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Abstract

1 This paper presents a fine-tuning of some mapping functions used
in the Equivalent Strike framework. This new approach provides an
equivalent strike that is independent from the index base correlation.
This feature is valuable when pricing very junior and senior tranches
or when computing index tranches (or index base correlation) sensitiv-
ities. Our numerical tests on realistic cases showed that the equivalent
correlation provided by this new is pretty close to what is computed
with common mapping functions.
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1 Introduction

Equivalent strike techniques are widely used in order to price and hedge
synthetic bespoke CDO tranches in the base correlation framework. In this
framework the attachment and detachment correlations of a bespoke tranche
are deduced from base correlations of liquid index tranches via mapping
techniques. There are several mapping techniques - of which the advantages
and drawbacks have been widely discussed in the literature (see [1], [2], [3]) -
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such as: At The Money or Probability Matching or Expected Tranche Loss.
When looking for an equivalent strike - at a given maturity - the common
approach consists in solving the following optimization problem:

min
K

φ (K, ρI(K)) (1)

where φ is a bivariate function depending on the unknown K and the base
correlation curve of the index to which we are mapping ρI : K 7→ ρI (K)
(to simplify notations, we omit the dependence on maturity throughout the
paper). The equivalent strike solution of Problem (1):

K⋆ = argminKφ (K, ρI(K)) (2)

clearly depends on the shape of the base correlation curve ρI . This behavior
should be taken into account when dealing with the situations below:

1. Pricing very junior or senior tranches: Since mid-2007, traders are
more likely to price very junior tranches detaching below 3% (due to
the subordination erosion of some junior tranches present in their book
by successive default events) or very senior tranches attaching above
30% in order to hedge the book and take into account new market
conditions (it is common now to see quotes for [60%, 100%] tranches).
For these particular tranches, the equivalent strike K⋆ may depend on
the extrapolation hypothesis of the base correlation curve ρI .

2. Hedging a bespoke product via liquid index tranches : Since the Equiva-
lent Strike approach consists in mapping a bespoke tranche to a liquid
index tranche market, it is important to compute the sensitivity of the
bespoke tranche to the tranches of the liquid index. This is achieved
by perturbing the market quotes of each index tranche, bootstrapping
the base correlation for each perturbation scenario and finally valuing
the bespoke tranche via the Equivalent Strike approach for each index
correlation scenario. Since the equivalent strike K⋆ depends on the
index correlation curve ρI , it has to be computed for each index base
correlation scenario. The index tranche sensitivity computation time
will be impacted by this step.

This paper provides a new equivalent strike approach in order to address
the issues mentioned above. The proposed improvement is localized and fo-
cuses only on the equivalent strike computation step (see Equation (2) )as it
keeps many steps in this framework unchanged (choice of the mapping crite-
rion, multi-index mapping methods, term structure handling...). The main
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property of the proposed method is that the equivalent strike is indepen-
dent from the index base correlation ρI while the equivalent base correlation
ρI(K

⋆) is close to what is provided by the common approach described by
Equation (1). The second section of this paper provides a brief overview
of major mapping techniques within the Equivalent Strike framework. The
third section is dedicated to the description of the new mapping criterion.
The final section gives numerical results and compares our approach to the
common approach described by Equation (1).

2 Review of common mapping methods

Although some well-known drawbacks, the base correlation approach is widely
used by practitioners in order to price CDO tranches. In this framework a
protection leg [K1, K2] can be valued as the [0, K2]-protection leg value (using
a correlation ρ2) minus the [0, K1]-protection leg value (using a correlation ρ1
that may be different from ρ2). When [K1, K2] is a bespoke CDO tranche the
attachment and detachment correlations ρ1 and ρ2 are deduced from liquid
index correlation market data via a mapping technique. For a given bespoke
equity tranche [0, KB] the mapping technique provides an equivalent index
equity tranche [0, K⋆

I ]. The correlation used to price the [0, KB]-tranche is
then provided by ρ⋆B = ρI(K

⋆
I ) (where ρI : K 7→ ρI (K) is the base correla-

tion curve of the index used for mapping). In practice, the problem means
finding the strike K⋆

I that verifies:

ψ(K⋆
I , ρI(K

⋆
I ), π

I) = ψ(KB, ρI(K
⋆
I ), π

B) (3)

where:

• ψ is the mapping function (it needs to be monotonic of the strike)

• πI (resp. πB) is the index (resp. bespoke) portfolio

• KB is the given bespoke equity tranche strike

• K⋆
I the strike that allow to verify Equation (3)

We review below 3 popular choices for the mapping function ψ: At The
Money, Probability Matching and Expected Tranche Loss.
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2.1 At The Money (ATM)

This is one of the first and simplest mapping functions that have been used
in the Equivalent strike framework. It is defined by:

ψ(K, ρ, π) =
K

E [L (π)]

where E is the expectation operator and L (π) is the loss of the portfolio
π. This choice of mapping function leads to a simple expression for the
equivalent strike (that is not dependant on the shape of the base correlation
ρI):

K⋆
I = KB ×

E
[

L
(

πI
)]

E [L (πB)]

If the bespoke portfolio is tighter than the index portfolio, the bespoke
equity tranche will be mapped to a more senior index tranche and conversely.
This may lead to a situation (especially in the stochastic recovery framework)
where the Equivalent strike K⋆

I is higher than 100%. Other drawbacks of this
mapping function are the independence from the portfolios dispersions and
non continuity with respect to default settlement. In term of advantages
one can mention that the equivalent strike computation is extremely fast
(by comparison to other mapping functions) and that K⋆

I is independent
from ρI which is an appreciable feature when dealing with the two situations
mentioned in the introduction.

2.2 Probability Matching (PM)

In this case the mapping function is the probability that the loss of the
portfolio π is below the strike K. The equivalent strike:

ψ(K, ρ, π) = Pρ [L (π) ≤ K]

where Pρ is the probability operator using correlation value ρ and L (π) is
the loss of the portfolio π.

This mapping function addresses some of the drawbacks of the ATMmap-
ping since it is sensitive to portfolios dispersion and is continuous with respect
the to default settlement. Under normal market conditions ψ(0, ρ, π) > 0.
Thus, when using this mapping function one can face situations (typically
when index portfolio is much tighter than the bespoke one), where there is no
strike K⋆

I such as Equation (3) is verified. This mapping function may also
produce some ”counter-intuitive” behavior: typically, if the bespoke portfolio
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has a higher WAS (weighted average spread) than the index portfolio, the
intuition is that the equivalent strike of the reference will be lower than the
bespoke strike (similar to the ATM case), but this may not be the case as the
equivalent strike depends on the dispersion of the portfolio and the index cor-
relation curve level. In a Constant Recovery framework, solving Equation (3)
may be numerically unstable (since the portfolio loss cumulative distribution
is discrete for a given correlation). Smoothing the cumulative distribution
functions allows overcoming this behavior.

2.3 Expected Tranche Loss (ETL)

The mapping function is the proportion of the expected portfolio loss that is
embodied in a given equity tranche. It is a monotonic function of the strike:

ψ(K, ρ, π) =
Eρ [min (L (π) , K)]

E [L (π)]

where Eρ is the expectation operator using correlation value ρ and L (π) is
the loss of the portfolio π.

This mapping function takes into account the dispersion of portfolios
(similar to the Probability Matching case). It always provides an equivalent
strike since: (i) we are dealing with a mapping function that is monotonic of
the strike and (ii) we have ψ(0, ρ, π) = 0 and ψ(1, ρ, π) = 1 (we assume here
that we are dealing with standard portfolios. i.e. containing no short names).
This mapping function has also the following drawbacks: (1) Sometimes it
take dispersions into account but in a counterintuitive way. This is the case
for example, when an issuer of the bespoke portfolio widens idiosyncratically.
(2) Another problem is the continuity with respect to default settlement.

This method like the Probability Matching, leads to an equivalent strike
that is dependent on the index base correlation curve ρI . Particularly, when
mapping a junior bespoke tranche to an index portfolio that is much wider
than the bespoke one, the equivalent strike is sensitive the extrapolation
hypothesis below the lowest market strike (typically 3%). The same thing
may also happen, when we map a super-senior tranche on a bespoke portfolio
that is extremely tighter than the index one. This time the equivalent strike
is sensitive to the extrapolation hypothesis above the biggest market strike.

3 New computation method

As noticed in the previous section, the equivalent strike is commonly com-
puted via Equation (3). The equivalent strike can be regarded as the solution
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of the following problem:

K⋆ = argminKϕ (K)

where the function ϕ is defined via the mapping function ψ by:

ϕ (K) =
[

ψ(K, ρI(K), πI)− ψ(KB, ρI(K), πB)
]2

(4)

This mean that the equivalent strike is a function of the index correlation
curve ρI : K 7→ ρI (K). We suppose that ρI ∈ C1[0, 1], where C1[0, 1] is
the set of continuously differentiable functions from [0, 1] to R. This set is a
Banach Space with respect to the C1-norm defined by:

∥ f ∥C1=∥ f ∥∞ + ∥ f
′

∥∞, ∀f ∈ C1[0, 1]

where ∥ • ∥∞ stands for the sup-norm. We also introduce the function
F : C1[0, 1] → R such that:

K⋆ = F (ρI)

We assume that F is Gateaux differentiable at ρI and we denote dFρI its
Gateaux derivative at this point. The bespoke equity tranche is valued using
the equivalent correlation:

ρ⋆ = ρI(F (ρI)), ρ
⋆ ∈ [0, 1]

Let h : K 7→ h (K) be a vector in the Banach space C1[0, 1]. We look at
the first order impact of a small perturbation in the direction of h on the
equivalent correlation ρ⋆. Let ε be a real number such as: 0 ≤ ε ≪ 1. We
denote ρ⋆ε = (ρI + εh)(F (ρI + εh)) and we expand this expression to the first
order:

ρ⋆ε = ρ⋆ + ε (ρ′I(K
⋆)dFρI (h) + h(K⋆)) + o(ε) (5)

The term ερ′I(K
⋆)dFρI (h) is due to the fact that in the common Equivalent

Strike framework, K⋆ depends on the index correlation curve ρI . This term
disappears when the mapping function is not dependent on the correlation
curve ρI like in ATM approach. The second term εh(K⋆) is not peculiar
to the Equivalent Strike framework and will always exist. We propose in
this section, to change the Equivalent strike computation method, in order
to remove the dependance on the index correlation curve ρI while keeping
sensitivity to the bespoke and index portfolios dispersions. We will see in the
next section that this new approach provides similar results to the common
market practice. We propose instead of minimizing the function ϕ introduced
in Equation (4) to minimize the function χ defined by:

χ (K) =

∫

1

0

[

ψ(K, ρ, πI)− ψ(KB, ρ, π
B)
]2

dρ (6)
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The new equivalent strike is then computed as the solution of the following
problem:

K̂ = argminKχ (K)

and the correlation used to price the equity bespoke tranche is ρ̂ = ρI(K̂).
If we look as earlier at the first order impact of a small perturbation in the
direction h where h ∈ C1[0, 1] on the correlation ρ̂, the perturbed correlation
ρ̂ε (where the real ε verifies 0 ≤ ε≪ 1) is given by:

ρ̂ε = ρ̂+ εh(K⋆) + o(ε) (7)

In practice, we will use the following objective function:

χD (K) =
1

N

N
∑

i=1

[

ψ(K, ρi, π
I)− ψ(KB, ρi, π

B)
]2

(8)

where N is the number of correlation levels. The quantities ψ(KB, ρi, π
B),

i ∈< 1, N > are totally known and they can be pre-computed and stored
when looking for K̂. This will reduce computation time. If we apply this
approach to the Probability Matching method the objective function defined
by Equation (8) becomes:

χD (K) =
1

N

N
∑

i=1

[

Pρi

[

L
(

πI
)

≤ K
]

− Pρi

[

L
(

πB
)

≤ KB

]]2

(9)

Whereas when we apply this approach to the Expected Tranche Loss Match-
ing method the objective function defined by Equation (8) becomes:

χD (K) =
1

N

N
∑

i=1

[

Eρi

[

min
(

L
(

πI
)

, K
)]

E [L (πI)]
−

Eρi

[

min
(

L
(

πB
)

, KB

)]

E [L (πB)]

]2

(10)
In the next section, we will study the behavior of this new approach with

respect to the number of correlation levels N , the portfolios WAS (Weighted
Average Spread)... . The results will be compared to those obtained in the
common Equivalent Strike framework.

4 Numerical tests:

In this section, we mainly focus on the ETL mapping (since it is more used
by practitioners than Probability Matching or any other mapping function).
We define the ratio:

ω = Index portfolio WAS/Bespoke portfolio WAS
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where the WAS is given by:

WAS =
M
∑

m=1

wmDmSm/
M
∑

m=1

wmDm

with: M the number of issuers and Dm, Sm, wm are respectively the risky
duration, the market spread and the weight of the issuer m, m = 1, ...,M in
the portfolio.

4.1 Impact of the ratio ω

We use the mapping function (10) with 10 correlation levels ρi = i/9; i =
0, ..., 9 and we compare both approaches for ω ∈ {0.25, 0.5, 2, 4}. We also
consider 2 different index base correlation curves C1 (low correlation envi-
ronment) and C2 (high correlation environment):

Figure 1: 5-years index base correlation

The following figure provides the behavior of Common TLE and New
TLE as function of the ratio ω when using the curve C1:
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Figure 2: Common TLE and New TLE with low index base correlation

We notice that when index portfolio’s WAS is smaller (respectively bigger)
than bespoke portfolio’s WAS, the equivalent base correlation provided by
Common TLE is below (respectively above) the one provided by New TLE.
The difference between both methods is bigger when ω = 0.25 or 4 than
when ω = 0.5 or 2. We also notice that new and Common TLE are closer
for junior tranches (see graphs for ω = 2 or 4).

We now look at the the behavior of Common TLE and New TLE as a
function of the ratio ω in high correlation environment (i.e. using the curve
C2):
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Figure 3: Common TLE and New TLE with high index base correlation

In high correlation environment, the equivalent base correlation curves
relative positions is the opposite of what is observed the low correlation
environment. When index portfolio’s WAS is smaller (respectively bigger)
than bespoke portfolio’s WAS the equivalent base correlation provided by
Common TLE is above (respectively below) the one provided by New TLE.
Here too, the difference between both methods is bigger when ω = 0.25 or 4
than when ω = 0.5 or 2. We also notice that for ω = 0.5 or 2 base correla-
tion curves are close in high correlation environment that in low correlation
environment.

4.2 Impact of the number of correlation levels

We use the mapping function (10) with a number of correlation levels N ∈
{2, 5, 10, 20, 50} and we compare both approaches for ω ∈ {0.5, 2}. We also
consider as in the previous paragraph the curves C1 and C2.

The following figure provides the impact of the number of correlation
levels on the equivalent strikes and base correlations obtained with New TLE

10



when using the curve C1:

Figure 4: Impact of correlation levels number on New TLE with low index
base correlation

We notice a convergence of the equivalent strike from N = 10. Except
for N = 2, we observe that the equivalent strike obtained by New TLE
decreases as the N increases when the index portfolio is tighter than the
bespoke one. The equivalent strike obtained with Common TLE is higher
than those obtained by New TLE. Conversely, when the index portfolio is
wider than the bespoke one the equivalent strike decreases as N increases
(Except for N = 2). The equivalent strike obtained with Common TLE is
lower than those obtained by New TLE.

The following figure provides the impact of the number of correlation
levels the equivalent strikes and base correlations obtained with New TLE
when using the curve C2:
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Figure 5: Impact of correlation levels number on New TLE with high index
base correlation

By construction, New TLE gives the same equivalent strikes as with C1.
We notice that the equivalent strikes obtained via Common TLE are closer
to the one obtained with New TLE.

4.3 Comparison of PM and ETL mapping

In this paragraph, we compare the results obtained by the common and
new approaches for PM and ETL mappings using the same conditions as in
paragraph 4.1. We provide below the equivalent correlations for the curves
C1 and C2:
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Figure 6: PM and TLE with low index base correlation

Figure 7: PM and TLE with high index base correlation
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We notice that with either common or new approach, TLE mapping is
smoother than PM mapping (PM gives an equivalent correlation of which
the shape is as discontinuous as the index base correlation). We also notice
that TLE provides lower (resp. higher) equivalent base correlations then
PM when the ration ω > 1 (resp. ω < 1). We also observe that Common
and New TLE equivalent base correlation are more close than Common and
New PM ones. More generally, we notice that the equivalent base correlation
shape and behavior mainly depends on the mapping function (PM vs ETL)
rather than the fine-tuning approach (Common vs New).

4.4 Stability of Common and New ETL mapping

In this section we look at the equivalent base correlation sensitivity behavior.
Thus, we consider the following extreme example of 2 discontinuous index
base correlation curves C1 and C2:

Figure 8: 5-years index base correlation

We also consider an index portfolio with a WAS of 150 bp and bespoke
one with a WAS of 175 bp. We then look at the 5-years equivalent base
correlation in the neighborhood of the strike 10.5% using either index base
correlation curves C1 or C2 for both TLE methods (i.e. Common and New)
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Figure 9: Stability of the equivalent correlation sensitivity w.r.t. strike

When using New TLE, we notice that a bump in the index base corre-
lation of 10% leads to a bump in the equivalent strike of a 10% as expected
from Equation (7). When using Common TLE, we notice that the equivalent
correlation variation is 16.8% which is much higher (The extra bump of 6.8%
is associated to the term ερ′I(K

⋆)dFρI (h) appearing in Equation (5)). Be-
sides, we notice a ”discontinuity” of the equivalent base correlation variation
around the strike 10.5% (with Common TLE, the equivalent base correlation
variation is close to 10% at strikes 10% and 11%).

4.5 Impact of extrapolation on ETL mapping

In this paragraph, we look at the impact of the extrapolation method for ETL
mapping. We consider a bespoke and index portfolios such us ω = 2 and we
focus on the left side extrapolation. We consider the curve C2 introduced in
paragraph 4.1 with 3 extrapolations:

E1 Flat extrapolation after the strike 30%

E2 Linear extrapolation after the strike 30% with a slope equal to the slope
between 15% and 30%

E3 Linear extrapolation after the strike 30% with a slope twice bigger than
the slope between 15% and 30%
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We then look at the equivalent strike and correlations associated with a
bespoke strike of 30% for the 3 extrapolations introduced above:

Equivalent strike as a function of the left extrapolation slope:

slope 0 1 2
Common TLE 32.51% 32.22% 31.98%
New TLE 32.53% 32.53% 32.53%

Equivalent correlation as a function of the left extrapolation slope:

slope 0 1 2
Common TLE 90% 92.22% 93.97%
ρI(32.51%) 90% 92.51% 95.01%
New TLE 90% 93.53% 95.05%

The difference between the equivalent correlation provided by Common
TLE and ρI(32.51%) is mainly due to the dependance of the Common TLE
on the index curve ρI . This leads to the following break-even for the
[30%, 100%] super-senior tranche:

Break-even spread as a function of the left extrapolation slope:

slope 0 1 2
Common TLE 0.62% 0.67% 0.72%
ρI(32.51%) 0.62% 0.68% 0.75%
New TLE 0.62% 0.68% 0.75%

We see that extrapolation E3 impact in Common TLE is about 3 bps.

4.6 Real case

We present in this paragraph the equivalent 5-years base correlation curve of
CDX HY S9 using CDX IG S9 as a reference index as of 06/01/2011:
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Figure 10: CDX HY S9 mapped via Common and New TLE to CDX IG S9

We notice that both methods give very close results. We did many tests
with other portfolios. They all showed that Common and New TLE results
are close.

4.7 Index tranche sensitivities

We consider a 100 Mio USD, 5-years [3.981%, 15.609%]-tranche on CDX HY
S9. We first, price this tranche (regarded as bespoke) as of 06/01/2011 with
Common and New TLE using CDX IG S9 as a reference index. We provide
in the following table the prices given by both TLE approaches 2 :

TLE Price in USD Eq. att. strike Eq. att. correl. Eq. det. strike Eq. det. correl

Common 44,034,611 1.348% 43.887% 7.071% 50.524%
New 44,036,069 1.290% 43.887% 7.070% 50.521%

Table 1: Pricing outputs

We then, provide the hedge in Mio of USD of this bespoke tranche with
junior 5Y tranches of CDX IG S9

2The equivalent attachment correlations in Common and New TLE are the same even
if equivalent attachment strikes are different, because the 5Y-CDX IG S9 correlation is
extrapolated flat below the strike 2.36 %
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TLE [0- 2.36] [2.36 - 6.49] [6.49 - 9.59] [9.59 - 14.76] [14.76 - 30.25] Total

Common 24,572,935 92,400,206 12,522,328 0 0 129,495,469
New 22,092,188 88,177,749 11,926,527 0 0 122,196,464

Table 2: Tranche notional of hedging CDX IG S9 5Y tranches

Both approaches provide similar hedging figures (even if the hedge with
New TLE is slightly below the one provided by Common TLE). The advan-
tage of New TLE approach is that it is faster than Common TLE approach.
Actually, when computing the hedges above, one has to compute the equiva-
lent correlations (and thus strikes) for different perturbation scenarios of the
CDX IG S9 tranches market up-front quotes (and thus for different pertur-
bation scenarios of the 5Y-CDX IG S9 base correlation curve). In the New
TLE approach the equivalent strike are computed only once (when comput-
ing the price) which reduces the computation time. We provide below the
computation time for these 2 approaches using a computation grid3:

TLE Computation Time

Common 110 sec
New 76 sec

Table 3: Index tranche hedging batch computation time

5 Conclusion

We presented a fine-tuning of some mapping functions used in the Equivalent
Strike framework. In this approach, the equivalent strike is independent
from the index base correlation shape. Our numerical tests showed that the
new approach is more stable than the common one. For realistic cases, the
equivalent correlations obtained via New or Common TLE approaches are
very close.

Fine-tuned mapping functions behave similarly to the common ones as
functions of portfolios dispersions and ratio of portfolio WAS. Nevertheless,
they have the advantage of providing an equivalent strike independent from
the index base correlation shape. In particular, equivalent strikes are not
sensitive to extrapolation (and even interpolation) hypothesis. This feature

3The durations provided above take into account hedge computation time as well as
data transfer on the grid.
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makes the index tranche hedging computation of a bespoke tranche with the
new approach faster than what it can be achieved with the common approach.
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