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Abstract

We provide an alternative approach for estimating the price sensitivities of

a trading position with regard to underlying factors in jump-diffusion models

using jump times Poisson noise. The proposition that results in a general solu-

tion is mathematically proved. The general solution that this paper offers can

be applied to compute each price sensitivity. The suggested modeling approach

deals with the shortcomings of the Black-Scholes formula such as the jumps

that can occur at any time in the stock’s price. Via the Malliavin calculus

we show that differentiation can be transformed into integration, which makes

the price sensitivities operational and more efficient. Thus, the solution that is

provided in this paper is expected to make decision making under uncertainty

more efficient.
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1 Introduction

It is widely agreed in the literature that the modeling of financial derivatives is more

precise if the price of the underlying asset is treated as a stochastic process. One of

the most applied models for option pricing is the Black and Scholes formula [BS73].

However, the Black and Scholes model suffers from the continuity of the Brownian

motion and thus from the exclusion of jumps. The aim of this paper is to develop

∗ E-mail : Youssef Elkhatib@uaeu.ac.ae
† E-mail : Ahatemi@uaeu.ac.ae
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an approach that can be used to remedy the shortcomings of the Black and Scholes

model. This is achieved by developing a method for the computation of the price sen-

sitivities of a trading position with respect to four main factors when the stochastic

process describing the stock’s price includes jumps. There are five price sensitivities

of a trading position that are called ”Greeks” in the literature. The importance of

a precise calculation of these price sensitivities is paramount in financial markets

pertinent to risk management. The change of the trading position with regard to

the price of the underlying asset is called Delta. The rate of the change of the delta

of a portfolio of options with regard to the price of the underlying asset is known as

Gamma. The other source of risk is denoted by Vega that represents the sensitivity

of the trading position with regard to the volatility of the underlying asset. The

change of the portfolio with regard to time under the ceteris paribus condition is

known as Theta. Finally, the sensitivity of the trading position with regard to the

interest rate is known as Rho in the literature. Each Greek measures a source of

risk for the underlying trading position. Therefore, the importance of computing the

price sensitivities accurately is paramount to the investors and financial institutions.

Traders need to calculate their Greeks at the end of every trading day in order to take

necessary action if the internal risk limits are exceeded, in the underlying financial

institution that the trader is linked to, in order to avoid dismissal. We utilize the

Malliavin calculus to provide an accurate and operational solution for four of these

price sensitivities. This approach is particularly useful since the price of the option

characterized by an stochastic structure cannot be given in closed form. Therefore,

the study of price sensitivities is very important in this context. Via the Malliavin

calculus we can transform the differentiation into integration and thereby make the

price sensitivities operational and more efficient.

Most previous work on the price sensitivities make use of the finite difference method.

However, the Malliavin method is more efficient in terms of convergence. There has
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been some work done on this issue using the Malliavin method. The main contri-

bution of this paper is to extend the Malliavin approach to calculating the price

sensitivities when the price of the underlying asset follows a jump-diffusion process.

To ensure the market is arbitrage free one should find a probability equivalent to the

historical one under which the discounted prices are martingale (see the first part of

fundamental theorem of asset pricing).

The application of the Malliavin calculus to the computations of price sensitivi-

ties were introduced by [FLLLT99] for markets with Brownian information. Their

approach rests on the Malliavin derivative on the Wiener space and consists in:

1. applying the chain rule,

2. using the fact that this derivative has an adjoint (Skorohod integral) which

coincides with the Itô integral for adapted processes.

Many papers employing this method have been developed for markets with jumps.

For pure jump markets, in [KP04] the Poisson noise coming from the jump times is

used, while in [BBM07] the authors differentiate with respect to both the jump times

and the amplitude of the jumps. For jump-diffusion models, in [DJ06] the Malliavin

calculus w.r.t the Brownian motion is applied after conditioning w.r.t the Poisson

component, on the other hand in [BM06] the Poisson noise acts on the amplitude

of the jumps. More recently in [KK10], Greeks formulae are obtained for Lévy

process models of time-changed Brownian motion type using Malliavin calculus on

the Wiener space conditionally on the time-changing process. And in [KT10] they

use a scaling property of gamma processes w.r.t the Esscher transform parameter to

perform formulas for Greeks in the case of asset price dynamics driven by gamma

processes.

Our aim is to generalize the work of [KP04] by including a Brownian part and by

covering European options. The Greeks formulae will be performed then by using
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both the Malliavin derivative on the Wiener space and the jump times Poisson noise.

We concentrate in this work on showing that we can differentiate w.r.t the jump

times for jump-diffusion markets which is a different approach from [BM06] where

the differentiation is with respect to the jump amplitudes and from [DJ06] where

only the Malliavin calculus on the Wiener space is applied. For this, we need a new

version of the gradient used in [KP04]‡ which has the required properties : it is a

derivative and it has an adjoint satisfying the fact 2 above; and to be able to deal

with European-like payoffs, the new version must contain the Poisson process in its

domain.

Consider a standard Poisson process N = (Nt)t∈R+
with jump times (Ti)i∈N and let

H denote the Cameron-Martin space

H =

{
u =

∫ ·

0

u̇tdt : u̇ ∈ L2(R+)

}
.

For u ∈ H and a smooth functional Fn = f(T1, . . . , Tn), f ∈ C1
b (R

n), n ≥ 1 of the

Poisson process, we let

DN
u Fn := −

k=n∑

k=1

uTk
∂kf(T1, . . . , Tn).

Unfortunately, Nt does not belong to Dom (DN) the domain of DN , so an underlying

asset price (St)t∈R+
given by

dSt = µtStdt+ σtSt−(dNt − dt), t ∈ R+, S0 = x > 0,

does not belong to Dom (DN). Nevertheless, for T ∈ R+,
∫ T

0
Stdt ∈ Dom (DN) since

it can be written as

∫ T

0

Stdt =
∑

k≥0

∫ Tk+1∧T

Tk∧T

xe
∫ t

0
(µt−σt)dt

i=k∏

i=0

(1 + σTi
)dt.

For this reason, in [KP04], only options with payoff of the form f(
∫ T

0
Stdt) are con-

sidered and those with payoff f(ST ) are excluded.

‡Since the Malliavin gradient on the Poisson space is not a derivative (cf. for example [AOPU00]),
another version of the gradient introduced in [CP90] and in [ET93] is used in [KP04].
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Consider a smooth functional F =
∑n=m

n=1 1{NT=n}Fn, m ≥ 1, where Fn := f(T1, . . . , Tn)

and f ∈ C1
b (R

n). Let

D̃N
u F :=

n=m∑

n=1

1{NT=n}D
N
u Fn.

D̃N is a derivative (See Prop.3) and it has and adjoint and satisfies the fact 2 (see

Prop.4). Moreover Nt belong to Dom (D̃N).

In this paper we apply the Malliavin calculus to compute Greeks for options with pay-

off f(ST ) for discontinuous models. The market is incomplete and there are infinitely

many of Equivalent Martingale Measures (E.M.M). An E.M.M is a probability equiv-

alent to the historical one, under which the discounted prices are martingales. Let

the dynamic of the underlying asset price under a fixed E.M.M satisfy the stochastic

differential equation

dSt

St

= rtdt+ σt[dWt + (dNt − dt)], t ∈ [0, T ], S0 = x > 0, (1.1)

where W = (Wt)t∈[0,T ] is a Brownian motion and (rt)t∈[0,T ] and (σt)t∈[0,T ] are deter-

ministic processes such that σ > −1 and it is not a constant§. We compute the

Greeks by using the gradient gradient D̃N +DW (DW denotes the Malliavin deriva-

tive on Wiener space).

After this introduction the remaining part of the paper is organized as follows: Sec-

tion two is devoted to the Brownian and Poisson Malliavin derivatives. In Section

three we apply the Malliavin calculus to derive the formula for computing the Greeks.

The last Section concludes the paper.

2 Malliavin derivatives

In this section we give a brief presentation of the Malliavin derivative on the Wiener

space and its adjoint. The new version of the Poisson gradient introduced in [Pr09]

§The derivative of σ must not vanish to avoid the division by zero, see the computation of the
Delta in Section. 3.
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is also presented. The Possonian operator is a derivative and it admits an adjoint

which coincides with the Poissanian Itô integral for adapted processes. For more

details about the Malliavin calculus we refer¶ to [Øks96] and [Nu95] on the Wiener

space and to [Bi83], [CP90], [D00], [ET93], [NV90], [Pr94] and [Pr09] on the Poisson

space.

2.1 Malliavin derivative on the Wiener space

From now on, we fix a terminal time T > 0 and consider the Wiener space C0([0, T ]),

the set of continuous functions on [0, T ] vanishing in 0.

Let (DW
t )t∈[0,T ] be the Malliavin derivative on the Wiener space. We denote by P

the set of random variables F : Ω → R, such that F has the representation

F (ω) = f

(∫ T

0

f1(t)dWt, . . . ,

∫ T

0

fn(t)dWt

)
,

where f(x1, . . . , xn) =
∑

α aαx
α is a polynomial in n variables x1, . . . , xn and deter-

ministic functions fi ∈ L2([0, T ]) . Let ‖.‖1,2 be the norm

‖F‖1,2 := ‖F‖L2(Ω) + ‖DW
· F‖L2([0,T ]×Ω), F ∈ Dom (DW ).

We have P ⊂ Dom (DW ) and the following Proposition holds:

Proposition 1 Given F = f
(∫ T

0
f1(t)dWt, . . . ,

∫ T

0
fn(t)dWt

)
∈ P. We have

DW
t F =

k=n∑

k=1

∂f

∂xk

(∫ T

0

f1(t)dWt, . . . ,

∫ T

0

fn(t)dWt

)
fk(t).

From now on, for any stochastic process u and for F ∈ Dom (DW ) such that

u.D
W
. F ∈ L2([0, T ]) we let

DW
u F := 〈DWF, u〉L2([0,T ]) :=

∫ T

0

utD
W
t Fdt.

¶The list is not exhaustive.

6



2.1.1 Skorohod integral

Let δW be the Skorohod integral on the Wiener space. The next Proposition is well

known, it says that δW is the adjoint of DW and is an extension of the Itô integral

(see for example [Øks96]).

Proposition 2 a) Let u ∈ Dom (δW ) and F ∈ Dom (DW ), we have

E[FδW (u)] = E[DW
u F ], for evry F ∈ Dom (DW ).

b) Consider a L2(Ω× [0, T ])-adapted stochastic process u = (ut)t∈[0,T ]. We have

δW (u) =

∫ T

0

utdWt.

c) Let F ∈ Dom (DW ) and u ∈ Dom (δW ) such that uF ∈ Dom (δW ) thus

δW (uF ) = FδW (u)−DW
u F.

2.2 Poisson derivative

Let S denote the set of smooth functionals

F =
n=m∑

n=1

1{NT=n}Fn, where Fn = fn(T1, · · · , Tn) ∈ Dom (DN), m ∈ N
∗ = {1, 2, . . .},

and for 1 ≤ n ≤ m, fn ∈ C1
b (R

n).

Definition 1 Given an element u of the Cameron-Martin space H and F ∈ S as in

the above, we define the gradient‖

D̃N
u F :=

n=m∑

n=1

1{NT=n}D
N
u Fn =

n=m∑

n=1

1{NT=n}

(
−

k=n∑

k=1

uTk
∂kfn(T1, · · · , Tn)

)
. (2.1)

The next proposition shows that the gradient D̃N is a derivative.

Proposition 3 Consider F =
∑n=m

n=1 1{NT=n}Fn and G =
∑n=m

n=1 1{NT=n}Gn two

smooth functionals in S, where Fn = fn(T1, · · · , Tn) ∈ Dom (DN) and Gn = Gn(T1, · · · , Tn) ∈

Dom (DN). We have

D̃N
u (FG) = FD̃N

u G+GD̃N
u F.

‖see [Pr09], section 7.3.
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Proof. We have

FG = (
n=m∑

n=1

1{NT=n}Fn)(
l=m∑

l=1

1{NT=l}Gl) =
n=m∑

n=1

1{NT=n}FnGn.

Thanks to the chain rule of the gradient DN , we have

D̃N
u (FG) =

n=m∑

n=1

1{NT=n}FnD
N
u Gn +

n=m∑

n=1

1{NT=n}GnD
N
u Fn

= FD̃N
u G+GD̃N

u F.

�

Remark 1 Let Dom (D̃N) be the domain of D̃N .

1. Dom (DN) ⊂ Dom (D̃N). In fact any F ∈ Dom (DN) can be written as

F =
∑

n>0 1{NT=n}F . We have D̃N
u F = DN

u F .

2. Dom (D̃N) contains NT and D̃N
u NT = 0, since NT =

∑
n≥0 1{NT=n}n.

2.2.1 Adjoint

The following proposition gives the adjoint gradient for DN , it is well-known, cf. e.g.

[CP90], [Pr94], [Pr02].

Proposition 4 Consider F ∈ Dom (DN) and u ∈ H, we have

a) The gradient DN is closable and admits an adjoint δN such that

E[DN
u F ] = E[FδN(u)].

b) For u ∈ Dom (δN) such that uF ∈ Dom (δN) we have

δN(uF ) = FδN(u)−DN
u F.

c) Moreover, δN coincides with the compensated Poisson stochastic integral on the

adapted processes in L2(Ω;H):

δN(u) =

∫ ∞

0

u̇t(dNt − dt).
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To be able to use the Malliavin method for the computations of Greeks we need to

show first the existence of an adjoint for D̃N satisfying the properties of δN listed in

Prop. 4. The relationship between D̃N and DN will be very helpful. In fact, we have

δN is the adjoint of D̃N as it is shown in the following proposition ∗∗.

Proposition 5 With previous notations:

a) D̃N is closable and admits δN as adjoint. Moreover, if F =
∑n=m

n=1 1{NT=n}Fn in

S with Fn = fn(T1, · · · , Tn) ∈ Dom (DN) and u ∈ H such that††
∫ T

0
u̇tdt = 0 then

E[D̃N
u F ] = E[FδN(u)].

b) For F,G ∈ Dom (D̃N) and u ∈ Dom (δN) with
∫ T

0
u̇tdt = 0 :

E
[
GD̃N

u F
]
= E

[
F (GδN(u)− D̃N

u G)
]
.

3 Computations of Greeks

In this section we compute the Greeks for European options with maturity T and

payoff f(ST ), where (St)t∈[0,T ] denotes the underlying asset price driven by the sum of

a Brownian motion and a compensated standard Poisson process. Let B = (Bt)t∈[0,T ]

be a standard Brownian motion and N = (Nt)t∈[0,T ] denote a standard Poisson

process. The market is incomplete, since there are infinitely many of P -E.M.M. A

P -E.M.M. Q is characterized by its Radon-Nikodym density with respect to P given

by

ρT = exp

(∫ T

0

αsdBs −
1

2

∫ T

0

α2
sds+

∫ T

0

ln(1 + βs)(dNs − ds)

+

∫ T

0

(ln(1 + βs)− βs)ds

)
,

∗∗The proof of this proposition can be found in [Pr09]: Section 7.3. However another proof is

provided in the appendix with the condition
∫
T

0
u̇tdt = 0.

††The condition
∫
T

0
u̇tdt = 0 is necessary to prove the existence of the adjoint for the new version

of the gradient introduced in [CP90] and in [ET93], see the proof of the Lemma. 1 in the appendix.
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where β > −1 and by the equation

µt − rt + αtσt + βtσt = 0.

Consider the two processes W = (Wt)t∈[0,T ] and M = (Mt)t∈[0,T ] where for t ∈ [0, T ]

Wt = Bt −

∫ t

0

αsds and Mt = Nt −

∫ t

0

(1 + βs)ds.

By Girsanov theorem [J79] W is a Q-Brownian motion and M is a Q-compensated

Poisson process. The dynamic of (St)t∈[0,T ] under Q is

dSt

St

= rtdt+ σt[dWt + dMt], t ∈ [0, T ], S0 = x > 0.

We have

ST = x exp

(∫ T

0

σtdWt +

∫ T

0

(rt − σt(1 + βt)−
1

2
σ2
t )ds

)
×

k=NT∏

k=1

(1 + σTk
),

where (Tk)k≥1 denotes the jump times of (Nt)t∈[0,T ]. Let ζ be a parameter taking

the values: S0 = x, the volatility σ, or the interest rate r. Let C = E[f(Sζ
T )] be the

price of the option. The computations of Greeks by the Malliavin approach rest on

the integration by parts formula -cf. [FLLLT99] for the Brownian case and [KP04]

for the Poisson case- given in the following proposition.

Proposition 6 Let I be an open interval of R, (F ζ)ζ∈I and (Gζ)ζ∈I be two families

of random functionals in Dom (D̃N)
⋂

Dom (DW ), continuously differentiable with

respect to the parameter ζ ∈ I. Let (ut)t∈[0,T ] be a process satisfying

(D̃N
u +DW

u )F ζ 6= 0, a.s. on {∂ζF
ζ 6= 0}, ζ ∈ I,

such that uGζ∂ζF
ζ/(D̃N

u +DW
u )F ζ is continuous in ζ in Dom (δN)

⋂
Dom (δW ) and

∫ T

0
u̇tdt = 0. We have

∂

∂ζ
E
[
Gζf

(
F ζ
)]

= E

[
f
(
F ζ
)
(

Gζ∂ζF
ζ

(D̃N
u +DW

u )F ζ
δN(u)− D̃N

u

(
Gζ∂ζF

ζ

(D̃N
u +DW

u )F ζ

))]

+E

[
f
(
F ζ
)
(

Gζ∂ζF
ζ

(D̃N
u +DW

u )F ζ
δW (u)−DW

u

(
Gζ∂ζF

ζ

(D̃N
u +DW

u )F ζ

))]
+ E

[
f
(
F ζ
)
∂ζG

ζ
]
,

for any function f such that f
(
F ζ
)
∈ L2(Ω), ζ ∈ I.
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Proof. For function f ∈ C∞
b (R), we have

∂

∂ζ
E
[
Gζf

(
F ζ
)]

= E
[
Gζ∂ζf

(
F ζ
)]

+ E
[
f
(
F ζ
)
∂ζG

ζ
]

= E

[
Gζ∂ζF

ζ
(D̃N

u +DW
u )f

(
F ζ
)

(D̃N
u +DW

u )F ζ

]
+ E

[
f
(
F ζ
)
∂ζG

ζ
]
.

Then we conclude using Propositions 2 and 5. The extension to f
(
F ζ
)
∈ L2(Ω)

with ζ ∈ I, can be obtained from the same argument as in p. 400 of [FLLLT99] and

in [KP04] p. 167 for the Poisson case, using the bound

∣∣∣∣
∂

∂ζ
E
[
Gζfn(F

ζ)
]
− E

[
f
(
F ζ
) (

V ζ(δN(u) + δW (u))− (D̃N
u +DW

u )V ζ + ∂ζG
ζ
)]∣∣∣∣

≤ ‖f(F ζ)− fn(F
ζ)‖L2(Ω)

∥∥∥V ζ(δN(u) + δW (u))− (D̃N
u +DW

u )V ζ + ∂ζG
ζ
∥∥∥
L2(Ω)

,

and an approximating sequence (fn)n∈N of smooth functions, where V ζ := Gζ∂ζF
ζ/(D̃N

u +

DW
u )F ζ . �

Consider an option with payoff f
(
F ζ
)
.

Delta, Rho, Vega

The Greeks Delta := ∂C
∂x
, Rho = ∂C

∂r
and Vega = ∂C

∂σ
can be computed from Proposi-

tion 6

∂

∂ζ
E
[
f
(
F ζ
)]

= E
[
f
(
F ζ
)
Lζ(δN(u) + δW (u))− (D̃N

u +DW
u )Lζ

]
, (3.1)

where we let Gζ = 1 and Lζ :=
∂ζF

ζ

(D̃N
u +DW

u )F ζ
. As an example we compute the delta‡‡

of an European option using ( 3.1) with ζ = x, f(F ζ) = f(ST ), and ∂ζF
ζ = ∂xST =

1
x
ST . We have

Delta = ∂xE
[
e−

∫ T

t
rsdsf (ST )

]
= e−

∫ T

t
rsdsE

[
f (ST )

(
Lx(δN + δW )(u)− (D̃N

u +DW
u )Lx

)]
,

where

Lx =
1

x

ST

(D̃N
u +DW

u )ST

=
1

x

1
∫ T

0
utσtdt−

∫ T

0

utσ
′

t

1+σt
dNt

.

‡‡we can use the same techniques for Rho and Vega.

11



And

DW
u Lx = 0

D̃N
u L

x = (Lx)2D̃N
u

(∫ T

0

utσ
′

t

1 + σt

dNt

)
= −(Lx)2

(∫ T

0

ut∂t
utσ

′

t

1 + σt

dNt

)

= −(Lx)2
∫ T

0

ut

1 + σt

(
(σ

′

tu
′

t + utσ
′′

t )−
ut(σ

′

t)
2

1 + σt

)
dNt,

here we supposed that σ
′

6= 0.

We can use

δN(u) =

∫ T

0

u̇tdNt =

∫ T

0

u̇t(dNt − dt) =
∑

k≥0

u̇Tk
,

δW (v) =

∫ T

0

vtdWt =
∑

j≥1

vtj−1
(Wtj −Wtj−1

),

for u ∈ H such that
∫ T

0
u̇tdt = 0 and v adapted.

Gamma

To compute the Gamma = ∂2C
∂x2 , let H

x := Lx(δN(u) + δW (u))− (D̃N
u +DW

u )Lx. We

have using (3.1) and Prop. 6

Gamma = e−
∫ T

t
rsds

∂2

∂x2
E [f (F x)] = e−

∫ T

t
rsds

∂

∂x

(
∂

∂x
E [f (F x)]

)
= e−

∫ T

t
rsds

∂

∂x
E [f (F x)Hx]

= e−
∫ T

t
rsds

{
E

[
f (F x)

(
Hx∂xF

x

(D̃N
u +DW

u )F x
δN(u)− D̃N

u

(
Hx∂xF

x

(D̃N
u +DW

u )F x

))]

+ E

[
f (F x)

(
Hx∂xF

x

(D̃N
u +DW

u )F x
δW (u)−DW

u

(
Hx∂xF

x

(D̃N
u +DW

u )F x

))]
+ E [f (F x) ∂xH

x]

}
.

4 Conclusions

Making use of options is a common practice in financial markets by investors and

other financial agents in order to neutralize or reduce the price risk of the underlying

asset. Thus, option pricing is an integral part of modern financial risk management.

One of the most utilized tools for this purpose is the Black and Scholes (1973)
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formula. However, this formula suffers from the continuity of the Brownian motion

and consequently from the exclusion of jumps. The current paper aims at developing

an approach that can be used to remedy the shortcomings of the Black and Scholes

(1973) model by taking into account the impact of the potential jumps. This is

operationalized by developing an alternative method for the computation of the

price sensitivities of a trading position with respect to the main underlying factors

when the stochastic process describing the asset price is characterized by jumps. It is

shown how the Malliavin derivative on the Wiener space and the jump times Poisson

noise can be utilized to calculate the much needed price sensitivities more accurately.

Thus, we propose an alternative approach for calculating the Delta, Gamma, Vega,

and the Rho more accurately. These four price sensitivities of a trading position

have important repercussions in financial risk management. Hence, the more precise

approach developed in this paper for calculating these price sensitivities is expected to

be enormously valuable to investors as well as financial institutions in their constant

pursue of finding and constructing financial risk management strategies that are

more successful in hedging against the potential sources of the underlying price risk.

The solution that is provided in this paper can therefore become an essential tool

for good decision making under uncertainty.
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Appendix

Proof of the Prop. 5

First, we need the following lemma

Lemma 1 Consider u ∈ H such that
∫ T

0
u̇tdt = 0 and a smooth functional f(T1, · · · , Tn) ∈

Dom (DN), we have

E
[
DN

u f(T1, · · · , Tn) | NT = n
]
= E

[
f(T1, · · · , Tn)δ

N(u) | NT = n
]
.

Proof of the Lemma 1.

Proof. Let u ∈ H such that
∫ T

0
u̇tdt = 0. We follow [Pr02], Lemma 1. We

consider the simplex ∆n = {(t1, . . . , tn) ∈ [0, T ]n : 0 ≤ t1 < · · · < tn}. We have for

f ∈ L2(∆n, dt1, . . . , dtn),

E[f(T1, · · · , Tn) | NT = n] =
n!

T n

∫ T

0

∫ tn

0

. . .

∫ t2

0

f(t1, · · · , tn)dt1 . . . dtn.

And

E[DN
u f(T1, · · · , Tn) | NT = n] = −

k=n∑

k=1

Ik,

where

Ik :=
n!

T n

∫ T

0

∫ tn

0

. . .

∫ t2

0

utk∂kf(t1, · · · , tn)dt1 . . . dtn.

k=1 We have by integration by parts

∫ t2

0

ut1∂1f(t1, · · · , tn)dt1 = −

∫ t2

0

u̇t1f(t1, · · · , tn)dt1 + ut2f(t2, t2, · · · , tn).

Thus

I1 = A1 +B2,

where

A1 : = −
n!

T n

∫ T

0

∫ tn

0

· · ·

∫ t2

0

u̇t1f(t1, · · · , tn)dt1 · · · dtn

B2 : =
n!

T n

∫ T

0

∫ tn

0

· · ·

∫ t3

0

ut2f(t2, t2, · · · , tn)dt2 · · · dtn.
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k=2 We have

∫ t3

0

ut2

∫ t2

0

∂2f(t1, · · · , tn)dt1dt2

=

∫ t3

0

ut2∂2

∫ t2

0

f(t1, · · · , tn)dt1dt2 −

∫ t3

0

ut2f(t2, t2, · · · , tn)dt2

= −

∫ t3

0

u̇t2

∫ t2

0

f(t1, t2, · · · , tn)dt1dt2 + ut3

∫ t3

0

f(t1, t3, t3, t4, · · · , tn)dt1

−

∫ t3

0

ut2f(t2, t2, · · · , tn)dt2.

Thus

I2 = A2 − B2 +B3,

where

A2 : = −
n!

T n

∫ T

0

∫ tn

0

· · ·

∫ t3

0

u̇t2

∫ t2

0

f(t1, t2, · · · , tn)dt1 · · · dtn

B3 : =
n!

T n

∫ T

0

∫ tn

0

· · ·

∫ t4

0

ut3

∫ t3

0

f(t1, t3, t3, t4, · · · , tn)dt1dt3 · · · dtn.

By using the same argument of the above, for any k ∈ {3, . . . , n− 1}, we have

∫ tk+1

0

utk

(∫ tk

0

· · ·

∫ t2

0

∂kf(t1, · · · , tn)dt1 · · · dtk−1

)
dtk

=

∫ tk+1

0

utk∂k

(∫ tk

0

· · ·

∫ t2

0

f(t1, · · · , tn)dt1 · · · dtk−1

)
dtk

−

∫ tk+1

0

utk

∫ tk

0

∫ tk−2

0

· · ·

∫ t2

0

f(t1, · · · , tk−2, tk, tk, · · · , tn)dt1 · · · dtk−2dtk

= −

∫ tk+1

0

u̇tk

∫ tk

0

· · ·

∫ t2

0

f(t1, · · · , tn)dt1 · · · dtk

+

∫ tk+2

0

utk+1

∫ tk+1

0

∫ tk−1

0

·

∫ t2

0

f(t1, ·, tk−1, tk+1, tk+1, ·, tn)dt1 · dtk−1dtk+1 · dtn

−

∫ tk+1

0

utk

∫ tk

0

∫ tk−2

0

· · ·

∫ t2

0

f(t1, · · · , tk−2, tk, tk, · · · , tn)dt1 · · · dtk−2dtk.

Thus for k ∈ {3, · · · , n− 1}, we have

Ik = Ak − Bk +Bk+1,
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where

Ak : = −
n!

T n

∫ T

0

∫ tn

0

· · ·

∫ tk+1

0

u̇tk

∫ tk

0

· · ·

∫ t2

0

f(t1, · · · , tn)dt1 · · · dtn,

Bk : =
n!

T n

∫ T

0

∫ tn

0

·

∫ tk+1

0

utk

∫ tk

0

∫ tk−2

0

·

∫ t2

0

f(t1, ·, tk−2, tk, tk, ·, tn)dt1 · dt̂k−1 · dtn,

dt̂k denotes the absence of dtk.

k=n Let

An := −
n!

T n

∫ T

0

u̇tn

∫ tn

0

· · ·

∫ tk

0

· · ·

∫ t2

0

f(t1, · · · , tn)dt1 · · · dtn,

Bn :=
n!

T n

∫ T

0

utn

∫ tn

0

∫ tn−2

0

· · ·

∫ t2

0

f(t1, · · · , tn−2, tn, tn)dt1 · · · dt̂n−1dtn,

we have

In =
n!

T n

∫ T

0

utn

∫ tn

0

· · ·

∫ t2

0

∂nf(t1, · · · , tn)dt1 · · · dtn

=
n!

T n

∫ T

0

utn∂n

∫ tn

0

∫ tn−1

0

· · ·

∫ t2

0

f(t1, · · · , tn)dt1 · · · dtn − Bn

= An +
n!

T n
uT

∫ T

0

∫ tn−1

0

· · ·

∫ t2

0

f(t1, · · · , tn−1, T )dt1 · · · dtn−1 − Bn

= An − Bn,

since
∫ T

0
u̇tdt = 0.

Thus

k=n∑

k=1

Ik = (A1 +B2) + (A2 − B2 +B3) +
k=n−1∑

k=3

(Ak − Bk +Bk+1) + An − Bn

=
k=n∑

k=1

Ak.

Then

E[DN
u f(T1, · · · , Tn) | NT = n] = −

k=n∑

k=1

Ik = −

k=n∑

k=1

Ak

=
k=n∑

k=1

n!

T n

∫ T

0

∫ tn

0

. . .

∫ t2

0

u̇tkf(t1, · · · , tn)dt1 . . . dtn
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= E

[
f(T1, · · · , Tn)

(
k=n∑

k=1

u̇Tk

)
| NT = n

]
.

Now to show that

E

[
f(T1, · · · , Tn)

(
k=n∑

k=1

u̇Tk

)
| NT = n

]
= E

[
f(T1, · · · , Tn)δ

N(u) | NT = n
]
.

it is sufficient to prove

E

[
f(T1, · · · , Tn)

(
∑

k>n

u̇Tk
−

∫ ∞

Tn

u̇tdt

)
| NT = n

]
= 0,

since
∫ T

0
u̇tdt = 0. Recall that for k > n we have

E [f(T1, · · · , Tn, · · · , Tk) | NT = n] =

n!

T n
e−T

∫ ∞

0

e−tk

∫ tk

0

. . .

∫ tn+1

0

∫ tn

0

. . .

∫ t2

0

f(t1, · · · , tn, · · · , tk)dt1 . . . dtk.

Therefore for k > n

E[F u̇Tk
| NT = n] =

n!

T n
e−T

∫ ∞

0

u̇tke
−tk

∫ tk

0

. . .

∫ tn

0

. . .

∫ t2

0

f(t1, · · · , tn)dt1 . . . dtk

=
n!

T n
e−T

∫ ∞

0

utke
−tk

∫ tk

0

. . .

∫ tn

0

. . .

∫ t2

0

f(t1, · · · , tn)dt1 . . . dtk

−
n!

T n
e−T

∫ ∞

0

utk−1
e−tk−1

∫ tk−1

0

. . .

∫ tn

0

. . .

∫ t2

0

f(t1, · · · , tn)dt1 . . . dtk−1

= E[F (uTk
− uTk−1

) | NT = n]

= E

[
F

∫ Tk

Tk−1

u̇tdt | NT = n

]
.

Then

E[DN
u f(T1, · · · , Tn) | NT = n] = E

[
f(T1, · · · , Tn)

(
∞∑

k=1

u̇Tk
−

∫ ∞

Tn

u̇tdt

)
| NT = n

]
.

�

Now we can give the proof of Prop. 5.

Proof. a) We have using Lemma. 1 for any u ∈ H such that
∫ T

0
u̇tdt = 0

E[1{NT=n}D
N
u Fn] =

∞∑

i=1

E[1{NT=n}D
N
u Fn | NT = i]P (NT = i)
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= 1{NT=n}E[DN
u Fn | NT = n]P (NT = n)

= E
[
1{NT=n}Fnδ

N(u) | NT = n
]
P (NT = n)

= E
[
1{NT=n}Fnδ

N(u)
]
.

Thus

E[D̃N
u F ] = E[

n=m∑

n=1

1{NT=n}D
N
u Fn]

=
n=m∑

n=1

E
[
1{NT=n}Fnδ

N(u)
]
= E[FδN(u)].

b) Using the chain rule of D̃N and a) we obtain

E
[
GD̃N

u F
]
= E

[
D̃N

u (FG)− FD̃N
u G
]
= E

[
F (GδN(u)− D̃N

u G)
]
.

�
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