MPRA

Munich Personal RePEc Archive

An Analysis of the relationship between

WTI term structure and oil market
fundamentals in 2002-2009

Cavalcante, Mileno

Petrobras S.A., Universidade de Fortaleza

1 August 2010

Online at https://mpra.ub.uni-muenchen.de/30591/
MPRA Paper No. 30591, posted 03 May 2011 12:50 UTC


http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/30591/

An Analysis of the Relationship between WTI Term Sucture and Ol
Market Fundamentals in 2002-2009

Mileno Tavares Cavalcante

Petrobras S.A.
and

Universidade de Fortaleza

2010 IAEE International Conference
Rio de Janeiro, Brazil
6-9 June 2009



An Analysis of the Relationship between WTI Term Sucture and Oil Market Fundamentals
in 2002-200¢

Mileno T. Cavalcanté

Abstract

The main objective of this paper is to analyzelibbavior of the term structure of the WTI futurearket between 2002 and 2009,
period known by a sustained price rise followedalprice slump and again by a new price rise. Taeaelthis goal, we use Principal
Component Analysis (PCA) to decompose WTI futuresepsieries into components which are used to explaies variability (e.g.
changes in its term structure). After it, we tryidentify how changes in oil markets fundamentalsy§ical and financial) may have
contributed to oil futures term structure variahiliThe impact of these variables on WTI term dtite is assessed using impulse-
response functions and variance decomposition sisalyhis work is of interest to market analystsdders, and traders, among
others, because it helps to clarify how changeslimarkets may affect their strategies in theseketa.

JEL Classification: C14; C32; G13; Q49

Keywords. WTI Term Structure; Principal Components AnalySi$ARXs Models; Futures Pricing; Oil
Market Fundamentals

1. Introduction

During the last few years, crude oil futures maskedve attracted a lot of attention from specidlise
media and academics. However, while the first grbap focused most of its attention on the possible
influence of speculation in these markets on cmitlepot pricing, the second one has discussedthtively
broad array of topics, ranging from the mentionebject (Merino & Ortiz (2005)), to segmentationtire
crude oil futures (Lautier (2004a)) and the for¢adscrude oil term structure (Chantziara & Skiadolos
(2008)). In our view, considering the crude oilcpririse between 2004 and 2008, this interest pitpbab
reflects the awareness that crude oil futures ntat@n be a useful tool to access market expecsatibout
prices in the future. For example, for practitianethe term structure of petroleum futures is agagr
importance in terms of risk management and priseadiery.

Within this context, the present work aims to ansthe following questions: i) is it possible todin
and establish a statistical significant relatiopsbetween the crude oil term structure and oil mark
fundamentals?; ii) are the changes in crude oiurég prices consistent with changes in market
fundamentals?; iii) is there any linkage betweeuderoil spot prices and futures prices?; and i@sdihe
way crude oil term structure and market fundamentelate to each other change when more information
becomes available?

In order to try answering these questions, ounaiglvill focus on the West Texas Intermediate (WTI
markets. This choice can be justified by the fdwt tthis is the benchmark for most of the crude oil
transactions that occur between the USA (the biggasonal market in the world for this commodiand
also the most liquid) and crude oil exporters, dedause of the large data availability on fundaalent
variables for this market (the USA).

This paper is structured as follows. After thigaaluction, section two discusses briefly the siaas
and econometric methodology we use in this workm@lg, principal component analysis, and VARX
models). Section three describes the dataset aodsdies the results for stationarity tests fovérables in
this dataset. Section four presents the empiritalyais, including the way we develop our appraactry to
answer the questions put above, the statisticaltsgsnd our interpretation for them. Section foemcludes
this study.

® | would like to thank Fernando Avellar (Petrobrag.y who read and commented on earlier versionthisfwork, and Petrobras
for supporting my participation at the '$3AEE International Conference, held in Rio de JameBrazil, 6-9 June, 2010. Any
remaining errors are my responsability only.

OMsC in Economics, Universidade Federal do Ceara, BEazhail addresses: milenoc@petrobras.com.br,mg@yahoo.com.



2. Principal Component Analysis and VARX Analysis
2.1. Principal Component Analysis

The main objective of Principal Component Analy$t€A) is to explain the systematic behavior of a
given set of observable variables (exy, X, , ..., X,) through a (smaller) set of latent variables. Tecdly
speaking, this method works by means of a transftaom from the original set of random variablestoew
(orthogonal) set which has a covariance matrix whataucture is similar to the original set.

To see this, assume that there are two matrik(es(;[xt1 Xip e xtp], with t =12,...,T ) as the

original set of variables, and which represents the original variables after @ppr transformation (e.g.
PCs, or principal components). Then,

Z=XA (1)

where A, is the matrix which represents the proper tramsétion (orthonormal matrix);Z has
dimension(Txp) .!

If you consider the i-th PCZ ), where A is a column-vector oA (i = ] =12,...,p), we have

z, = XA (2

or zy = XA, z, = XA, ..., Z, = XA_,(each z with dimensionTx1). Notice that matrixA contains

the eigenvectors ofX ‘s covariance matrix (i.eS=E(X' X)), where the variance of i-th principal
component is equal to the i-th eigenvalueXof A, ).

Using the terminology of linear algebra, PCA is piyna change of basis, where th€matrix is re-
expressed in terms of a new (orthonormal) basigwls a linear combination of the original bass, what
would be an appropriate new basig ) for X ? The principle behind this choice is to selgctormalized
directions in ap-dimensional space along which the variance Xn is “maximized” (i.e. the terms
representing covariances are minimized such tlegtllecome zero), with each pair of directions ortrmal
to each other.

These choices are then ranked in the followingifeskfirst, the direction with the highest variance
second, the direction with the second highest magéaand so, on until (in some caspsjlirections are
selected. These are the PCsX0f

In order to achieve this goal, we need two assiomgti) Z must be an orthonormal matrix; ii) the
directions with the largest variances are the rimapbrtant (or most principal). With this in mindhet PCA
objective can be summarized as follows: find amarbrmal matrix A which satisfies (1) such tha “s
covariance matrix is diagonalized. Following thikea, we can write this goal as a variance optinazat
(maximization) problem:

max AT(XTX)A 3)

with a first order condition A* is the i-th vector which satisfies (3))

Y If we use some intuition, we may think of Z and & @xq ) and ( pxq ) matrices, withq < p . This is so if we consider that
most of (or all) variation in the original datasedy be accounted by PCs.

2 Note that o' is a vector which maximizes (3), wity' associated tgy , which is the highest eigenvalue of mat8xfor the first
PC), the second highest eigenvalue of this mafimixtbie second PC), and so on.



(XTX=-A1A =0 (4)

where | ., is an identity matrix,A, (i =12,...,p) is the i-th Lagrange multiplier (eigenvalue)y is a

(pxp
column-vector of A (equal to the i-thX ™ X eigenvector which corresponds ), and O

column-vector.
Another way to write the maximization problem (whldgst order condition is given by (4)) is

(pay 1S @ null

A =arg max Var (XA)
5
st.(A,A)=0, Ok<i ©

where the restrictiorﬁAk : A> =0 indicates thatA"s eigenvectors must be orthogonal in order torasthiat

(3) has nontrivial solutions.
So, theZ “s covariance matrix is given by

A 0 ... 0

; - 0 A .. O
Var(Z)=E(@Z'Z)=E(A'X"X8)=| . "? (6)

0 0 p)

where A, =Var(XA_), A, =Var(XA,), .., A, =Var(XA_,), andCov(z,z,) =0, Ui # h, i.e. PCs
are orthogonal to each other.

2.2. VARX Analysis

We use VAR(X) methodology to achieve two goaldnidetermine the sets of endogenous/exogenous
variables which will enter VARX models using bloekogeneity tests; and ii) after step (i), to estana
VARX models for each one of the aforementioned Betxder to generate impulse-response functioms an
decompose the variance of the endogenous varigbézsh set. These points will be discussed in rdetail
in subsections 4.2 and 4.3.

The VARX methodology, which is used to generatellsg-response functions and decompose the
variance for each set of variables in our analyss, be described as follows: t and W be vectors of
endogenous and exogenous variables, respectiviegn & VARX in reduced (or standard) form for eaeh s
of variables is

Y. =By +BY, +BY, +... + B Y +CW_, +C W, +...+CW,_, + ¥, (7

whereY has dimensio{mxl), B; is (mxm), C is (mxn), W is (nx1) , and W, is a (mx1) vector of error

terms. Note thal< m<r +landn<r suchthatm+n=r +1, with r =# fundamentals.

So, one way to obtain impulse response functiomewsiting equation (7) in its structural form and
using Cholesky decomposition. Also, variance deamsitipn can be obtained through the use of Cholesky
factorization.

% This condition implies that matri& has no null eigenvalue, i.e. it is nonsingulahéwise there would be one or more perfect
linear relationships among the column-vector&ofesulting in a column dimension smaller thaor W =0). So, we would have

n < p PCs. See footnote 1.



3. Description of the Data Set and Stationarity Tes
3.1. Data

In this work, we use weekly data for the followingriables: nominal WTI futures quotes from 1st to
12th month in the New York Mercantile Exchange (NEX); US refining utilization rates; US crude oildan
gasoline inventories; crude oil and diesel/gasniéntories in Europe; OPEC spare capacity; commleacid
noncommercial net positions in WTI futures and @i markets; nominal interest rates for US T-Billhe
data sources are: Bloomberg; US Department of Brn@&lfh-DOE); International Energy Agency (IEA); US
Commodities, Futures, and Trading Commission (CFa6y US Federal Reserve.

The sample spreads from January 2002 to DecemiB8; 20mprising 418 data points (weeks) for each
variable. Figure 1 shows WTI weekly average qudtesthe following maturities %I, 6", and 13" month
(CL1, CL6, CL12) for the time interval mentionedoab. The time path for other maturities is very mlike
those depicted in Figure 1.

Chart 1 — WTI Future Contract Prices (1st, 6th, 12h month) — Weekly Averages: January/2002-

December/2009
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Source: Bloomberg

At a glance, it is easy to see that time pathsCibt, CL6, and CL12 are very similar for the time
period considered, with small differences amongntipeobably due to their volatilities (standard d¢ians)
- as maturity increases, liquidity decreases, avldtiity increases (see Table 1). Another way dokl at
Figure 1 is to fixt (choosing a specific week), and draw a vertigs from fixedt (bottom) to top, and then
read the quotes for each contract — you've gotieatare for WTI term structure in any given week.

Table 1 shows the main descriptive statistics fan Wtures contracts.

* The weekly quotes for the first 12 months of Wilitures contracts are means of daily closing prioeshese contracts in each
corresponding week. In order to obtain weekly dedan monthly data (OPEC spare capacity, crude dil diesel/gasoil stocks in
Europe), we used moving averages centered at eaek for all months from January 2002 to Decemb&92@&ach month was
transformed in its equivalent number of weeks.tBe desired data point for each week is the wetbhterage between the previous
and the following month, where the weight of a giveonth is directly proportional to its proximity & specific week.

® We assume that each market agent works with histvarinflation expectation (which is expected toitreariant to each agent’s
choices), regardless of whether he or she is campaither different portfolio alternatives or coating the effective cost of hedging
a given amount of barrels of crude oil. So, in feper all price and interest rate variables arainal rather than real, which means
that inflation market expectations are only imglicconsidered in our modeling.



Table 1 — Descriptive Statistics for WTI Futures Caotracts

WTI (weekly prices, level)

CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8 CL9 CL10 CL11 CL12
Mean 57.031 57.403 57.609 57.703 57.744 57.756 57.7437167 57.681 57.641 57.598 57.554

Sgl‘:;‘é‘:‘ 25738 25.825 25974 26.136 26.299 26.452 26.5917126 26.817 26.908 26.990 27.065

Kurtosis 0.795 0.719 0.636 0560 0.491 0.427 0.370 0.317 660.20.219 0.175 0.133
Skewness 0.946 0.886 0.834 0.791 0.754 0.722 0.694 0.669 460.6 0.625 0.605 0.588

Note: CLp (p = 1,2,...,12) denotes the WTI futures contract which expireshat beginning of j-th month. Source:
Author’s estimates from Bloomberg data

Finally, it is important to mention what our eyemnnot ignore: Figure 1 suggests that WTI futures
prices may not be stationary, which takes us tothé subsection of this work.

3.2. Stationarity and Unit Root Tests

In this subsection we test for stationarity and ghesence of unit roots for all data used in thiskuw
The idea of performing both tests is to try to a@van inappropriate choice when deciding to difféeta or
not a series due to possible inconsistencies betwee results of these tests. So, if a given véejadifter
taking its nth differencer{= 0,,2), is considered stationary according to statiapgkPSS) and unit root

(ADF) tests, we can conclude there is no ambigiegarding the number of differences one must take t
make this variable stationatylhe problem occurs when these tests give contmglicesults. This point will
be discussed in what follows when considering ¢isé riesults for our dataset.

It is important to say that, despite the usual weébthogy suggestion to standardize all series from a
dataset before estimating PCs, in this paper weta@Gbantziara & Skiadopoulos (2008) approach, who
worked with daily changes (first differences) of WBrent, motor gasoline and heating oil future tcacts’

Also, to obtain valid PC estimates, the futuresticmts series must be (weakly) stationary, which
means that they have to have constant mean anel veiance (i.e. th& covariance matrix must be constant
for any g).s If this condition is not met wheh — oo, the maximization problem in (2) will not have a
solution:

Saying this, we now turn our attention to the rissaf the tests for stationarity (KPSS) and unitro
(Augmented Dickey-Fueller (ADF)), which are showntables 2 and 3. The fundamental variables are
defined in the following way: OPEC spare capad®PEC_Spare)™, crude oil commercial stocks in Europe
(Crude_Stocks Eur) and in the USWYSA Crude Stocks), US gasoline stock$JGA Gas Socks), gasoil and
diesel stocks in Europe Dést Socks Eur), US refinery capacity utilization 4-weeks average
(USA_Ref_FUT), commercial WWTI_Comm_net) and noncommerciaM{TI_Noncomm net) net positions in
crude oil (WTI) futures and options markets (NYMEX)terest rates (T-Bills) from the Federal Reserve
(USA) for varying maturitiesS Treas 1m pm, US Treas 3m pm, US Treas 3m pq, US Treas 6m ps,

US Treas 1y py), and interest rates spreads between differentuntias US Treas Spread 6m 1m,
US_Trlczaas_Soread_ly_Sm).11 This set also includes a proxy for WTI spot prige. WTI_front_mth or
CL1).

® We do not make cointegration tests here becausevikbecome evident in the present subsectioth mnsubsection 4.1, all sets of
variables included in each VAR in the endogeneityg@neity tests and in the estimated VARXs are camppdy series with
different orders of integration (i.e.(0),1 (1), and | (2)). In this situation, as Enders (2004) points aaicording to Engle and
Granger’s original definition of cointegration, tifo variables are integrated of different ordéesytcannot be cointegrated” (p. 322-
323). Consequently, it is preferable to estimateMAR(X)s models only after taking the number of difinces necessary to make
the relevant series stationary.

! Manly (2008) and Tsay (2005) are examples of thditional methodology.

8 An additional condition for weak stationarity inig case is that th& s cross covariance matrix must be dependent dnilzeo
lag/lead between two variables ity andt,, for Ot,,t,, t, # t, (i.e. their covariance is time-invariant).

°To see this, recall that (5) is equivalent to (3).

1 opEC Spare Capacity refers to OPEC 12 + Iraq (i.eerfdg Angola, Ecuador, Indonesia, Iran, Kuwait, yldab Nigeria, Qatar,
Saudi Arabia, United Arab Emirates, Venezuela, laaq]).

1 Note thatlm denotes T-Bill at 1-month maturity, 3m T-Bill an®nth maturity, 6m T-Bill at 6-month maturity, adg T-Bill at
1-year maturity. Also, pm refers to monthly rateg,to quarterly rates, ps to semestral rates, grtd pearly rates. For interest rate
spreads, 6m_1m is the spread between 6-month amzhik T-Bills; 1y _3m is the spread between 1-yearZumonth T-Bills. These



Table 2 — Stationarity/Unit Root Tests Results (WTIFutures Contracts)

Variable (Contract)  Stationary in Test”) p-value (KPSS; ADF)") Specification
CL1 1st difference ADF, KPSS > 0.05; 0.0002 Constant, no time trend
CL2 1st difference ADF, KPSS > 0.05; 0.0002 Constant, no time trend
CL3 1st difference ADF, KPSS > 0.05; 0.0002 Constant, no time trend
CcL4 1st difference ADF, KPSS > 0.05; 0.0002 Constant, no time trend
CL5 1st difference ADF, KPSS > 0.05; 0.0001 Constant, no time trend
CL6 1st difference ADF, KPSS > 0.05; 0.0001 Constant, no time trend
CL7 1st difference ADF, KPSS > 0.05; 0.0001 Constant, no time trend
CL8 1st difference ADF, KPSS > 0.05; 0.0001 Constant, no time trend
CL9 1st difference ADF, KPSS > 0.05; 0.0001 Constant, no time trend
CL10 1st difference ADF, KPSS > 0.05; 0.0001 Constant, no time trend
CL11 1st difference ADF, KPSS > 0.05; 0.0001 Constant, no time trend
CL12 1st difference ADF, KPSS > 0.05; 0.0001 Constant, no time trend

Notes: CLp (p = 1,2,...,12) denotes the WTI futures contract which expirethatbeginning of j-th month; total number
of observations: 418 (level); (*) ADF is the Augnted Dickey-Fueller Test for unit root (Hy, is 1 (1)), KPSS is the

Kwiatkowski-Phillips-Schmidt-Shin test for statiaitg (HO:Y, is stationary), and JCH is the Joint Confirmation

Hypothesis for ADF and KPSS tests (see CarrionvieStre et al. (2001) andgktowski & Welfe (2004)); (**) p-value is
the significance level in the ADF (KPSS) test nseeg to (not) reject HO; for JCH, p-value refersctitical values for the
rejection of the null hypothesis (joint confirmatidiypothesis) of unit root (seegitowski & Welfe (2004)). Source:

Author’s estimates

Table 3 — Stationarity/Unit Root Tests Results (Fudamentals)

Variable Stationary in Test® p-value (KPSS; ADF)™" Specification
WTI_front_mth (CL1) 1st difference  ADF, KPSS >0.05; 0.0002 Constant, no time trend
OPEC_Spare 1st difference ADF, KPSS > 0.05; 0.0000 Constant, no time trend
Dest_Stocks_Eur 1st difference ADF, KPSS >0.05; 0.0000 Constant, no time trend
Crude_Stocks_Eur Level JCH 0.05 Constant, no time trend
USA Crude_Stocks 1st difference ADF, KPSS > 0.05; 0.0000 Constant, no time trend
USA Gas_ Stocks Level ADF, KPSS > 0.05; 0.0000 Constant, no time trend
US;_Ref__FUT 1st difference ADF, KPSS > 0.05; 0.0000 Constant, no time trend
WTI_Comm_net 1st difference JCH 0.01 Constant, no time trend
WTI_Noncomm_net 1st difference JCH 0.01 Constant, no time trend
US_Treas_1m_pm 2nd difference JCH 0.01 Constant, no time trend
US_Treas_3m_pq 2nd difference JCH 0.01 Constant, no time trend
US_Treas_6m_ps 2nd difference JCH 0.01 Constant, no time trend
US_Treas_1y py 2nd difference JCH 0.01 Constant, no time trend
US_Treas_3m_pm 2nd difference JCH 0.01 Constant, no time trend
US_Treas_Spread 6m 1m 1st difference ADF, KPSS > 0.05; 0.0000 Constant, no time trend
US Treas Spread 1y 3m 1st difference JCH 0.01 Constant, no time trend

Notes: Total number of observations: 418 (levef),ADF is the Augmented Dickey-Fueller Test for timpot (HO:Y, is

I 1)), KPSS is the Kwiatkowski-Phillips-Schmidt-Shirstefor stationarity (HOY, is stationary), and JCH is the Joint

Confirmation Hypothesis for ADF and KPSS tests (Seerion-i-Silvestre et al. (2001) anc;towski & Welfe (2004));
(**) p-value is the significance level in the ADRKRSS) test necessary to (not) reject HO; for JCMalpe refers to critical
values for the rejection of the null hypothesisnjaconfirmation hypothesis) of unit root (seetfowski & Welfe (2004)).

Source: Author’s estimates

spreads were calculated using the following form@pread = (a+ it)/(l + i,-)) -1, whereit is the interest rate of a bond

with maturity at t, andj is the interest rate of a bond with maturity atith t > j .

12 The reason for inclusion of a WTI spot price praxyhe set of fundamentals will become clear later.



When performing ADF tests for the presence of wits in one or more series from our dataset, we
follow Patterson (2000) procedure, who suggestsaha must first find the number of unit roots lmegng

with the alternative hypothesis HY, ~ | (2), and then take the appropriate number of diffezerio make
them stationary, if necessary.Also, since the ADF test has low power for caséemwthe coefficient
y=(¢-1)of y_, in the test equation is such tha|@-1 <1 but |p-1=0, this procedure has the

advantage of reducing the probability of occurreoicipe 1l error.

With this in mind, we can see in table 2 that thipdthesis of nonstationarity (alternative hypothési
KPSS test; null hypothesis in the ADF test) is atgd for all contract-months of WTI futures under
consideration only when these series are takerirsh differences. Table 3, on the other hand, shaws
different picture, with few variables being station in levels, some variables being stationary onlfirst
differences, while others only when taken in secdiffitrences. Also it is possible to see that sahéhe
results shown in table 3 rely on KPSS and ADF tesksle others depend on what is known as ADF-KPSS
test of joint confirmation hypothesis of unit rabenceforth JCH test, or simply JCH).This is so because
the results of KPSS and ADF tests were conflictiog some fundamental variable€r(ide Socks Eur,
WTI_Comm_net, WTI_Noncomm_net, US Treas 1m pm, US Treas 3m pq, US Treas 6m ps, US Treas 1y py,

US Treas 3m pm, andUS Treas Spread_ly 3m), leading to ambiguity when deciding the appraerisumber
of differences to be taken to make them stationary.

The approach suggested in the literature to oveecthns kind of problem [Charemza & Syczewska
(1998), Carrion-i-Silvestre et al. (2001), anebkowski & Welfe (2004)], is to test a joint hypotisg for the
presence of unit root (HO) when the ADF and KPS$stare applied simultaneously (JCH). So, to clieck
the JCH is rejected for a given variable, we worlkatth asymptotical approximations for the criticalues
of ADF and KPSS tests statistics estimated bigtéwski & Welfe (2004) using Monte Carlo simulath

As one can conclude from table 3, this method althre rejection of the nonstationarity hypothesis
(i.e. JCH) for all variables whose ADF and KPSS3stessults were conflicting, once these seriedaden in
level, in first or second differences, when appiaipt

Finally, in terms of the previous studies, sometltd results of this subsection are in line with
Chantziara & Skiadopoulos (2008), who performed Afebts for WTI futures contracts (CL1, CL2, ...,
CL9) for daily data from January 1993 to Decem@03 Their results showed these series were staion
only when taken in first differences.

4. Empirical Analysis
4.1. Principal Components Estimation

As pointed out in subsection 3.2, to obtain valtineates for principal components from a databet, t
variables included in this set must be stationatyich in our case justify the use of first diffeces of WTI
futures quotes (recall the results in Table 2). &ter taking the first difference for WTI first bntract
months series, we estimated the principal comparfentthis data, using weekly observations fromuday
2002 to December 2009 (418 data points (weeksdoh series}®*’

13 In other words, Patterson (2000) suggests invgttie usual ADF test approach, which works firstalting if y. is | (1) . In the
case under consideration in the text, the null bypsis isHOQ: y,~ 1), which does not make sense for economic time sesigce

most of them become stationary when taken in seddfetences (i.e. the rate of change of the rétehange). So, it is expected to
rejectHO in the first round of ADF tests.

% The joint confirmation hypothesis of unit root (JCid)defined taking a joint probability density fiion of the KPSS and ADF
tests statistics conditional on the direct equivede between their test hypotheses. For more desaits Charemza & Syczewska
(1998) and Carrion-i-Silvestre et al. (2001).

15 Kebtowski & Welfe (2004) estimated approximations fthe asymptotical critical values for the JCH testthe following joint
probabilities: 0.85, 0.90, 0.95, 0.975, and 0.99.

16 QQ-plot analysis of the first differences of lstfiZontract-month quotes suggest that these shaes univariate t-Student
distributions with 3 degrees of freedom. Notwitinstimg, it does not necessarily mean that theseabi®s have a t-Student
multivariate distribution. See Meucci (2005), p. 79

" Some authors point out that if th¥ variables are not normally distributed, PCA may pooperly identify the original
independent variables (e.g. the first PC may noesearily reflect the direction with the first higheariance, etc.). However, in this
work, we rely on Jolliffe (2002) and Dudszki et al. (1975), who say normality is not a neaeg assumption for the multivariate



Table 4 presents the results of principal compoaaatysis (PCA) in terms of variance and cumulative
variance explained by each PC, including also ssjpas R-squared (see table 4°s note for dethilgire 2
shows the principal components (PCs) obtained esopd@C analysis. Results in Table 4 indicate that
first three PCs (considering a maximum theoretfasibility of 12 PCs p =12)) explain 100% of the

variance of the weekly changes in WTI futures gsiotié also shows that the first Pz | explains
approximately 98% of this variance, while the setand third PCsZ%, and z,, respectively) appear to have

a marginal role in explaining WTI weekly changesiaace. Descriptive statistics for the first thi&@1 PCs
(z,, z,, and z,) are shown in Table 5.

Table 4 ~WTI Term Structure Variance Explained by RCs and PCs Fit (%)

WTI Total Explained Variance PCs Fit to Data

Cumulative Variance Variance Explained : )

PCs Explained by Each PC Regressions R-Squareﬁ
Z1 97.9 97.9 Minimum 99.86
Z2 99.7 18 Median 99.98
Z3 100.0 0.3 Maximum 99.99

Note: (*) Regressions R-squared refer to the coiefits of determination (R2) for linear
regressions between each WTI contract-month anidesn d°C. The correlation loadings for
each PC are the estimated slope coefficients oéttezgessions. Source: Author’s estimates

Figure 2 — WTI Principal Components: January/2002-[@2cember/2009

80.00 10.00
—Z1—272 Z3
60.00 - 5.00
W WY I\L‘A bt A Al ‘Ml A“ VTP t-l‘" "MAMW!M“M‘M M ol
40.00 -wWARA W EATRTE VRN AL AR db . ! M- 0.00
sk T M LAL N T | |" ,'M W
20.00 - -5.00
0.00 | ‘ - -10.00
-20.00 - -15.00
Z1 (left scale); Z2 and Z3 (right scale)
-40.00 ~ P < o © ~ o > -20.00
8808038823335 88308883505085835338383
OO0 O0O0CO00090O0O0O00CCO0O009O0009O00O09O0O0O0O9O0O0 0o
gogdagagdagagdagagdagagdaadagdadaaagdaad
ddggdddgdddodddodddoddodggdddogdds

Source: Author’s estimates

distribution of variables in theX matrix. In particular, according to Jolliffe (2002PCA can be viewed as a descriptive technique,
which means that many of its properties and apjtica have no need for explicit distributional asgtions. However, in some
cases, it is also possible to hypothesize tkahas a multivariate elliptical distribution (of vefi the multivariate normal and the
multivariate t-Student are special cases). For rdetails, see Jolliffe (2002), p 394-395.



Table 5 — WTI PCs Descriptive Statistics

PCs Statistics
Standard

Mean o Kurtosis Skewness
Deviation
Z1 0.503 8.378 3.341 -0.593
22 0.032 1.148 9.608 -0.935
Z3 0.012 0.414 7.789 0.715

Source: Author’s estimates

When interpreting WTI principal components we fallbitterman & Scheinkman (1991), who suggest
that the first three PCs (i.¢,, z,, and z;), should be seen as indicators of legttepnessaand curvaturef
the term structure, respectively. In this fashithrg 1st PC explains vertical changes in the futarese,
while the 2nd and 3rd PCs explain changes in madgines (i.e. from contango to backwardation and-v

versa). Following this argument, the 3rd PC can hksseen as a factor which is linked to changéstimes
market volatility®

Figure 3 shows the correlation loadings obtained dach PC ¢, z,, and z;), which are the

components of each eigenvecty (i = 123) of matrix A in (1). Thea, element of eigenvectoA
(p=12,...12) is the weight that the price of pth contract nhoint WTI futures market has in the ith PC.

Figure 3 — Correlation Loadings for WTI
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So, according to the proposed interpretation ferMAT| correlation loadingsz, can be seen as a factor
which causes parallel shifts and in the same dimedh the WTI term structure (1st — 12th monthEhe
second PC Z,) causes changes in one direction for contracts s¥ibrter maturity (i.e.*1— 4" months), and

at the same time, changes in the opposite direftiosontracts with longer maturities"{5 12" months).
This is clearly the factor responsible for marlegime changes (from contango to backwardation vased

'8 Eor more details, see Litterman & Scheinkam (1991 Litterman et al. (1991).
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versa). Finally, the curvature factor,() is responsible for shifts in the futures curveoire direction for the

first contract-month and contracts after tffenfonth, while it does exactly the opposite f8t-2 7" months.
This is so because it probably reflects the restiip between this factor and the greater impawgbtatility
on first month than on last months 101", 12" months) of the term structuré.

Also, it is important to say that, generally speakithe results of this subsection are consistetht w
previous works which applied PCA to the term stutetof crude oil futures markets [Tolmasky & Hindan
(2002), Lautier (2004b), Chantziara & Skiadopoy(2308)].

4.2. Block Exogeinety Tests

In this subsection we determine the sets of endmgeand exogenous variables that will enter VARX
estimation, impulse-response and variance decotosginalysis. As pointed out in the beginning lukt
work, to understand how changes in oil market fomelstals have affected WTI term structure in 200@20

(here represented by, z,, and z,), we will use impulse-response and variance deositipn analysis to
assess the different ways it happens. This analyBibe carried out in the next subsection.

Endogenous/Exogenous Variables

Working with all possible combinations of endogenmariables, after differencing some of them to
achieve stationarity (see subsection 3.2), we esticha total of 168 VARSs (= 7 x 6 x4) and perforrbémtk
exogeneity tests for each VAR.In this first instanceall variables were treated as endogenous. Consigleri
a p-value of 0.05, the results of these tests weeel as a criterion for inclusion/exclusion of ghtes in the
lth VAR (I =i X s x k,wherei =123; s=12;andk = 1,234).*

The variables excluded in the block exogeneitystestre included in these VARs as exogenous ones
and as so used to form VARX models, which in trst &ep are the models estimated and which generate
impulse-response functions and variance decompositi

But, since in some cases our block exogeneity sésiwed that more than one variable (endogenous or
exogenous) with the same kind of information carinotuded in a VARX, we have to use some critetion
be parsimonious and avoid redundancy among thahies included in these modélsSo, for each set
(combination) of variables, we proceeded in thiofaing way:

i) for cases when there were only exogenous vasabvhich were redundant, we took the lowest (jgint)
values for each Granger equation in the block exeige tests (where these variables were dependent,
caused by the other variables) choosing those iegsatvariables) which have at least one explagator
variable with a p-value smaller or equal to 0.05ef, we estimated a VARX for each one of those
‘dependent’ variables, which also included the geth@us variables previously determined, and the-(no

19 Litterman et al. (1991) suggest that this patterthe consequence of the transitory nature oftVityachanges, since it follows a
mean reverting process. The shape of correlatiadifhgs curve forz, supports this view, given that a change in WTI hshth

quote (assumingvz, # 0 ) will be bigger than changes in the back of theres curve.

2 n  this step, the number of ways we can combinee thendogenous variables is given by

(#sets of core variables)x(#net lentgh variables)x(#int erest rate variables) for each PC, considering

only one lag choice (1 or 2 or 3 or 4). If the fae are working with 3 PCs and four choices forhenber of lags is considered,
then the previous result becomes

(#sets of core variables)x(#net lentgh variables)x(#interest rate variables)x3x4.

We define the core variables as those which cabhaadrbitrarily excluded from any VAR (i.aAWTI_front_mth, AOPEC_Spare,
Crude_Stocks_Eur, ADest_Stocks Eur, AUSA _Crude_Stocks, USA Gas Stocks, AUSA Ref FUT); then
#sets of core variables =1. Net length refers to noncommercial and noncomiakeret positions, and interest rates to

themselves (including spreads). With this in miwd,get the number 168.
21 Notice that i index refers to the PCs, s index ® tbncommercial and commercial variables, and kxrtd the number of lags
used to estimate each VAR. So, the number of VAR@Qdels which will be estimated is & 3x2x4) .

221 this work, we say that two variablqs(i,xj), izj,are redundant if the coefficient of correlaticetvieeen then”(pij) is equal

or greater than 0.6. In terms of information steIIs,QXi be the information set included i)qi , and Q, be its complement which
may be part of, sayx with Q. nQ, =0 Then,pij 20=Q, nQ, #z0- Namely, we have here three sets of these vasiable
WTI_Noncomm_net andWTI_Comm _net; interest rates; and interest rates spreads.
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redundant) exogenous variables; compared their &zhimformation Criterion (SIC), and picked the rabd
with the smallest SIC. This procedure results eftillowing sets (by PC and by number of lags)

Table 6 — Endogenous/Exogenous Variables Choices f#0ARXs (1)

Endogenous Variables Exogenous Variables

z1, AWTI_front_mth ,ADest_Stocks_Eur , Crude_Stocks_Eur, AOPEC_Spare, USA_Gas_Stocks,
AUSA Crude_Stocks\USA Ref FUTAWTI_Noncomm_net| A2 _US Treas 3m_pm

23, AWTI_front_mth ,ADest_Stocks_Eur , Crude_Stocks_Eur, AOPEC_Spare, USA_Gas_Stocks,
AUSA _Crude_StocksA\USA_Ref FUTAWTI_Comm_net A2_US Treas 3m pm

Z,, AWTI_front_mth ,ADest_Stocks_Eur , Crude_Stocks_Eur, AOPEC_Spare, USA_Gas_Stocks,
AUSA_Crude_Stocks\USA_Ref FUTAWTI_Noncomm_net| A2 US Treas 3m pm

1lag Z,, AWTI_front_mth ,ADest_Stocks_Eur , Crude_Stocks_Eur, AOPEC_Spare, USA_Gas_Stocks,
AUSA Crude_StocksA\USA Ref FUT AWTI_Comm_net A2_US Treas 3m pm

z3, AWTI_front_mth ,ADest_Stocks_Eur , Crude_Stocks_Eur, AOPEC_Spare, USA_Gas_Stocks,
AUSA_Crude_Stocks\USA_Ref FUTAWTI_Noncomm_net| A2 US Treas 3m pm

z3, AWTI_front_mth ,ADest_Stocks_Eur , Crude_Stocks_Eur, AOPEC_Spare, USA_Gas_Stocks,
AUSA_Crude_Stocks\USA_Ref FUTAWTI_Comm_net A2 _US Treas 3m pm
z;, AWTI_front_mth ,ADest_Stocks_Eur , Crude_Stocks_Eur, AOPEC_Spare, USA_Gas_Stocks,
AUSA Crude_Stocks\USA Ref FUTAWTI_Noncomm_net| A2 US Treas 1y py
2 lags z;, AWTI_front_mth ,ADest_Stocks_Eur , Crude_Stocks_Eur, AOPEC_Spare, USA_Gas_Stocks,
AUSA Crude Stock\USA Ref FUTAWTI Comm net A2 US Treas 1y py
Note: AX denotes 1st difference of X2 X is the 2nd difference of X. Source: Author sreates

i) for cases when there were endogenous and erogevariables sharing the same set of informatien (
being redundant), the procedure is straightforwastimate VARXs combining the non-redundant vagabl
(endogenous and exogenous)d the redundant ones (endogenous and exogenaisjhat in each model

we would have only one of each of these variales endogenous and one exogenous); choose the model
with the smallest SIC. The results are shown itetdb

At this point, it is important to say something abour lag choices.

Number of Lags

In order to determine the appropriate number of fag each VAR (and block exogeneity tests) in the
first step of our choice of variables procedure,emgployed Schwarz Information Criterion (SIC). Foost
cases SIC suggested 1 lag with the exception of & ARich included 6-month interest rates as an
endogenous variable. In these cases SIC indicategs2as the best choice.

But, as a way to capture the dynamics of WTI futueekets, we added 1, 2, and 3 lags to those VARSs
for which the block exogeneity tests were perfornidte consequences of this choice were reallyéastary,
since it allowed different combinations of endogemand exogenous variables according to the nuofber
lags per VAR So, in the following steps, we go on estimatidgv#iRXs for 1, 2, 3, and 4 lags, as shown
in the tables above.

As a final word, is important to say that all VARed VARXs estimated as part of what of this
subsection satisfied the stability condition. Newe, will turn to the estimation of the VARXs models.

23 Our decision to add more lags to the number sugdést Schwarz Criterion can be justified in two way$IC is well known for
picking the more parsimonious model (but also cimsi for large samples), which in our case magpwhaway important
information about the dynamics of future markejsyith very few exceptions, crude oil is not a aondity for instant delivery, and
as such, there are a lot of transactions which péé&ee along the weeks before the pricing of arbuttontract on a specific day. On
the other hand, since the use of Akaike Informat@uiterion (AIC), which tends to suggest overparamiedéel models, pointed to a
choice of 5 or 6 lags in most cases, we chose &)@s the maximum number of lags to perform blegkgeneity tests and to
estimate the VARXs models (4 lags). We also thirdt this is the time window when a very significgatt of the most important
transactions (in terms of volume) in the crudenmdirkets occur.
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Table 7 — Endogenous/Exogenous Variables Choices MARXs (11)

Endogenous Variables

Exogenous Variables

Z,, AWTI_front_mth ,AOPEC_SpareAUSA_Crude_Stocks,
USA_Gas_Stocks\USA_Ref FUTAWTI_Noncomm_net,
A2 _US Treas 6m_ps

ADest_Stocks_Eur,
Crude_Stocks_Eur,
AUS Treas Spread 1y 3m

Z,, AWTI_front_mth ,AOPEC_SpareAUSA_Crude_Stocks,
USA_Gas_Stocks\USA_Ref FUTAWTI_Comm_net,
A2_US Treas 6m_ps

ADest_Stocks_Eur,
Crude_Stocks_Eur,
AUS Treas_Spread 1y 3m

2 lags zs, AWTI_front_mth ,AOPEC_Spare\USA_Crude_Stocks, | ADest_Stocks_Eur,
USA_Gas_Stocks\USA_Ref FUTAWTI_Noncomm_net, | Crude_Stocks_Eur,
A2_US_Treas_6m_ps AUS_Treas_Spread_1y 3m
Z3, AWTI_front_mth ,AOPEC_SpareAUSA_Crude_Stocks, | ADest_Stocks_Eur,
USA_Gas_Stocks\USA_Ref FUTAWTI_Comm_net, Crude_Stocks_Eur,
US_Treas 6m_ps AUS Treas Spread 1y 3m
z1, AWTI_front_mth,AOPEC_SpareADest_Stocks_Eur, Crude_Stocks_Eur,
AUSA_Crude_Stocks, USA_Gas_StockEISA_Ref FUT, AWTI_Noncomm_net,
A2_US_Treas_6m_ps AUS_Treas_Spread_1y 3m
z1, AWTI_front_mth,AOPEC_SpareADest_Stocks_Eur, Crude_Stocks_Eur,
AUSA_Crude_Stocks, USA_Gas_StockEISA_Ref FUT, AWTI_Comm_net ,
A2_US _Treas_6m_ps AUS_Treas_Spread_1y 3m
Z,, AWTI_front_mth,AOPEC_SpareADest_Stocks_Eur, Crude_Stocks_Eur,
AUSA_Crude_Stocks, USA_Gas_StockbISA Ref FUT, AWTI_Noncomm_net,

3] A2_US_Treas_6m_ps AUS Treas_Spread_1y 3m

ags Z,, AWTI_front_mth,AOPEC_SpareADest_Stocks_Eur, Crude_Stocks_Eur,

AUSA_Crude_Stocks, USA_Gas_StockEISA_Ref FUT, AWTI_Comm_net,
A2_US_Treas_6m_ps AUS_Treas_Spread_1y 3m
Z3, AWTI_front_mth,AOPEC_SpareADest_Stocks_Eur,
AUSA_Crude_Stocks, USA_Gas_Stock&lSA_Ref FUT, | Crude_Stocks_Eur,
A2_US Treas _6m_ps\US Treas Spread 1y 3m AWTI_Noncomm_net
Z3, AWTI_front_mth,AOPEC_SpareADest_Stocks_Eur,
AUSA_Crude_Stocks, USA_Gas_StockslSA_Ref FUT, | Crude_Stocks_Eur,
A2 _US_Treas 6m ps\US Treas Spread 1y 3m AWTI_Comm_net
Z1, AWTIL_front_mth,AOPEC_SpareADest_Stocks_Eur,
AUSA_Crude_Stocks, USA_Gas_StockElSA_Ref FUT, E{J”Sdeﬁsez’;k;a'fe“;a 1y 3m
AWTI_Noncomm_net,A2_US_Treas_ly py - - —=
z1, AWTIL_front_mth,AOPEC_SpareADest_Stocks_Eur,
AUSA_Crude_Stocks, USA_Gas_StockslSA_Ref FUT, | Crude_Stocks_Eur,
AWTI_Comm_net,A2_US Treas_1y py AUS_Treas_Spread_1y_3m
Z,, AWTI_front_mth,AOPEC_SpareADest_Stocks_Eur,
AUSA_Crude_Stocks, USA_Gas_StockslSA_Ref FUT, | Crude_Stocks_Eur,

41ags AWTI_Noncomm_netA2 US_Treas_1y py AUS_Treas_Spread_ly_3m

Z,, AWTI_front_mth,AOPEC_SpareADest_Stocks_Eur,
AUSA_Crude_Stocks, USA_Gas_StockEISA_Ref FUT,
AWTI_Comm_net A2_US_Treas_1ly py

Crude_Stocks_Eur,
AUS_Treas_Spread_1ly 3m

Z3, AWTI_front_mth,AOPEC_SpareADest_Stocks_Eur,
AUSA_Crude_Stocks, USA_Gas_StockbISA Ref FUT,
AWTI_Noncomm_netA2 _US Treas _3m_pm

Crude_Stocks_Eur,
AUS_Treas_Spread_1ly 3m

Z3, AWTI_front_mth,AOPEC_SpareADest_Stocks_Eur,
AUSA_Crude_Stocks, USA_Gas_StockbISA Ref FUT,
AWTI_Comm_net A2 US_Treas_3m_pm

Crude_Stocks_Eur,
AUS_Treas_Spread_1y 3m

4.3. VARXs Analysis

4.3.1. Impulse-Response Functions

Note: AX denotes 1st difference of X2 X is the 2nd difference of X. Source: Author sreates

In this subsection and in the next (4.3.2) we discthe results of VARX estimation in terms of
impulse-response functions and variance decompuositior z,, z,, and z, for each model. Recall that in

the previous subsection (4.2), we have determihedseéts of endogenous and exogenous variablearthat
part of each VARX model.
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With this in mind, we have estimated 24 VARXs araVvén generated an equal number of impulse-
response sets (one function for each endogenoiabigrand variance decomposition sets using Chples
decomposition to identify these functiocfisFigures A.1 — A.12 in appendix A present impulesponse
functions for these VARXs and the correspondingl€$iy decompositions.

It is also important to notice that each VARX d#is the stability condition (i.e. all roots of the
characteristic polynomial are inside the unit @)clwhich means that impulse-response functionsnaie
behaved, decaying to zero after a certain poititria °

Due to limited space, we report only the impulsgpomse functions for PC<(, z,, and z;), and

variance decompositions for PCs and WTI first mardhtract. Also, since results fakWTI_Noncomm net
andAWTI_Comm net are quite similar, only the impulse-response fiamst and variance decompositions for
the first variable are presented h&&he discussion which follows takes place regasdtgfswhether PCs”
responses to shocks in one or more variables gndisant or not (considering a 95% confidence ).

This is so because due to the exploratory natuthisfwork, we choose to analyse all responseg, pfz,,
and z, to impulses in the relevant variables in ordebétter understand the different ways that they may
affect WTI term structuré’

Z1 (level)

Since our impulse-response functions show thatetiemo contemporary effect from fundamental
variables onz, (z, or z,), all analyses which follow refer to responsesrira, (z, and z;) to past shocks
(or future responses to present-week shocks, ifayways consider the date they occur as the cutiraa).

If we look to impulse-response functions far VARXs with one, two, three, and four lags, it &sg to
see that as we move back in time (i.e. the numb&gs in each VARX increases), some variables whic
have little or no effect orz; (the level of the futures curve) appear to gameamportance in explaining its

behavior, while others become less relevant. Itpeap through a greater impact @y (which can be
checked by eye) or by inclusion (exclusion) in iffijothe set of endogenous variables. A similar pectu
emerges forz, and z,.

For AOPEC_Spare, for example, it is possible to notice its impoda in explainingz, grows when

more lags are added to the model. Its major (negaimpact onz, occurs at lag 3 (of the response
functions), regardless as to whether the estimaigdel has 3 or 4 lags. So, in this case, an inerea©PEC
spare capacity causes a downward change in thiedeWET | future curve ), as would be expected.

A positive change inWTI_front_mth has a positive impact op,, which can be seen as evidence that

the behavior of WTI spot price ‘explains’ part tfetWTI futures level, at least in week two (lag?2)t
happens for all models (1, 2, 3, or 4 lags). A Emihing happens taWTI_Noncomm net (but only for
models with one or two lags), with this variablengethe factor with major importance in the secovetk.
But, its impact fades out as we depart from the tivhen the shock occurs.

%n the present case, the Cholesky ordering assuraethe first (endogenous) variable is affecteddnytemporaneous shocks in all
remaining (endogenous) variables, the second oa#fidsted by (contemporaneous) shocks in the réntavariables less the first
variable, and so on. It means that ma8iis upper triangular. For a discussion about VARhtilieation, see Enders (2004), and
Hamilton (1994),

%5 For more details about this condition, see ibid.

% 1t does not mean that we believe noncommercial tag@r financial speculators) are important in akghg crude oil price
behavior. Far from this, this question is not ie 8tope of this work. Personally, the author dagshink financial speculation in
crude oil markets may be a good explanation fodenorice levels. A paper of mine about this poagtarding the 2003-2007 period
is Cavalcante (2008).

2’pc’s responses lags which are statistically sigmifi¢at 95%) are identified in the figures presenteappendix A by colored dots.
2 |n terms of mpulse-response functions afWTl_front_mth (not shown here), a positive shock of one standaxdation in z,
leads to the strongest response fldWiT1_front_mth at lag 1 for all VARXs, with this effect fading oatly after lag (week) 5 for
VARXs with 1 and 2 lags, and after lag (week) 10¥#&RXs with 3 and 4 lags. It suggests that the chugdationship between these
variables may be bidirectional. However, it willdoene clear in the variance decomposition discusgobsection 4.3.2) that shocks
in z, have much stronger effects AWTI_front_mth than vice-versa.
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The US Treasury RatesAZ US Treas 6m ps and A2 _US Treas 1y py) appear to gain some
importance for VARXs with 3 and 4 lags, when a pesishock in this variable has a negative impactzp
in the first two weeks, and then reverse to a p@sibne (the biggest in absolute value) duringdtldnd
fourth weeks. From the fifth week on, it startsdexrease. The negative effect of this nis according to
what we would expect from this variable (since aerease in interest rates should reduce oil dememd,
then crude oil prices). But, the eventual positesponse ofz, to a positive impulse in interest rates (as in

lags 3 and 4 of our impulse-response functions) lmal puzzling, unless we interpret this as anéase in
the cost of carrying a barrel of crude oil into fheure?®

Positive impulses on distillate stocks in Europ®ést_Stocks Eur), and crude oil stocks (in the USA
and Europe), all have negative impacts on as expected, which is clearer as more lags a@taded in
VARXs. For refining utilization rate in the U3AUSA Ref FUT), the impulse-response functions show a
consistent picture for week three forward (i.e.ighér productsddemand increases FUT, which augments
crude oil demand and the price of the commodity).

Finally, about motor gasoline, which was the maimpmduct consumed in the US during 2002-2009, a
positive shock in its stock&JE Gas Stocks) results in a negative response franfor the first four weeks
(as we should expect), but a positive one afterkviiear — this effect fades out after week 15 (ratven in
the charts). A possible explanation for this facynibe related to refinery planning, since an ineeem
gasoline stocks in the US usually occurs whereiiging sector expands its gasoline output to m&pected
demand for weeks or months ahead. So, in this eapdanned increase in stocks means higher crude oi
demand and prices, at least in theory.

Z2 (stepness)

For z, VARXs (impulse-response functions for models with2, 3, and 4 lags), a positive shock in

AWTI_front_mth has also the main response fr@n(steepness) in the second week for all models. tBist
response decreases fast, getting close to zerol&grh onwards.

Similarly to the z, case, a shock inWTI_Noncomm net is one of the major factors explainirgy
responses in week 2 (for models with 1 and 2 lagih, a smaller response in week 3 (and opposisign).
But, since z, refers to the steepness of WTI futures curve, sitipe response for a positive impulse in a
variable X, for example, means that the WTI terracture gets flatter (stepper) for contract-morithe 4 (5
to 12) as strong as the response from a given sepsl So, a positive shockAWTI_Noncomm_net reduces
the slope of WTI futures curve (or makes it flatter week 2 for contract-months 1 to 4, and does th
opposite in week 3.

The reason behind it may be that an increase iméimeommercial (or commercial) net positions in
WTI futures (and options markets) helps to flattes beginning of the curve (in week 2), since iymeduce
the timespread (i.e. the difference between twogsrialong the curve). It can be interpreted amdicative
that the market believes (expects) the size ofnanease (or decrease) in prices that may happdiein
months following the first month is getting smaff&r

A positive impulse iMUSA_Crude_Stocks results in a positive response fram for lags 2 and 3 for
all VARXs, with varying degrees of importance.dtprobably due to the presence of a contango ateuat
WTI futures markets, as it was the case for at leal of the time (weeks) between 2002 and 20Q9, f#r

2 T0 see this point, use the following expresspr:= §e*#-2"(""0, whereF, is futures price of crude oil at time t for deliy at
T, g is the spot price of crude oil at timert,is the interest ratey is the storage cost (per barreb,is the convenience yield, and
T is the delivery date. So, an increase irequires, by the non-arbitrage condition, an iasesin F, (or in z, ), coeteris paribus.

% According to the definition of timespread giventie text, it is not difficult to see thaiimespread = h(z,,z,): where z, and z,
are steepness and curvature PCs, Wjts 0 and h, < 0. This is so because the size of timespread ddedepend on the level7, )

of the futures curve.
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lag 4 we got a negative response for VARXs witB,2and 4 lagé' Note thatCrude Stocks Eur is relevant
only for a VARX with 1 lag, having a pattern of pemse similar tdaUSA Crude_Socks.

ForAUSA Ref_FUT, z,’s response is positive in lags 2 through 5 (introases) for all models, which

can be understood with the following reasoninginenease in FUT (probably due to a higher demanaifo
products either by final consumers or for stordgajls to a downward (upward) move in price expextat
which causes a decrease (an increase) in the stapade futures curve for contract-months 1 t& 40(12).
A possible explanation for this may be relatednt® perception that the market is probably well $egpof
oil products for the near term, but maybe not forendistant monthg?

In the case oUSA Gas Socks, z,’s response is negative in lag 2 for all modeldiis case, VARXs
with 2, 3, and 4 lags), but with opposite signslégy (week) 3 according to the VARX. However, canyrto
the previous casez(), this variable does not seem to be of great agleg in explainingz,”s behavior.

For AOPEC_Spare, z,’s response is positive for almost all cases gs [h through 6, but with small
absolute values in comparison to other variableshéory, a positivez,’s response from a positive shock in

AOPEC_Spare is according to what we should expect, since, igyie 3 (correlation loadings for WTIan
increase in OPEC’s spare capacity leads to a decfaa increase) in futures curve’s steepnesadsr 1
through 4 (from lag 5 on). The reasoning heren& & higher spare capacity reduces the risk olidec
supply scarcity for a given demand, which causdsvanward adjustment in price expectations for menth
following the front month.

A positive shock in interest rate§4 US Treas 6m ps andA2_US Treas 1y py) show mixed results

(responses) fronz, (for VARXs with 2, 3, and 4 lags) as we considespgcific lag in a given impulse-

response function. For example, for the VARX withags, z,”s response alternate in sign as we go back in

time (weeks), being positive for weeks 2, 4, 7 8nha&and negative for week 3, 5, and 6. A similanghi
happens to VARXs with 3 and 4 lags.

This evidence should be considered, keeping in rthedcorrelations loadings fa,. So, for the 1st,

2nd, 3rd, and 4th WTI contract months, a positivegative) response from a positive impulse in ager
rates tends to reduce (increase) the slope of Wilirdés curve for these months. But, for the 5tii2th
contract month, a positive shock X2 _US Treas 6m ps or A2_US Treas ly py leads to an opposite

response frone, in comparison to the previous case. The interpogtaf these results is the same asZpr

Z3 (curvature)

Taking z,’s impulse-response functions of VARXs models (with2, 3, and 4 lags), we see that a

positive shock (of one standard deviationA\IWTI_front_mth results in mixed responses from (curvature)

in weeks 1, 2, 3, 4, and 5, regardless of the mfmadelhich the response function is analyzed. Fameple,
in week 3, the response is positive for models ®itB, and 4 lags, and negative for the VARX wittagd.
We have similar cases in weeks 4, 5, and 6 (buhectssarily in the same order), to mention sontleesh.

Besides this, we can also notice that the strongsgbnses (in absolute values) franto a positive

shock inAWTI_front_mth occur in weeks 2, 3, and 5, for VARXs with 1, 21&8) and 4 lags, respectively.
These responses are negative for the first caspasitive for the other cases, all with fast detwagero after

lag 5 (exception: VARX with 4 lags). Recalling Figu3, this evidence can be combined with's
correlation loadings, allowing to conclude thatasipve shock iMMWTI_front_mth results in an increase in

1a contango (backwardation) term structure for crodes normally associated with an increase (arelese) in the level of stocks
for this commodity. So, since a positive shockrinde stocks in week t results in a positive respdnam the stepness factor ()
two or three weeks later, it can be interpreted a®ve “toward backwardation” through flattening flatures curve in the first two
or three months. This is so because market aghints the crude oil stocks may be far above norrh#tgrical) level for these
months, but not for following months, which is ctmtent with z, responses in lags 4 and 5. (see figures 3, and\Bp

32 We do not assume here that futures price is anasatiforecast for spot price in the future. It basn well established in the
relevant literature that this is not the case foide oil (and many financial assets). The onlydhimat can be said about this is that

futures price may contain relevant information aboarket expectations for the spot price in thereit and that they usually change
in the same direction.
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the curvature of the term structure two weeks datter shock (for contract-months 2 to 7) followed dy
decrease in it 3 and 5 weeks later (probably,vaayato counterbalance part of the first effect).

Notice that for WTI contracts from 8th to 12th miona positive one standard deviation shock in the
mentioned variable reduces the curvature of the Wilires curve 2 weeks after it, and augmentsain® 5
weeks later.

In the case oAWTI_Noncomm net, which has the biggest response franin lag 2 for a positive

shock in this variable (VARXs with 1, 2, and 4 [ag$s negative response can be interpreted irshida
similar toAWTI_front_mth: a positive shock leads to an increase in WTI tetmacture curvature from 2nd to
7th month, and a reduction in the following monfivhich augments as closer to the back of this cone
gets). It suggests noncommercial (commercial) agemy be taking positions “according to the curve”,
probably as a way to hedge themselves against angeg price changes, or simply make profits. On the
other hand, their positioning in the futures (aptians) market certainly reveals relevant informatabout
their expectations. Then, according to this vieharges in WTI term structure curvature can be raghe
consequence of changes in perceptions about theef@volution of market fundamentals rather than
motivated by pure speculation (see footnote 30thadelated discussion about timespread).

Responses to shocks in crude oil stocks in Eurofeudé Socks Eur) and in the US
(AUSA _Crude Stocks) are opposite in sign at lag 2 for VARX with 1 1§grude Stocks Eur is not an
endogenous variable in VARXs with 2, 3, and 4 |ags table 7), with both decaying to zero after(Vegek)

4 (from lag 3 on,z,”s responses to positive shocks in both variablegasitive). If you consider Figure 3,

we have the following: an increase (a positive &hat AUSA Crude Stocks augments WTI term structure
curvature (i.e. in terms of a sphere, the planeckvitiovers it become more stretched) at lag 2 (tweks
later) for contract-months 2 to 7, doing exactlg dgpposite in case of a positive shoclCmude_Stocks_Eur
(for contract-months 8 to 12 the mentioned shockipces the converse result).

So, in the case oAUSA Crude Socks, this evidence may be interpreted as a consequehee
downward adjustment in the very short-term pricpeexations due to a higher level of crude stockd,that
market agents (at week 3) expect an increase hecpuice expectations in the following weeks ($eyt
stock more crude oil).

In this fashion, we may say that Europe precededJ®, since a positive shock@rude Stocks Eur
results in a WTI futures curve “less stretched”alh weeks after the shock. It points to the faatthn
increase (decrease) in crude stocks in Europe matbrpreted (in the US) as a market signal alaout
upward (downward) in crude oil prices in the nedufe.

For VARXs with more than 1 lag, all responses i Zafor a positive shock inUSA Crude_Socks
are negative, and alternate in sign accordingedvARX and to the number of weeks (lags) aftergheck,
all responses going to zero after week 8. Thesesozen be interpreted in a way similar to VARX withag.

In terms of AOPEC Spare, impulse-response results for VARXs with 2, 3, ahthgs show that a

positive shock in this variable leads to a negatésponse fronz, in lag 2, which turns positive or negative

from lag 3 to 6, 10, and 11 depending on the VARKom lag 7 to 9,z,"s responses are negative for all

cases and positive after lag 12 (albeit very sniall)VARXs with 3 and 4 lags (they are negative fioe
VARX with 2 lags). With exception of lag (week) these somewhat mixed results suggest that WTI term
structure curvature reacts in different ways toasitive shock inAOPEC_Spare according to the time
horizon one considers (e.g. the number of lagsah & ARX).

For ADest_Stocks Eur, which is not an endogenous variable in the VARW lags (table 7)z,"s

responses to a one standard deviation impulseasigve in lags 2 and 3 for all VARXs (1, 3, andags),

but are negative (positive) from lag 4 to 11 for R&s with 3 and 4 lags (for the VARX with 1 lag). terms

of WTI term structure, the mentioned shock will saua decrease in its curvature (term structure) for
contract-months 2 to 7, 2 and 3 weeks after it bapphaving the opposite effect 4 or more weels (@t
least in the case of VARXs with 3 and 4 lags). Eamtract-months 8 to 12, that shock will have thpasite
effect.

This can be interpreted in exactly the opposite waydid for the case ofz,"s response to a shock in

AUSA_Crude_Stocks. The difference is probably related to the didtimays crude oil and oil product stocks
are treated during refinery planning.

In the case ofJSA Gas Stocks, z,’s responses to an impulse in this variable vappiing to the
number of lags one adds to a VARX (2, 3, or 4 lagkbwing no clear pattern in terms of sign, exckat
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their impulse-response functions go to zero afgr 9. Since these mixed results may result in rdiffe
interpretations due to distinct views and persquddgments, we prefer to leave it to the reader.

Responses fronz, to impulses iMUSA_Ref_FUT are negative in lag (week) 2 for VARXs with 2, 3,
and 4 lags (they are positive for the VARX with dg), and positive for lags 3 and 4 for most VARXs
(exception: lag 4 for the VARX with 4 lags). Froagl (week) 6 onz,” s responses are more negative than

positive, getting close to zero after lag 7. Irstbase, a negative (positive) response firpyito a positive

shock iNAUSA_Ref FUT leads to an increase (decrease) in WTI's futcwegature for contract-months 2 to
7, and at the same time to a decrease (increasidfid-month and 8 to 12 contract-months.

Finally, forA2_US Treas 6m ps andA2 _US Treas 3m_pm, a positive shock in interest rates leads to
negative responses from, in lag 2 and positive responses in lag 3 for VARMth 2, 3, and 4 lags. From
lag 4 on, responses differ in sign depending omthmber of lags added to each VARX, but tend tayd¢o
zero after lag 7. These results suggest that ardse in interest rates in wekeleads to an increase in WTI
term structure curvature (for contract-months Z)tin weekt+2, while one week latet£3) the response for
this shock is a decrease in that curvature (thesdts are the opposite for contract-months 8 JoTliais can
be interpreted as evidence that, in the very dieont-(2 week after the shock), an interest rateesme causes
a downward adjustment in crude oil price expectatiwhich is stronger for months 3 and 4 than fontin®
2,5, 6, and 7. However, one week later, markehisgeppear to make upward revisions in their exgbiects
about crude olil price.

In the case of interest rate spreadtl$ Treas Spread 1y 3m), which is endogenous only for the

VARX with 3 lags, a positive shock US Treas_Spread_ly_3m brings positive responses from in lags
2, 5to 7, and negative responses for lags 3,d8an 11 (being positive after lag 14, which i$ sleown in
figure A.11). Despite a relatively strong respomséag 6, the impulse-response function goes to adter
lag 4. Since this variable may be seen as an itmlicd how tightening the monetary policy can behe
short-term in relation to the medium-term, its iptetation is similar to the case of interest rates

4.3.2. Variance Decomposition

In this subsection we discuss briefly the resultdhe VARXs in terms of variance decompositions for
the PCs ¢, z,, and z;). As in the case of impulse-response functionsuse Cholesky factorization to
decompose the variance of each endogenous vaf@abkdl VARXs, given a shock in each one of these
variables.

For almost all cases, variance decompositions sthat the endogenous variablgs and z, are
responsible, for the most part, for their own vacies (e.g. something between 80 and 100% at lagv&@)h
are also the only significant results (exceptiGrude_Stocks Eur for z, in a VARX with 1 lag), considering
a 95% confidence level for a Chi-Square statisiit w15 degrees of freedom. So, we report here thdy
results forz, andAWTI_front_mth, which are by far the most interesting of thislgsia. (Figures B.1 — B.4

in appendix B present variance decompositionsZoandAWTI_front_mth for VARXs with 1, 2, 3, and 4
lags)

For example, if you compare figures B.1 and B.25 gasy to see that an innovationaznhas a much
stronger effect org,"s variance than a shockAWTI_front_mth, regardless the VARX has 1, 2, 3, or 4 lags.

In fact, an innovation in the first variable acctaufor between 76% and 90% at lag 20, leaving ifierdnce
for the remaining variablea\VTI_front_mth included).

When we look to the effect of shocks oAWTI_front_mth (Figures B.3 and B.4), the pattern is
somewhat similar to the previous case, with sometliietween 67% and 80% of th&WTI_front_nmth’s
variance at lag 20 being explained by an innovaitiog, . In this case, a shock XWTI_front_mth is able to
explain only 8%-11% of its own variance.

These apparently striking results can be easilyerstdod if we consider them as evidence that WTI
term structure has a stronger influence on spaepr{ie.gAWTI_front_mth) than our intuition suggests at
first sight. In fact, since crude oil is not a cootity for instant delivery, it becomes naturalhink of crude
oil markets as a place where most transactionsr@oesidering not current prices, but prices inftiare. It
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suggests that crude oil prices should be observétki context of futures markets, not alone. Téhésiis also
helpful to explain the importance AWTI_front_mth in the impulse-response analyses of subsectioh.4.3

5. Conclusions

In this paper we discussed the different ways @tkat fundamentals may affect crude oil pricing in
the WTI futures market. Using different sets ofdamental variables (which are treated as endogemous
exogenous according to the model we estimate$, shown that, for most cases, changes in the Wil te
structure in 2002-2009 can be explained by changesne or more of the aforementioned market
fundamentals within this period. Also, responseme standard-deviation impulses for different sts
endogenous and exogenous variables show consigtauits for most cases. In other cases, an apparent
inconsistency or puzzling result can be solved éimgian alternative explanation (ex. interest rates the
cost of carrying).

In addition, we show that crude oil markets shcagdanalysed considering not a single point in time,
but the time span around the relevant date whepeeific transaction takes place. In other wordscesifor
many casedNTI_front_mth was an important variable in explaining the WTimestructure behavior, it
suggests that crude oil spot price should be obsgérvthe context of futures markets, not alonaderoil is
not a commodity for instant delivery!).

Finally, it is possible to infer from our resultsat as we bring more information to a model (byiagld
more lags, for example), the dynamics of the retesinips among the endogenous/exogenous variables
changes. It points out to the existence of marfediht forms market agents may use to combinerimdicion
to generate their expectations about the future.
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APPENDIX A

Impulse-Response Functions (Z1, Z2, Z3)

Figure A.1 - Impulse-Response for Z1 (1 lag)
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Figure A.3 - Impulse-Response for Z1 (3 lags)
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Figurd.2 - Impulse-Response for Z1 (2 lags)
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FigerA.4 - Impulse-Response for Z1 (4 lags)
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Note: Colored dots identify the statistically sigrficant lags (at 95%) for each PC response to shocké 1 standard deviation in a given variable.



Figure A.5 - Impulse-Response for Z2 (1 lag)
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Figure A.7 - Impulse-Response for Z2 (3 lags)
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Figurd.6 - Impulse-Response for Z2 (2 lags)
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FigerA.8 - Impulse-Response for Z2 (4 lags)
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Note: Colored dots identify the statistically sigrficant lags (at 95%) for each PC response to shockd 1 standard deviation in a given variable.
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Figure A.9 - Impulse-Response for Z3 (1 lag) Figurd.10 - Impulse-Response for Z3 (2 lags)

0.5000 0.5000
0.4000 0.4000
0.3000 0.3000
0.2000 0.2000
0.1000 0.1000
S — — _— e — — -
0.0000 0.0000 A—
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

-0.1000 -0.1000
-0.2000 -0.2000

—Z3 —AWTI_front_mth ADest_Stocks_Eur —Z3 —AWTI_front_mth AOPEC_Spare

—Crude_Stocks_Eur ~—AUSA_Crude_Stocks —AUSA_Ref_FUT —AUSA_Crude_Stocks USA_Gas_Stocks AUSA_Ref FUT

AWTI_Noncomm_net AWTI_Noncomm_net A2_US_Treas_6m_ps

Cholesky Ordering: Z3, AWTI_front_mth, Crude_Stocks_EwlUSA_Crude_Stocks, Cholesky Ordering: Z3, AWTI_front_mth,AOPEC_SpareAUSA_Crude_Stocks,

ADest_Stocks_EunUSA_Ref FUTAWTI_Noncomm_net USA_Gas_Stocks\USA_Ref FUTAWTI_Noncomm_netA2_US_Treas_6m_ps
Figure A.11 - Impulse-Response for Z3 (3 lags) Figet A.12 - Impulse-Response for Z3 (4 lags)
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Note: Colored dots identify the statistically sigrficant lags (at 95%) for each PC response to shocké 1 standard deviation in a given variable.
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APPENDIX B

Variance Decomposition (Z1 &AWTI_front_mth)

Figure B.1 — Variance Decomposition for Z1 Figure B.2 - Variance Decomposition for Z1
(Innovation in Z1) (Innovation in AWTI_front_mth)
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Cholesky Orderings: See Appendix A Cholesky Orderings: See Appendix A
Figure B.3 - Variance Decomposition foAWTI_front_mth Figure B.4 - Variance Decomposition foAWTI_front_mth
(Innovation in AWTI_front_mth) (Innovation in Z1)
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Notes: Variance decomposition amounts are expressaupercentages (%). Colored dots identify the stadtically significant lags (at 95%) for each varialte (Z1
and AWTI_front_mth). Variances are chi-square distributed, with 415 degrees of freedom.
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