures markets [Tolmasky & Hindanov 
(2002), Lautier (2004b), Chantziara & Skiadopoulos (2008)]. 

 
4.2. Block Exogeinety Tests 

 
In this subsection we determine the sets of endogenous and exogenous variables that will enter VARX 

estimation, impulse-response and variance decomposition analysis. As pointed out in the beginning of this 
work, to understand how changes in oil market fundamentals have affected WTI term structure in 2002-2009 
(here represented by 1z , 2z , and 3z ), we will use impulse-response and variance decomposition analysis to 

assess the different ways it happens. This analysis will be carried out in the next subsection.  
 

Endogenous/Exogenous Variables 
 
Working with all possible combinations of endogenous variables, after differencing some of them to 

achieve stationarity (see subsection 3.2), we estimated a total of 168 VARs (= 7 x 6 x4) and performed block 
exogeneity tests for each VAR.20  In this first instance, all variables were treated as endogenous. Considering 
a p-value of 0.05, the results of these tests were used as a criterion for inclusion/exclusion of variables in the 
l-th VAR ( kxsxil = , where 3,2,1=i ; 2,1=s ; and 4,3,2,1=k ).21  

The variables excluded in the block exogeneity tests were included in these VARs as exogenous ones 
and as so used to form VARX models, which in the last step are the models estimated and which generate 
impulse-response functions and variance decompositions.  

But, since in some cases our block exogeneity tests showed that more than one variable (endogenous or 
exogenous) with the same kind of information can be included in a VARX, we have to use some criterion to 
be parsimonious and avoid redundancy among the variables included in these models.22 So, for each set 
(combination) of variables, we proceeded in the following way:  
 
i) for cases when there were only exogenous variables which were redundant, we took the lowest (joint) p-
values for each Granger equation in the block exogeneity tests (where these variables were dependent, or 
caused by the other variables) choosing those equations (variables) which have at least one explanatory 
variable with a p-value smaller or equal to 0.05. Then, we estimated a VARX for each one of those 
‘dependent’ variables, which also included the endogenous variables previously determined, and the (non-
                                                 
19 Litterman et al. (1991) suggest that this pattern is the consequence of the transitory nature of volatility changes, since it follows a 
mean reverting process. The shape of correlation loadings curve for 

3z  supports this view, given that a change in WTI 1st month 

quote (assuming 03 ≠∆ z ) will be bigger than changes in the back of the futures curve.   
20 In this step, the number of ways we can combine the endogenous variables is given by 

)varint(#)var(#)var(# iablesrateerestxiableslentghnetxiablescoreofsets  for each PC, considering 

only one lag choice (1 or 2 or 3 or 4). If the fact we are working with 3 PCs and four choices for the number of lags is considered, 
then the previous result becomes  

43)varint(#)var(#)var(# xxiablesrateerestxiableslentghnetxiablescoreofsets . 

We define the core variables as those which cannot be arbitrarily excluded from any VAR (i.e. ∆WTI_front_mth, ∆OPEC_Spare, 
Crude_Stocks_Eur, ∆Dest_Stocks_Eur, ∆USA_Crude_Stocks, USA_Gas_Stocks, ∆USA_Ref_FUT); then 

1var# =iablescoreofsets . Net length refers to noncommercial and noncommercial net positions, and interest rates to 

themselves (including spreads). With this in mind, we get the number 168.    
21 Notice that i index refers to the PCs, s index to the noncommercial and commercial variables, and k index to the number of lags 
used to estimate each VAR. So, the number of VAR(X)s models which will be estimated is 24 )423( xx= . 
22 In this work, we say that two variables, jiXX ji ≠),,( , are redundant if the coefficient of correlation between  them )( ijρ  is equal 

or greater than 0.6. In terms of information sets, let  
XiΩ  be the information set included in 

iX , and 
XiΩ  be its complement which 

may be part of, say, 
jX , with ∅=Ω∩Ω XiXi

. Then, ∅≠Ω∩Ω⇔≠ XjXiij 0ρ . Namely, we have here three sets of these variables: 

WTI_Noncomm_net and WTI_Comm_net; interest rates; and interest rates spreads. 
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redundant) exogenous variables; compared their Schwarz Information Criterion (SIC), and picked the model 
with the smallest SIC. This procedure results in the following sets (by PC and by number of lags) 
 

Table 6 – Endogenous/Exogenous Variables Choices for VARXs (I)  
 

 Endogenous Variables Exogenous Variables 
z1, ∆WTI_front_mth , ∆Dest_Stocks_Eur , Crude_Stocks_Eur, 
∆USA_Crude_Stocks, ∆USA_Ref_FUT, ∆WTI_Noncomm_net  

∆OPEC_Spare, USA_Gas_Stocks, 
∆2_US_Treas_3m_pm  

z1, ∆WTI_front_mth , ∆Dest_Stocks_Eur , Crude_Stocks_Eur, 
∆USA_Crude_Stocks, ∆USA_Ref_FUT, ∆WTI_Comm_net  

∆OPEC_Spare, USA_Gas_Stocks, 
∆2_US_Treas_3m_pm 

z2, ∆WTI_front_mth , ∆Dest_Stocks_Eur , Crude_Stocks_Eur, 
∆USA_Crude_Stocks, ∆USA_Ref_FUT, ∆WTI_Noncomm_net  

∆OPEC_Spare, USA_Gas_Stocks, 
∆2_US_Treas_3m_pm 

z2, ∆WTI_front_mth , ∆Dest_Stocks_Eur , Crude_Stocks_Eur, 
∆USA_Crude_Stocks, ∆USA_Ref_FUT, ∆WTI_Comm_net  

∆OPEC_Spare, USA_Gas_Stocks, 
∆2_US_Treas_3m_pm 

z3, ∆WTI_front_mth , ∆Dest_Stocks_Eur , Crude_Stocks_Eur, 
∆USA_Crude_Stocks, ∆USA_Ref_FUT, ∆WTI_Noncomm_net  

∆OPEC_Spare, USA_Gas_Stocks, 
∆2_US_Treas_3m_pm 

1 lag 

z3, ∆WTI_front_mth , ∆Dest_Stocks_Eur , Crude_Stocks_Eur, 
∆USA_Crude_Stocks, ∆USA_Ref_FUT, ∆WTI_Comm_net  

∆OPEC_Spare, USA_Gas_Stocks, 
∆2_US_Treas_3m_pm 

z1, ∆WTI_front_mth , ∆Dest_Stocks_Eur , Crude_Stocks_Eur, 
∆USA_Crude_Stocks, ∆USA_Ref_FUT, ∆WTI_Noncomm_net   

∆OPEC_Spare, USA_Gas_Stocks, 
∆2_US_Treas_1y_py  

2 lags z1, ∆WTI_front_mth , ∆Dest_Stocks_Eur , Crude_Stocks_Eur, 
∆USA_Crude_Stocks, ∆USA_Ref_FUT, ∆WTI_Comm_net  

∆OPEC_Spare, USA_Gas_Stocks, 
∆2_US_Treas_1y_py  

Note: ∆X denotes 1st difference of X; ∆2_X is the 2nd difference of X. Source: Author´s estimates  
 
ii) for cases when there were endogenous and exogenous variables sharing the same set of information (i.e. 
being redundant), the procedure is straightforward: estimate VARXs combining the non-redundant variables 
(endogenous and exogenous), and the redundant ones (endogenous and exogenous) such that in each model 
we would have only one of each of these variables (one endogenous and one exogenous); choose the model 
with the smallest SIC. The results are shown in table 7.  
 
At this point, it is important to say something about our lag choices. 
 
Number of Lags 
 

In order to determine the appropriate number of lags for each VAR (and block exogeneity tests) in the 
first step of our choice of variables procedure, we employed Schwarz Information Criterion (SIC). For most 
cases SIC suggested 1 lag with the exception of VARs which included 6-month interest rates as an 
endogenous variable. In these cases SIC indicated 2 lags as the best choice.  

But, as a way to capture the dynamics of WTI future markets, we added 1, 2, and 3 lags to those VARs 
for which the block exogeneity tests were performed. The consequences of this choice were really interesting, 
since it allowed different combinations of endogenous and exogenous variables according to the number of 
lags per VAR.23 So, in the following steps, we go on estimating all VARXs for 1, 2, 3, and 4 lags, as shown 
in the tables above.  

As a final word, is important to say that all VARs and VARXs estimated as part of what of this 
subsection satisfied the stability condition. Now, we will turn to the estimation of the VARXs models.  
 
 
 
 
                                                 
23 Our decision to add more lags to the number suggested by Schwarz Criterion can be justified in two ways: i) SIC is well known for 
picking the more parsimonious model (but also consistent for large samples), which in our case may throw away important 
information about the dynamics of future markets; ii) with very few exceptions, crude oil is not a commodity for instant delivery, and 
as such, there are a lot of transactions which take place along the weeks before the pricing of a future contract on a specific day. On 
the other hand, since the use of Akaike Information Criterion (AIC), which tends to suggest overparameterized models, pointed to a 
choice of 5 or 6 lags in most cases, we chose 4 (or 5) as the maximum number of lags to perform block exogeneity tests and to 
estimate the VARXs models (4 lags). We also think that this is the time window when a very significant part of the most important 
transactions (in terms of volume) in the crude oil markets occur.   
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Table 7 – Endogenous/Exogenous Variables Choices for VARXs (II)  
 

 Endogenous Variables Exogenous Variables 

z2, ∆WTI_front_mth , ∆OPEC_Spare, ∆USA_Crude_Stocks, 
USA_Gas_Stocks, ∆USA_Ref_FUT, ∆WTI_Noncomm_net , 
∆2_US_Treas_6m_ps  

∆Dest_Stocks_Eur, 
Crude_Stocks_Eur, 
∆US_Treas_Spread_1y_3m  

z2, ∆WTI_front_mth , ∆OPEC_Spare, ∆USA_Crude_Stocks, 
USA_Gas_Stocks, ∆USA_Ref_FUT, ∆WTI_Comm_net, 
∆2_US_Treas_6m_ps  

∆Dest_Stocks_Eur, 
Crude_Stocks_Eur, 
∆US_Treas_Spread_1y_3m  

z3, ∆WTI_front_mth , ∆OPEC_Spare, ∆USA_Crude_Stocks, 
USA_Gas_Stocks, ∆USA_Ref_FUT, ∆WTI_Noncomm_net, 
∆2_US_Treas_6m_ps 

∆Dest_Stocks_Eur, 
Crude_Stocks_Eur, 
∆US_Treas_Spread_1y_3m  

2 lags 

z3, ∆WTI_front_mth , ∆OPEC_Spare, ∆USA_Crude_Stocks, 
USA_Gas_Stocks, ∆USA_Ref_FUT, ∆WTI_Comm_net , 
US_Treas_6m_ps 

∆Dest_Stocks_Eur, 
Crude_Stocks_Eur, 
∆US_Treas_Spread_1y_3m  

z1, ∆WTI_front_mth, ∆OPEC_Spare, ∆Dest_Stocks_Eur, 
∆USA_Crude_Stocks, USA_Gas_Stocks, ∆USA_Ref_FUT, 
∆2_US_Treas_6m_ps  

Crude_Stocks_Eur, 
∆WTI_Noncomm_net, 
∆US_Treas_Spread_1y_3m   

z1, ∆WTI_front_mth, ∆OPEC_Spare, ∆Dest_Stocks_Eur, 
∆USA_Crude_Stocks, USA_Gas_Stocks, ∆USA_Ref_FUT, 
∆2_US_Treas_6m_ps  

Crude_Stocks_Eur, 
∆WTI_Comm_net , 
∆US_Treas_Spread_1y_3m   

z2, ∆WTI_front_mth, ∆OPEC_Spare, ∆Dest_Stocks_Eur, 
∆USA_Crude_Stocks, USA_Gas_Stocks, ∆USA_Ref_FUT, 
∆2_US_Treas_6m_ps  

Crude_Stocks_Eur, 
∆WTI_Noncomm_net, 
∆US_Treas_Spread_1y_3m   

z2, ∆WTI_front_mth, ∆OPEC_Spare, ∆Dest_Stocks_Eur, 
∆USA_Crude_Stocks, USA_Gas_Stocks, ∆USA_Ref_FUT, 
∆2_US_Treas_6m_ps  

Crude_Stocks_Eur, 
∆WTI_Comm_net, 
∆US_Treas_Spread_1y_3m   

z3, ∆WTI_front_mth, ∆OPEC_Spare, ∆Dest_Stocks_Eur, 
∆USA_Crude_Stocks, USA_Gas_Stocks, ∆USA_Ref_FUT, 
∆2_US_Treas_6m_ps , ∆US_Treas_Spread_1y_3m  

Crude_Stocks_Eur, 
∆WTI_Noncomm_net 

3 lags 

z3, ∆WTI_front_mth, ∆OPEC_Spare, ∆Dest_Stocks_Eur, 
∆USA_Crude_Stocks, USA_Gas_Stocks, ∆USA_Ref_FUT, 
∆2_US_Treas_6m_ps , ∆US_Treas_Spread_1y_3m  

Crude_Stocks_Eur, 
∆WTI_Comm_net 

z1, ∆WTI_front_mth, ∆OPEC_Spare, ∆Dest_Stocks_Eur, 
∆USA_Crude_Stocks, USA_Gas_Stocks, ∆USA_Ref_FUT, 
∆WTI_Noncomm_net,  ∆2_US_Treas_1y_py 

Crude_Stocks_Eur, 
∆US_Treas_Spread_1y_3m 

z1, ∆WTI_front_mth, ∆OPEC_Spare, ∆Dest_Stocks_Eur, 
∆USA_Crude_Stocks, USA_Gas_Stocks, ∆USA_Ref_FUT, 
∆WTI_Comm_net,  ∆2_US_Treas_1y_py  

Crude_Stocks_Eur, 
∆US_Treas_Spread_1y_3m 

z2, ∆WTI_front_mth, ∆OPEC_Spare, ∆Dest_Stocks_Eur, 
∆USA_Crude_Stocks, USA_Gas_Stocks, ∆USA_Ref_FUT, 
∆WTI_Noncomm_net , ∆2_US_Treas_1y_py 

Crude_Stocks_Eur, 
∆US_Treas_Spread_1y_3m 

z2, ∆WTI_front_mth, ∆OPEC_Spare, ∆Dest_Stocks_Eur, 
∆USA_Crude_Stocks, USA_Gas_Stocks, ∆USA_Ref_FUT, 
∆WTI_Comm_net , ∆2_US_Treas_1y_py 

Crude_Stocks_Eur, 
∆US_Treas_Spread_1y_3m 

z3, ∆WTI_front_mth, ∆OPEC_Spare, ∆Dest_Stocks_Eur, 
∆USA_Crude_Stocks, USA_Gas_Stocks, ∆USA_Ref_FUT, 
∆WTI_Noncomm_net , ∆2_US_Treas_3m_pm 

Crude_Stocks_Eur, 
∆US_Treas_Spread_1y_3m 

4 lags 

z3, ∆WTI_front_mth, ∆OPEC_Spare, ∆Dest_Stocks_Eur, 
∆USA_Crude_Stocks, USA_Gas_Stocks, ∆USA_Ref_FUT, 
∆WTI_Comm_net , ∆2_US_Treas_3m_pm  

Crude_Stocks_Eur, 
∆US_Treas_Spread_1y_3m 

Note: ∆X denotes 1st difference of X; ∆2_X is the 2nd difference of X. Source: Author´s estimates  
 
 
4.3. VARXs Analysis 

 
4.3.1. Impulse-Response Functions 

 
In this subsection and in the next (4.3.2) we discuss the results of VARX estimation in terms of 

impulse-response functions and variance decompositions for 1z , 2z , and 3z  for each model. Recall that in 

the previous subsection (4.2), we have determined the sets of endogenous and exogenous variables that are 
part of each VARX model.  
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With this in mind, we have estimated 24 VARXs and have generated an equal number of impulse-
response sets (one function for each endogenous variable) and variance decomposition sets using Cholesky 
decomposition to identify these functions.24 Figures A.1 – A.12 in appendix A present impulse-response 
functions for these VARXs and the corresponding Cholesky decompositions. 

It is also important to notice that each VARX satisfies the stability condition (i.e. all roots of the 
characteristic polynomial are inside the unit circle), which means that impulse-response functions are well 
behaved, decaying to zero after a certain point in time.25  

Due to limited space, we report only the impulse-response functions for PCs (1z , 2z , and 3z ), and 

variance decompositions for PCs and WTI first month contract. Also, since results for ∆WTI_Noncomm_net 
and ∆WTI_Comm_net are quite similar, only the impulse-response functions and variance decompositions for 
the first variable are presented here.26 The discussion which follows takes place regardless of whether PCs´ 
responses to shocks in one or more variables are significant or not (considering a 95% confidence interval). 
This is so because due to the exploratory nature of this work, we choose to analyse all responses of 1z , 2z , 

and 3z  to impulses in the relevant variables in order to better understand the different ways that they may 

affect WTI term structure.27      
 
Z1 (level)  
 

Since our impulse-response functions show that there is no contemporary effect from fundamental 
variables on 1z  ( 2z  or 3z ), all analyses which follow refer to responses from 1z  ( 2z  and 3z ) to past shocks 

(or future responses to present-week shocks, if you always consider the date they occur as the current time).   
If we look to impulse-response functions for 1z  VARXs with one, two, three, and four lags, it is easy to 

see that as we move back in time (i.e. the number of lags in each VARX increases), some variables which 
have little or no effect on 1z  (the level of the futures curve) appear to gain some importance in explaining its 

behavior, while others become less relevant. It happens through a greater impact on 1z  (which can be 
checked by eye) or by inclusion (exclusion) in (from) the set of endogenous variables. A similar picture 
emerges for 2z  and 3z . 

For ∆OPEC_Spare, for example, it is possible to notice its importance in explaining 1z  grows when 

more lags are added to the model. Its major (negative) impact on 1z  occurs at lag 3 (of the response 
functions), regardless as to whether the estimated model has 3 or 4 lags. So, in this case, an increase in OPEC 
spare capacity causes a downward change in the level of WTI future curve ( 1z ), as would be expected.    

A positive change in ∆WTI_front_mth has a positive impact on 1z , which can be seen as evidence that 
the behavior of WTI spot price ‘explains’ part of the WTI futures level, at least in week two (lag 2).28 It 
happens for all models (1, 2, 3, or 4 lags). A similar thing happens to ∆WTI_Noncomm_net (but only for 
models with one or two lags), with this variable being the factor with major importance in the second week. 
But, its impact fades out as we depart from the time when the shock occurs.  

                                                 
24 In the present case, the Cholesky ordering assumes that the first (endogenous) variable is affected by contemporaneous shocks in all 
remaining (endogenous) variables, the second one is affected by (contemporaneous) shocks in the remaining variables less the first 
variable, and so on. It means that matrix S is upper triangular. For a discussion about VAR identification, see Enders (2004), and 
Hamilton (1994),  
25 For more details about this condition, see ibid. 
26 It does not mean that we believe noncommercial agents (or financial speculators) are important in explaining crude oil price 
behavior. Far from this, this question is not in the scope of this work. Personally, the author does not think financial speculation in 
crude oil markets may be a good explanation for crude price levels. A paper of mine about this point regarding the 2003-2007 period 
is Cavalcante (2008).   
27 PC´s responses lags which are statistically significant (at 95%) are identified in the figures presented in appendix A by colored dots. 
28 In terms of impulse-response functions of  ∆WTI_front_mth (not shown here), a positive shock of one standard deviation in 

1z  

leads to the strongest response from ∆WTI_front_mth at lag 1 for all VARXs, with this effect fading out only after lag (week) 5 for 
VARXs with 1 and 2 lags, and after lag (week) 10 for VARXs with 3 and 4 lags. It suggests that the causal relationship between these 
variables may be bidirectional. However, it will become clear in the variance decomposition discussion (subsection 4.3.2) that shocks 
in 

1z  have much stronger effects on ∆WTI_front_mth  than vice-versa.   
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The US Treasury Rates (∆2_US_Treas_6m_ps and ∆2_US_Treas_1y_py) appear to gain some 
importance for VARXs with 3 and 4 lags, when a positive shock in this variable has a negative impact on 1z  
in the first two weeks, and then reverse to a positive one (the biggest in absolute value) during third and 
fourth weeks. From the fifth week on, it starts to decrease. The negative effect of this on 1z  is according to 
what we would expect from this variable (since an increase in interest rates should reduce oil demand, and 
then crude oil prices). But, the eventual positive response of 1z  to a positive impulse in interest rates (as in 
lags 3 and 4 of our impulse-response functions) may look puzzling, unless we interpret this as an increase in 
the cost of carrying a barrel of crude oil into the future.29 

Positive impulses on distillate stocks in Europe (∆Dest_Stocks_Eur), and crude oil stocks (in the USA 
and Europe), all have negative impacts on 1z , as expected, which is clearer as more lags are included in 
VARXs. For refining utilization rate in the US (∆USA_Ref_FUT), the impulse-response functions show a 
consistent picture for week three forward (i.e. a higher products demand increases FUT, which augments 
crude oil demand and the price of the commodity).    

Finally, about motor gasoline, which was the main oil product consumed in the US during 2002-2009, a 
positive shock in its stocks (US_Gas_Stocks) results in a negative response from 1z  for the first four weeks 
(as we should expect), but a positive one after week four – this effect fades out after week 15 (not shown in 
the charts). A possible explanation for this fact may be related to refinery planning, since an increase in 
gasoline stocks in the US usually occurs when its refining sector expands its gasoline output to meet expected 
demand for weeks or months ahead. So, in this case, a planned increase in stocks means higher crude oil 
demand and prices, at least in theory.     
 
Z2 (stepness)    

 
For 2z  VARXs (impulse-response functions for models with 1, 2, 3, and 4 lags), a positive shock in 

∆WTI_front_mth has also the main response from 2z  (steepness) in the second week for all models. But, this 
response decreases fast, getting close to zero from lag 4 onwards. 

Similarly to the 1z  case, a shock in ∆WTI_Noncomm_net is one of the major factors explaining 2z  
responses in week 2 (for models with 1 and 2 lags), with a smaller response in week 3 (and opposite in sign). 
But, since 2z  refers to the steepness of WTI futures curve, a positive response for a positive impulse in a 
variable X, for example, means that the WTI term structure gets flatter (stepper) for contract-months 1 to 4 (5 
to 12) as strong as the response from a given impulse is. So, a positive shock in ∆WTI_Noncomm_net reduces 
the slope of WTI futures curve (or makes it flatter) in week 2 for contract-months 1 to 4, and does the 
opposite in week 3.  

The reason behind it may be that an increase in the noncommercial (or commercial) net positions in 
WTI futures (and options markets) helps to flatten the beginning of the curve (in week 2), since it may reduce 
the timespread (i.e. the difference between two prices along the curve). It can be interpreted as an indicative 
that the market believes (expects) the size of an increase (or decrease) in prices that may happen in the 
months following the first month is getting smaller.30    

A positive impulse in ∆USA_Crude_Stocks results in a positive response from 2z  for lags 2 and 3 for 
all VARXs, with varying degrees of importance. It is probably due to the presence of a contango structure in 
WTI futures markets, as it was the case for at least half of the time (weeks) between 2002 and 2009. But, for 

                                                 
29 To see this point, use the following expression )(*)( tTr

tt eSF −−+= ρµ , where 
tF   is futures price of crude oil at time t for delivery at 

T , 
tS  is the spot price of crude oil at time t, r  is the interest rate, µ  is the storage cost (per barrel), ρ  is the convenience yield, and 

T  is the delivery date. So, an increase in r  requires, by the non-arbitrage condition, an increase in  
tF  (or in 

1z ), coeteris paribus.   
30 According to the definition of timespread given in the text, it is not difficult to see that ),( 32 zzhtimespread = , where 

2z  and 
3z  

are steepness and curvature PCs, with 02 >h  and 03 <h . This is so because the size of timespread does not depend on the level (
1z ) 

of the futures curve. 
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lag 4 we got a negative response for VARXs with 2, 3, and 4 lags.31 Note that Crude_Stocks_Eur  is relevant 
only for a VARX with 1 lag, having a pattern of response similar to ∆USA_Crude_Stocks. 

For ∆USA_Ref_FUT, 2z ´s response is positive in lags 2 through 5 (in most cases) for all models, which 
can be understood with the following reasoning: an increase in FUT (probably due to a higher demand for oil 
products either by final consumers or for storage) leads to a downward (upward) move in price expectations, 
which causes a decrease (an increase) in the slope of crude futures curve for contract-months 1 to 4 (5 to 12). 
A possible explanation for this may be related to the perception that the market is probably well supplied of 
oil products for the near term, but maybe not for more distant months. 32   

In the case of USA_Gas_Stocks, 2z ´s response is negative in lag 2 for all models (in this case, VARXs 
with 2, 3, and 4 lags), but with opposite signs for lag (week) 3 according to the VARX. However, contrary to 
the previous case (1z ), this variable does not seem to be of great relevance in explaining 2z ´s behavior.  

For ∆OPEC_Spare, 2z ´s response is positive for almost all cases for lags 1 through 6, but with small 

absolute values in comparison to other variables. In theory, a positive 2z ´s response from a positive shock in 

∆OPEC_Spare is according to what we should expect, since, by Figure 3 (correlation loadings for WTI), an 
increase in OPEC´s spare capacity leads to a decrease (an increase) in futures curve´s steepness for lags 1 
through 4 (from lag 5 on).  The reasoning here is that a higher spare capacity reduces the risk of a crude 
supply scarcity for a given demand, which causes a downward adjustment in price expectations for months 
following the front month.    

A positive shock in interest rates (∆2_US_Treas_6m_ps and ∆2_US_Treas_1y_py) show mixed results 
(responses) from 2z  (for VARXs with 2, 3, and 4 lags) as we consider a specific lag in a given impulse-

response function. For example, for the VARX with 2 lags, 2z ´s response alternate in sign as we go back in 
time (weeks), being positive for weeks 2, 4, 7 and 8, and negative for week 3, 5, and 6. A similar thing 
happens to VARXs with 3 and 4 lags. 

This evidence should be considered, keeping in mind the correlations loadings for 2z . So, for the 1st, 
2nd, 3rd, and 4th WTI contract months, a positive (negative) response from a positive impulse in interest 
rates tends to reduce (increase) the slope of WTI futures curve for these months. But, for the 5th to 12th 
contract month, a positive shock in ∆2_US_Treas_6m_ps or ∆2_US_Treas_1y_py leads to an opposite 
response from 2z  in comparison to the previous case. The interpretation of these results is the same as for 1z .   
 
Z3 (curvature)  
  

Taking 3z ´s impulse-response functions of VARXs models (with 1, 2, 3, and 4 lags), we see that a 

positive shock (of one standard deviation) in ∆WTI_front_mth results in mixed responses from 3z  (curvature) 

in weeks 1, 2, 3, 4, and 5, regardless of the model for which the response function is analyzed. For example, 
in week 3, the response is positive for models with 2, 3, and 4 lags, and negative for the VARX with 1 lag. 
We have similar cases in weeks 4, 5, and 6 (but not necessarily in the same order), to mention some of them. 

Besides this, we can also notice that the strongest responses (in absolute values) from 3z  to a positive 

shock in ∆WTI_front_mth occur in weeks 2, 3, and 5, for VARXs with 1, 2 and 3, and 4 lags, respectively. 
These responses are negative for the first case and positive for the other cases, all with fast decay to zero after 
lag 5 (exception: VARX with 4 lags). Recalling Figure 3, this evidence can be combined with 3z ’s 

correlation loadings, allowing to conclude that a positive shock in ∆WTI_front_mth results in an increase in 

                                                 
31A contango (backwardation) term structure for crude oil is normally associated with an increase (a decrease) in the level of stocks 
for this commodity. So, since a positive shock in crude stocks in week t results in a positive response from the stepness factor (

2z ) 

two or three weeks later, it can be interpreted as a move “toward backwardation” through flattening the futures curve in the first two 
or three months. This is so because market agents think the crude oil stocks may be far above normal (historical) level for these 
months, but not for following months, which is consistent with 

2z  responses in lags 4 and 5. (see figures 3, and A.5-A.8).   
32 We do not assume here that futures price is an unbiased forecast for spot price in the future. It has been well established in the 
relevant literature that this is not the case for crude oil (and many financial assets). The only thing that can be said about this is that 
futures price may contain relevant information about market expectations for the spot price in the future, and that they usually change 
in the same direction.  
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the curvature of the term structure two weeks after the shock (for contract-months 2 to 7) followed by a 
decrease in it 3 and 5 weeks later (probably, as a way to counterbalance part of the first effect).  

Notice that for WTI contracts from 8th to 12th month, a positive one standard deviation shock in the 
mentioned variable reduces the curvature of the WTI futures curve 2 weeks after it, and augments it 3 and 5 
weeks later.  

In the case of ∆WTI_Noncomm_net, which has the biggest response from 3z  in lag 2 for a positive 

shock in this variable (VARXs with 1, 2, and 4 lags), its negative response can be interpreted in a fashion 
similar to ∆WTI_front_mth: a positive shock leads to an increase in WTI term structure curvature from 2nd to 
7th month, and a reduction in the following months (which augments as closer to the back of this curve one 
gets). It suggests noncommercial (commercial) agents may be taking positions “according to the curve”, 
probably as a way to hedge themselves against unexpected price changes, or simply make profits. On the 
other hand, their positioning in the futures (and options) market certainly reveals relevant information about 
their expectations. Then, according to this view, changes in WTI term structure curvature can be rather a 
consequence of changes in perceptions about the future evolution of market fundamentals rather than 
motivated by pure speculation (see footnote 30 and the related discussion about timespread). 

Responses to shocks in crude oil stocks in Europe (Crude_Stocks_Eur) and in the US 
(∆USA_Crude_Stocks) are opposite in sign at lag 2 for VARX with 1 lag (Crude_Stocks_Eur is not an 
endogenous variable in VARXs with 2, 3, and 4 lags; see table 7), with both decaying to zero after lag (week) 
4 (from lag 3 on, 3z ´s responses to positive shocks in both variables are positive). If you consider Figure 3, 

we have the following: an increase (a positive shock) in ∆USA_Crude_Stocks augments WTI term structure 
curvature (i.e. in terms of a sphere, the plane which covers it become more stretched) at lag 2 (two weeks 
later) for contract-months 2 to 7, doing exactly the opposite in case of a positive shock in Crude_Stocks_Eur 
(for contract-months 8 to 12 the mentioned shock produces the converse result).  

So, in the case of ∆USA_Crude_Stocks, this evidence may be interpreted as a consequence of a 
downward adjustment in the very short-term price expectations due to a higher level of crude stocks, and that 
market agents (at week 3) expect an increase in crude price expectations in the following weeks (so, they 
stock more crude oil). 

In this fashion, we may say that Europe precedes the US, since a positive shock in Crude_Stocks_Eur 
results in a WTI futures curve “less stretched” in all weeks after the shock. It points to the fact that an 
increase (decrease) in crude stocks in Europe may be interpreted (in the US) as a market signal about an 
upward (downward) in crude oil prices in the near future.  

For VARXs with more than 1 lag, all responses in lag 2 for a positive shock in ∆USA_Crude_Stocks 
are negative, and alternate in sign according to the VARX and to the number of weeks (lags) after the shock, 
all responses going to zero after week 8. These cases can be interpreted in a way similar to VARX with 1 lag. 

In terms of ∆OPEC_Spare, impulse-response results for VARXs with 2, 3, and 4 lags show that a 
positive shock in this variable leads to a negative response from 3z  in lag 2, which turns positive or negative 

from lag 3 to 6, 10, and 11 depending on the VARX. From lag 7 to 9, 3z ´s responses are negative for all 

cases and positive after lag 12 (albeit very small) for VARXs with 3 and 4 lags (they are negative for the 
VARX with 2 lags). With exception of lag (week) 2, these somewhat mixed results suggest that WTI term 
structure curvature reacts in different ways to a positive shock in ∆OPEC_Spare according to the time 
horizon one considers (e.g. the number of lags in each VARX).    

For ∆Dest_Stocks_Eur, which is not an endogenous variable in the VARX with 2 lags (table 7), 3z ´s 

responses to a one standard deviation impulse are positive in lags 2 and 3 for all VARXs (1, 3, and 4 lags), 
but are negative (positive) from lag 4 to 11 for VARXs with 3 and 4 lags (for the VARX with 1 lag). In terms 
of WTI term structure, the mentioned shock will cause a decrease in its curvature (term structure) for 
contract-months 2 to 7, 2 and 3 weeks after it happens, having the opposite effect 4 or more weeks later (at 
least in the case of VARXs with 3 and 4 lags). For contract-months 8 to 12, that shock will have the opposite 
effect.  

This can be interpreted in exactly the opposite way we did for the case of  3z ´s response to a shock in 

∆USA_Crude_Stocks. The difference is probably related to the distinct ways crude oil and oil product stocks 
are treated during refinery planning. 

In the case of USA_Gas_Stocks, 3z ´s responses to an impulse in this variable vary according to the 

number of lags one adds to a VARX (2, 3, or 4 lags), showing no clear pattern in terms of sign, except that 
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their impulse-response functions go to zero after lag 9. Since these mixed results may result in different 
interpretations due to distinct views and personal judgments, we prefer to leave it to the reader.  

Responses from 3z  to impulses in ∆USA_Ref_FUT are negative in lag (week) 2 for VARXs with 2, 3, 

and 4 lags (they are positive for the VARX with 1 lag), and positive for lags 3 and 4 for most VARXs 
(exception: lag 4 for the VARX with 4 lags). From lag (week) 6 on, 3z ´s responses are more negative than 

positive, getting close to zero after lag 7. In this case, a negative (positive) response from 3z  to a positive 

shock in ∆USA_Ref_FUT  leads to an increase (decrease) in WTI`s futures curvature for contract-months 2 to 
7, and at the same time to a decrease (increase) for front-month and 8 to 12 contract-months.    

Finally, for ∆2_US_Treas_6m_ps and ∆2_US_Treas_3m_pm, a positive shock in interest rates leads to 
negative responses from 3z  in lag 2 and positive responses in lag 3 for VARXs with 2, 3, and 4 lags. From 

lag 4 on, responses differ in sign depending on the number of lags added to each VARX, but tend to decay to 
zero after lag 7. These results suggest that an increase in interest rates in week t leads to an increase in WTI 
term structure curvature (for contract-months 2 to 7) in week t+2, while one week later (t+3) the response for 
this shock is a decrease in that curvature (these results are the opposite for contract-months 8 to 12). This can 
be interpreted as evidence that, in the very short-term (2 week after the shock), an interest rate increase causes 
a downward adjustment in crude oil price expectations which is stronger for months 3 and 4 than for months 
2, 5, 6, and 7. However, one week later, market agents appear to make upward revisions in their expectations 
about crude oil price.  

In the case of interest rate spreads (∆US_Treas_Spread_1y_3m), which is endogenous only for the 
VARX with 3 lags, a positive shock in ∆US_Treas_Spread_1y_3m brings positive responses from 3z  in lags 

2, 5 to 7, and negative responses for lags 3, 4, and 8 to 11 (being positive after lag 14, which is not shown in 
figure A.11). Despite a relatively strong response in lag 6, the impulse-response function goes to zero after 
lag 4. Since this variable may be seen as an indicator of how tightening the monetary policy can be in the 
short-term in relation to the medium-term, its interpretation is similar to the case of interest rates.   

 
4.3.2. Variance Decomposition 

 
In this subsection we discuss briefly the results of the VARXs in terms of variance decompositions for 

the PCs ( 1z , 2z , and 3z ). As in the case of impulse-response functions, we use Cholesky factorization to 

decompose the variance of each endogenous variable for all VARXs, given a shock in each one of these 
variables.  

For almost all cases, variance decompositions show that the endogenous variables 2z  and 3z  are 

responsible, for the most part, for their own variances (e.g. something between 80 and 100% at lag 20), which 
are also the only significant results (exception: Crude_Stocks_Eur for 2z  in a VARX with 1 lag), considering 
a 95% confidence level for a Chi-Square statistic with 415 degrees of freedom. So, we report here only the 
results for 1z  and ∆WTI_front_mth, which are by far the most interesting of this analysis. (Figures B.1 – B.4 

in appendix B present variance decompositions for 1z  and ∆WTI_front_mth for VARXs with 1, 2, 3, and 4 
lags) 

For example, if you compare figures B.1 and B.2, it is easy to see that an innovation in 1z  has a much 

stronger effect on 1z ´s variance than a shock in ∆WTI_front_mth, regardless the VARX has 1, 2, 3, or 4 lags. 
In fact, an innovation in the first variable accounts for between 76% and 90% at lag 20, leaving the difference 
for the remaining variables (∆WTI_front_mth included).  

When we look to the effect of shocks on  ∆WTI_front_mth (Figures B.3 and B.4), the pattern is 
somewhat similar to the previous case, with something between 67% and 80% of the  ∆WTI_front_mth´s 
variance at lag 20 being explained by an innovation in 1z . In this case, a shock in ∆WTI_front_mth is able to 
explain only 8%-11% of its own variance.     

These apparently striking results can be easily understood if we consider them as evidence that WTI 
term structure has a stronger influence on spot prices (e.g. ∆WTI_front_mth) than our intuition suggests at 
first sight. In fact, since crude oil is not a commodity for instant delivery, it becomes natural to think of crude 
oil markets as a place where most transactions occur considering not current prices, but prices in the future. It 
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suggests that crude oil prices should be observed in the context of futures markets, not alone. This idea is also 
helpful to explain the importance of ∆WTI_front_mth in the impulse-response analyses of subsection 4.3.1.     

 
 

5. Conclusions 
 
In this paper we discussed the different ways oil market fundamentals may affect crude oil pricing in 

the WTI futures market. Using different sets of fundamental variables (which are treated as endogenous or 
exogenous according to the model we estimate), it is shown that, for most cases, changes in the WTI term 
structure in 2002-2009 can be explained by changes in one or more of the aforementioned market 
fundamentals within this period. Also, responses to one standard-deviation impulses for different sets of 
endogenous and exogenous variables show consistent results for most cases. In other cases, an apparent 
inconsistency or puzzling result can be solved by using an alternative explanation (ex. interest rates and the 
cost of carrying). 

In addition, we show that crude oil markets should be analysed considering not a single point in time, 
but the time span around the relevant date when a specific transaction takes place. In other words, since for 
many cases WTI_front_mth was an important variable in explaining the WTI term structure behavior, it 
suggests that crude oil spot price should be observed in the context of futures markets, not alone (crude oil is 
not a commodity for instant delivery!). 

Finally, it is possible to infer from our results that as we bring more information to a model (by adding 
more lags, for example), the dynamics of the relationships among the endogenous/exogenous variables 
changes. It points out to the existence of many different forms market agents may use to combine information 
to generate their expectations about the future. 
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Figure A.1 - Impulse-Response for Z1 (1 lag) Figure A.2 - Impulse-Response for Z1 (2 lags) 
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Figure A.3 - Impulse-Response for Z1 (3 lags) Figure A.4 - Impulse-Response for Z1 (4 lags) 

-2.0000

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

1 2 3 4 5 6 7 8 9 10

Z1 ∆WTI_front_mth ∆OPEC_Spare

∆Dest_Stocks_Eur ∆USA_Crude_Stocks USA_Gas_Stocks

∆USA_Ref_FUT ∆2_US_Treas_6m_ps  

-2.0000

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

1 2 3 4 5 6 7 8 9 10

Z1 ∆WTI_front_mth ∆OPEC_Spare

∆Dest_Stocks_Eur ∆USA_Crude_Stocks USA_Gas_Stocks

∆USA_Ref_FUT ∆WTI_Noncomm_net ∆2_US_Treas_1y_py  
  

Cholesky Ordering: Z1, ∆WTI_front_mth, ∆OPEC_Spare, ∆USA_Crude_Stocks, 
USA_Gas_Stocks, ∆Dest_Stocks_Eur, ∆USA_Ref_FUT, ∆2_US_Treas_6m_ps 

Cholesky Ordering: Z1, ∆WTI_front_mth, ∆OPEC_Spare, ∆USA_Crude_Stocks, 
USA_Gas_Stocks, ∆Dest_Stocks_Eur, ∆USA_Ref_FUT, ∆WTI_Noncomm_net, 
∆2_US_Treas_1y_py 

APPENDIX A  
 

Impulse-Response Functions (Z1, Z2, Z3) 

Note: Colored dots identify the statistically significant lags (at 95%) for each PC response to shocks of 1 standard deviation in a given variable. 
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Figure A.5 - Impulse-Response for Z2 (1 lag) Figure A.6 - Impulse-Response for Z2 (2 lags) 
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Cholesky Ordering: Z2, ∆WTI_front_mth, Crude_Stocks_Eur, ∆USA_Crude_Stocks, 
∆Dest_Stocks_Eur, ∆USA_Ref_FUT, ∆WTI_Noncomm_net 

Cholesky Ordering: Z2, ∆WTI_front_mth, ∆OPEC_Spare, ∆USA_Crude_Stocks, 
USA_Gas_Stocks, ∆USA_Ref_FUT, ∆WTI_Noncomm_net, ∆2_US_Treas_6m_ps 

  
  

Figure A.7 - Impulse-Response for Z2 (3 lags) Figure A.8 - Impulse-Response for Z2 (4 lags) 
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Cholesky Ordering: Z2, ∆WTI_front_mth, ∆OPEC_Spare,  ∆USA_Crude_Stocks, 
USA_Gas_Stocks, ∆Dest_Stocks_Eur, ∆USA_Ref_FUT, ∆2_US_Treas_6m_ps 

Cholesky Ordering: Z2, ∆WTI_front_mth, ∆OPEC_Spare, ∆USA_Crude_Stocks, 
USA_Gas_Stocks, ∆Dest_Stocks_Eur, ∆USA_Ref_FUT, ∆WTI_Noncomm_net, 
∆2_US_Treas_1y_py 

Note: Colored dots identify the statistically significant lags (at 95%) for each PC response to shocks of 1 standard deviation in a given variable. 



 23 

Figure A.9 - Impulse-Response for Z3 (1 lag) Figure A.10 - Impulse-Response for Z3 (2 lags) 
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Cholesky Ordering: Z3, ∆WTI_front_mth, Crude_Stocks_Eur, ∆USA_Crude_Stocks, 
∆Dest_Stocks_Eur, ∆USA_Ref_FUT, ∆WTI_Noncomm_net 

Cholesky Ordering: Z3, ∆WTI_front_mth, ∆OPEC_Spare, ∆USA_Crude_Stocks, 
USA_Gas_Stocks, ∆USA_Ref_FUT, ∆WTI_Noncomm_net, ∆2_US_Treas_6m_ps 

  
  

Figure A.11 - Impulse-Response for Z3 (3 lags) Figure A.12 - Impulse-Response for Z3 (4 lags) 
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Cholesky Ordering: Z3, ∆WTI_front_mth, ∆OPEC_Spare, ∆USA_Crude_Stocks, 
USA_Gas_Stocks, ∆Dest_Stocks_Eur, ∆USA_Ref_FUT,  
∆2_US_Treas_6m_ps,∆US_Treas_Spread_1y_3m 

Cholesky Ordering: Z3, ∆WTI_front_mth, ∆OPEC_Spare, ∆USA_Crude_Stocks, 
USA_Gas_Stocks, ∆Dest_Stocks_Eur, ∆USA_Ref_FUT, ∆WTI_Noncomm_net, 
∆2_US_Treas_3m_pm 

Note: Colored dots identify the statistically significant lags (at 95%) for each PC response to shocks of 1 standard deviation in a given variable. 
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Figure B.1 – Variance Decomposition for Z1 
(Innovation in Z1) 

Figure B.2 - Variance Decomposition for Z1 
(Innovation in ∆WTI_front_mth) 
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Cholesky Orderings: See Appendix A Cholesky Orderings: See Appendix A  
  
  

Figure B.3 - Variance Decomposition for ∆WTI_front_mth 
(Innovation in ∆WTI_front_mth) 

Figure B.4 - Variance Decomposition for ∆WTI_front_mth 
(Innovation in Z1) 

0.00

3.00

6.00

9.00

12.00

1 3 5 7 9 11 13 15 17 19

∆WTI front mth (VARX 1 lags) ∆WTI front_mth (VARX 2 lags)
∆WTI front mth (VARX 3 lags) ∆WTI front mth (VARX 4 lags)  

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 3 5 7 9 11 13 15 17 19

Z1 (VARX 1 lag) Z1 (VARX 2 lags) Z1 (VARX 3 lags) Z1 (VARX 4 lags)
 

  

Cholesky Orderings: See Appendix A  Cholesky Orderings: See Appendix A  

 

APPENDIX B 
 

Variance Decomposition (Z1 & ∆WTI_front_mth)  

Notes: Variance decomposition amounts are expressed in percentages (%). Colored dots identify the statistically significant lags (at 95%) for each variable (Z1 
and ∆WTI_front_mth). Variances are chi-square distributed, with 415 degrees of freedom. 


