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Abstract 

 

This paper estimates city-level employment cycles for 58 large U.S. cities and documents the 
substantial cross-city variation in the timing, lengths, and frequencies of their employment 
contractions.  It also shows how the spread of city-level contractions associated with U.S. 
recessions has tended to follow recession-specific geographic patterns.  In addition, cities within 
the same state or region have tended to have similar employment cycles.  We find no evidence, 
that similarities in employment cycles are related to similarities in industry mix, although cities 
with more-similar high school attainment and mean establishment size have tended to have 
more-similar employment cycles. 
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1. Introduction 

 National business cycles have long been characterized as a sequence of alternating 

periods of recession and expansion.  In the United States, for example, the Business Cycle 

Dating Committee of the National Bureau of Economic Research (NBER) is tasked with 

determining official recession and expansion turning points.  The determination of official 

business-cycle turning points is fairly opaque and untimely, and the turning points themselves 

are the only output from the effort.  To address these shortcomings, a large literature has 

developed applying various statistical techniques to determine turning points and to examine 

underlying business cycle parameters.1   

 The advantages of these statistical approaches relative to the NBER’s committee 

approach are their replicability, transparency, and timeliness.  Also, because of these advantages, 

statistical approaches are readily applicable to a wide variety of questions.  For example, using 

the Markov-switching model of Hamilton (1989), the notion of distinct cyclical phases has been 

extended to subnational economies, revealing significant differences in the timing, length, and 

occurrence of state-level recessions (Owyang, Piger, and Wall, 2005).  This research has also 

revealed that periods of national recession usually contain a spatial component in that a recession 

spreads across the country in a geographic pattern.  The effects of the 1990-91 NBER recession, 

for example, were first felt in the Northeast and the Far West before spreading to interior states.  

The recession receded in reverse, ending relatively quickly for interior states and lasting well 

after the end of the official recession for coastal states. 

                                                 
1 See Harding and Pagan (2008) and Chauvet and Hamilton (2006) for surveys and discussions. 
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 This paper extends this line of research by documenting the substantial variation in the 

cyclical movement of city-level employment, with the aim of finding the determinants of spatial 

variations over the cycle.  The specific question we address is whether the geographic patterns of 

city-level employment cycles are simply reflections of differences in city industrial compositions 

or whether other, spatial mechanisms are responsible.  As cities are arguably more relevant 

geographic delineations of local economies than are states, our analysis should provide a more 

accurate picture of subnational business-cycles.  As we show, city-level data also allow us to 

examine in greater detail the extent to which spatially similar economies have similar business-

cycle experiences.  This greater accuracy and detail provided by our city-level cycles will assist 

us in explaining the variation in subnational employment cycles and their associated geographic 

patterns. 

 In section 2 we determine the timing of the employment cycle phases for 58 large cities, 

which we describe relative to each other and to the national business cycle in section 3.  In 

section 4 we estimate the relative importance of industrial and geographic factors in determining 

cyclical similarities between cities, and in section 5 we extend the analysis to include potential 

roles for human capital, channels of monetary policy, industrial diversity, and agglomeration.  

Section 6 concludes. 

 

2. Estimating City Employment Cycles  

 For our purposes, a city is either a Metro Division or a Metropolitan Statistical Area that 

is not divided into Metro Divisions.  We use current MSA definitions, which restricts our 
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analysis to post-1990, and examine payroll employment for 1990.Q1-2008.Q1 for all 58 cities 

that had average employment above 500,000 over the period.  To determine the employment-

cycle phases of our cities, we apply the Hamilton (1989) Markov-switching model independently 

to each.  The simplest version of this model has employment cycle phases arising from the 

economy switching periodically between two different underlying regimes, each with its own 

mean growth rate.2  Let 0 be the mean growth rate when the economy is in expansion, and let 

1 , which is normalized to be negative, be the difference between the mean growth rates in 

expansion and contraction.  Specify the growth rate of employment, ty , as 

,10 ttt Sy              
(1) 

The switching in (1) is governed by a state variable, }1,0{tS .  Deviations from the mean 

growth rates are created by the stochastic disturbance, ),0(~ 2
 Nt .  When 

tS  switches from 0 

to 1, the growth rate switches from 0  to 10  .  Because 01  , 
tS  switches from 0 to 1 at 

times when the economy switches from expansion to contraction, or vice versa. 

 The switching variable tS  is unobserved, meaning that we need to place restrictions on 

the probability process governing it.  We assume that the process for 
tS  is a first-order two-state 

Markov chain, so any persistence in the regime is completely summarized by the value of 
tS  in 

the previous period.  More specifically, the probability process driving 
tS  is captured by the 

transition probabilities .]|Pr[ 1 ijtt piSjS     We estimate the model using the multi-move 

                                                 
2 This follows Owyang, Piger, and Wall (2005 and 2008); Owyang, Piger, Wall, and Wheeler (2008); and Hamilton 
and Owyang (2009). See Piger (2009) for a discussion of the basic Markov-switching models and their extensions. 
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Gibbs-sampling procedure for Bayesian estimation of Markov-switching models implemented by 

Kim and Nelson (1999). 3    

   Simply put, the model estimates the growth rates of employment during contraction and 

expansion and determines for each period the probability that the economy is in contraction.  To 

obtain this probability, the model compares the actual growth rate to the two regimes’ growth 

rates while also accounting for the persistence of the series.  If employment growth switches 

periodically between rates close to those of the two regimes, the probability of contraction will 

tend to be either close to zero or close to one.  For present purposes we are interested only in the 

timing of cities’ employment-cycle phases—as captured by their probabilities of contraction—

and seeing the extent to which they are related to industrial composition and spatial 

consideration.  As such, our analysis is silent on how well the cities do within each phase.  

Previous research has found that expansion growth rates were related to human capital and 

industrial structure, but that contraction growth rates were related only to the prevalence of 

manufacturing employment (Owyang, Piger, Wall, and Wheeler; 2008).  

 Before applying the model to our cities, we estimate the probability of employment 

contraction for the United States and compare it with the official NBER recession dates.  Our 

results are illustrated by Figure 1 in which NBER recessions are indicated by the shaded areas.  

As is well-known, employment growth languished long after the 1990-91 and 2001 recessions 

had ended, which shows up here as the probability of employment contraction remaining high 

beyond the ends of NBER recessions.  The figure also shows a less-well-known result:  U.S. 

                                                 
3 See Owyang, Piger, and Wall (2005) for a detailed description of the estimation procedure. 
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employment contractions began prior to official recessions for each of the last three recessions.  

Specifically, the 1990-91 recession was surrounded by an employment contraction that ran from 

1990.Q2 to 1992.Q2, two quarters before the official recession began until five quarters after it 

ended.  The 2000 recession was surrounded by an employment contraction that began in 

2000.Q4, two quarters prior to the recession, and ended in 2003.Q3, seven quarters after the 

recession had ended.  Finally, the U.S. was experiencing an employment contraction two 

quarters prior to the start of the official recession in 2008.Q1. 

 The model performs well for the cities in our sample, making the determination of 

contractionary periods fairly straightforward.  Figure 2 shows the estimated contraction 

probabilities for the five largest cities in our sample.  The first thing to note is the tendency for 

the contraction probabilities to be close to either one or zero, allowing for a clear separation of 

the employment series into contraction and expansion regimes.  Also note the differences across 

cities:  Although the cities’ contractions tended to have occurred around the same general time 

periods, there were significant differences in their starting and ending dates, and, therefore, their 

lengths.  For example, Los Angeles remained in contraction for much longer than the other four 

cities during the early 1990s, and Houston and Atlanta experienced the longest contractions of 

the early 2000s.  Also notice that, by 2008.Q1, only three of the cities were in contraction, even 

though the national contraction had already begun.  Three of these cities also exhibited some 

idiosyncratic switching:  Los Angeles experienced a double-dip contraction during 2001-2003, 

Houston experienced a brief contraction in 1998-1999, and Washington’s employment remained 

in its expansion phase throughout the early 2000s. 
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 Figure 3 illustrates the estimated contraction probabilities for the five smallest cities in 

our sample.  Although these cities tended to have experienced contractions around the same 

times as the national economy, idiosyncratic switches were common:  Bethesda, Hartford, and 

Rochester experienced contractions in the mid-1990s; Buffalo and Rochester experienced 

contractions in the mid 2000s; and Bethesda and Providence were in contraction by 2006.  

Because smaller economies tend to have noisier data, the separation into the two regimes is not 

always as clean as for the largest cities.  Even so, because the model accounts for persistence, the 

more-frequent regime switching for these cities is best explained by actual idiosyncratic events 

rather than by serially uncorrelated shocks.   

 Figures 2 and 3 also illustrate a number of relationships that we consider in subsequent 

sections.  For example, even though Bethesda and Washington are in the same MSA, their 

employment cycles are very different from each another.4  This is reminiscent of Voith (1998) 

and Chang and Coulson (2001), who consider whether city centers and their suburbs might have 

their own, but perhaps related, agglomeration processes.  Notice also the similarity between the 

employment cycles of Buffalo and Rochester, two neighboring cities in the same state, and the 

different cycles of Providence and Hartford, two relatively close cities in different states.   

 Our results for all 58 cities are summarized in Table 1, which indicates for each quarter 

whether a city is in contraction or expansion.5  For illustrative purposes the table is shaded for 

periods for which U.S. employment was in contraction.  The main features of Figures 2 and 3 

                                                 
4 See Wall (2010) for an analysis of the links between the employment cycles of neighboring cities. 
5 To achieve this binary identification, we adopt the convention that a contractionary quarter is one for which the 
probability of contraction is greater than 0.5.   
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discussed above also appear in Table 1: Although cities tended to have experienced contractions 

around the same times as each other, the starting and ending dates of these contractions differed 

a great deal; idiosyncratic contractions occurred for a number of cities during the mid 1990s and 

mid 2000s; and a significant number of cities were not in contraction yet by 2008.Q1.  Finally, it 

was not uncommon for cities to completely miss the contractions felt elsewhere: five of the cities 

did not experience a contraction during the early 1990s, seven did not experience a contraction in 

the early 2000s, and Virginia Beach didn’t experience a contraction during either period.   

 Figure 4 illustrates the differences across cities in the frequency of contraction over the 

period.6  The figure shows that city-level contraction frequencies varied a great deal around that 

of the U.S., which was in an employment contraction 27 percent of the time.  According to our 

results, 12 cities were in contraction between 42 and 69 percent of the time, whereas 15 cities 

were in contraction less than 21 percent of the time.  All five cities in Ohio and Michigan were 

among the high-frequency group, along with three of the eight cities in California.  The low-

frequency cities were more evenly distributed, although proximity to high-contraction-frequency 

cities was no barrier to membership in this group.  For example, Indianapolis and Louisville 

were in contraction relatively infrequently, despite their proximity to the high-frequency cities in 

Ohio and Michigan.  

 

                                                 
6 The numbers underlying the figure are in the first column of Appendix 1. 
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3. Aggregated and Geographic Patterns of City Contractions 

 The city-level experiences outlined above can be reaggregated to illustrate their 

relationship with country-level recessions and employment contractions.  In Figure 5, which 

simply tracks the number of cities in contraction over time, U.S. contractions occurred soon after 

the number of cities in contraction began to climb, and ended soon after the number began to 

fall.7  At no time, however, were all 58 cities in contraction.  For one, as pointed out above, 

during each U.S. contractionary period, several cities remained in expansion throughout.  For 

another, some cities will have already exited their contraction before other cities had entered 

theirs.  In fact, it is misleading to even call U.S. contractions ―national‖ in that large geographic 

components of the nation do not experience them at the same time, if at all.  The U.S. contraction 

and expansion switches reflect a rolling weighted aggregate of the local-level switches.  It is 

more accurate, therefore, to say that aggregate U.S. contractions occur when enough local 

economies have entered into contraction to make nationally aggregated data switch into its 

contraction phase.  The shock that results in local and, eventually, aggregate contractions might 

be experienced nationwide, but the whole nation need not enter into contraction for an aggregate 

contraction to occur.  Nor, as we have seen, does there need to be an aggregate contraction for 

local economies to switch into contraction. 

  As illustrated by Owyang, Piger, and Wall (2005), state contractions tend to follow 

geographic patterns.  They show, for example, that in the period surrounding the 1990-91 NBER 

                                                 
7 One could make this figure more complicated by applying employment shares to obtain a weighted sum of city 
contractions, but because, as we show below, city size is unrelated to the occurrence of contractions this only 
changes the scale of the figure without affecting the story. 
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contraction, states on the east coast switched into contraction first, followed by states on the west 

coast, and the swathe of states between Texas and Montana missed out on the contraction 

entirely.  As the state contractions ebbed during 1991, they receded back to the coastal states and 

lingered on for sometimes years longer.  Although much of this pattern is evident in our city-

level results, our data start in 1990 so we cannot see the pattern by which the early-switchers 

went into contraction.  Even so, the official recession did not begin until 1990.Q4, yet many 

cities were in contraction at least two quarters earlier than this (Figure 6).  A year later most, but 

not all cities were in contraction, and after another year had passed the contraction had receded 

to primarily coastal cities.   

 Figure 7 provides yearly snapshots of city contractions between 2000.Q3 and 2004.Q3 

and illustrates a geographic pattern of contraction opposite that of Figure 6.  In 2000.Q3—one 

quarter prior to the start of the U.S. employment contraction—10 cities far from the east and 

west coasts were in contraction.  One year later, the contractions had spread to most of the rest of 

the cites in our sample, and by two years later had begun to recede from the cities on the Atlantic 

coast.  By 2004.Q3, 12 cities were still in contraction, most of which were the same non-coastal 

cites which had been in contraction in 2000.Q3.  The geographic pattern of contractions during 

this period shared the trait with the early 1990s period that the cities that switched into 

contraction early also tended to switch out of contraction late.  However, the directions of the 

geographic patterns were completely opposite: The first was an ―outside-in‖ contraction whereas 

the second was an ―inside-out‖ one. 
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 The geographic pattern for the beginning of the third contractionary period did not 

resemble that for the previous two.  As shown by Figure 8, in 2007.Q1, one year prior to the start 

of the official recession and two quarters prior to the start of the U.S. employment contraction, 

17 cities were already in contraction.  These cities were concentrated in California and 

neighboring states, Florida, and the Rust Belt.  As of 2008.Q1, the contraction had spread to 

many of the cities in the Southeast and to more of the Rust Belt.  On the other hand, the 

Northeast, Northwest, and Mountain regions, along with Texas, were still relatively unscathed.  

Note that it is far too early to make a complete city-level accounting of this contractionary period 

because, for one thing, it is still far from over as of the time we are writing, and additional data 

might change the picture even of the quarters illustrated by Figure 8. 

 

4. Industrial or Geographic Similarity? 

 Thus far, we have simply been documenting the differences in city-level contractions 

without attempting to explain them.  We first need a measure of the extent to which cities differ 

from (or are similar to) one another, and we use their concordance, that is, the percentage of time 

that the two cycles are in the same regime (Harding and Pagan, 2002).8  More specifically, the 

concordance between the employment cycles of cities i and j is  

   
1

100
1 (1 ) ,

T

ij it jt it jt

t

C S S S S
T 

           (2) 

                                                 
8 See also Harding and Pagan (2006).  Camacho and Perez-Quiros (2006) discuss this approach and propose an 
alternative framework.  
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where Sit and Sjt are the state variables for cities i and j and T is the number of time periods.  The 

complete set of 1653 city-pair concordances is provided by Appendix 2 and they are summarized 

in Figure 9 by cities’ employment cycles’ concordances with the U.S. employment cycle.9 

 Why would two cities have widely differing employment cycles?  Clearly there are 

periodic events at the national level that result in most cities experiencing contractions at some 

point within a period surrounding a national recession.  But, around and during these periods, 

cities enter and exit their own contractions at different times.  If city-level switches in and out of 

contractions were mostly reflections of the industrial composition of cities, then concordance 

should be high between two cities with similar industrial structures.  Likewise, if two 

geographically similar cities tend to have similar employment cycles, then concordance should 

be higher for cities within the same region, state, or metro area.   

 This exercise is related to a longstanding question in the macro literature about whether 

fluctuations in aggregate economic variables are driven by microeconomic factors such as 

industry-level conditions, or aggregate factors that affected all industries (Lilien, 1982; 

Blanchard and Katz, 1986; Caballero, Engel, and Haltiwanger, 1997).  The urban/regional 

analogue of the question splits the analysis along subnational lines, dividing fluctuations into 

industry, national, state, and regional factors (Clark, 1998; Carlino and Sill, 2001; Del Negro, 

2002; Carlino and DeFina, 2004; Owyang, Rapach, and Wall, 2009).  Kose, Otrok, and 

Whiteman (2003) took the question in the other direction, splitting national-level fluctuations 

into national, continental, and world factors.   

                                                 
9 Each city’s average concordance and its concordance with the U.S. employment cycle are provided in Appendix 1. 
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 Although related to this previous work, which considers a variety of fluctuation types, 

our question is substantively different because of our characterization of economic fluctuations.  

The Markov-switching approach characterizes employment fluctuations by the occurrence of 

expansion and contraction phases and phase-specific growth rates. Our interest presently is in 

understanding the tendencies of city pairs to be in the same employment cycle phase, regardless 

of the cities’ growth rates within the phases. 

 To separate the national, regional, state, city, and industry effects, we estimate the 

following, which regresses business-cycle similarity, as measured by concordance, on measures 

of industrial and geographic similarity: 

 

 

Our primary measure of industrial similarity is a similarity index that measures the average 

closeness of employment shares across n major sectors.10  Denoting the employment share of 

sector k in city i as xik, 

 

IndustrySIij ∈ (0,1] and equals 1 for two cities with identical employment shares for all n sectors.  

Geographic similarity is measured by four dummy variables: PrincipalStateij equals 1 if the 

principal cities of i and j are in the same state, SecondaryStateij equals 1 if the principal city of i 

is in the same state as outlying counties of j, Regionij equals 1 if the principal cities of i and j are 

                                                 
10 We use annual data from the BLS for 1990-2008.  The sectors are mining, logging, and construction; 
manufacturing; trade, transportation, and utilities; information; financial activities; professional and business 
services; education and health services; leisure and hospitality services; other services; and government. 

1

1
1 .

n

ij ik jk

k

IndustrySI x x
n 

  
                     

(4) 

0

1 2

ln

           

           .

ij i j

ij

ij ij ij ij ij

C

IndustrySimilarity

PrincipalState SecondaryState Region Contiguous

  



    

  



    
       

(3) 
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in the same census region, and Contiguousij equals 1 if i and j are contiguous.11  Our estimation 

also includes city dummy variables to control for any factor that would affect a city’s 

concordance the same across all other cities. 

 The results of our estimation of four versions of (3) are provided by Table 2.  The first 

two estimations are extreme versions of the geography vs. industry question.  From Model I, 

which assumes that geographic similarity is unrelated to concordance, we obtain a positive effect 

for similar industrial structures, but this result is not quite statistically significant (p ≈ 0.13).  

From Model II, which assumes that the effect of industrial similarity is zero, we find that cities 

with principal cities in the same state or region tend have more-concordant employment cycles.  

On the other hand, we find no statistically significant relationship for contiguity or our 

secondary-state dummy. 

 Of course, geography and industry are likely to be related in that, for a variety of reasons, 

cities in the same parts of the country will tend to have similar industrial structures.  By 

including only industrial or geographic similarity, as in Models I and II, we are not controlling 

for this simultaneity.  From our results for Model III, which does control for simultaneity, it is 

clear that the positive role for industrial similarity found in Model I was due only to that variable 

capturing the relationship between geographic similarity and concordance.  Specifically, 

inclusion of industrial similarity has no effect on our estimates of the link between geography 

and concordance, but inclusion of the geographic similarity dummies completely eliminates the 

                                                 
11 There is a potential variable, TertiaryStateij, for when the outlying counties of i and j are in the same state.  We 
only have one pair for which this would equal 1 (Louisville and Cincinnati), so we do not include the variable.   
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positive coefficient on industrial similarity from Model I.12  We conclude, therefore, that 

geographically similar cities tend to have similar employment cycles, but that there is no overall 

tendency for cities with similar industries to have similar employment cycles.  

 Model IV is a more-general specification that removes the restriction that the importance 

of  regional similarity is the same across regions.  Specifically, Model IV includes four regional-

similarity dummies, one for each Census region.  It shows that cities in the Northeast or Midwest 

regions tend to have more-similar employment cycles, but that there is no such relationship for 

cities in the Southeast or West.  In addition, Model IV yields a stronger estimate of the 

relationship for the Northeast and Midwest, more than doubling that of the Northeast and more 

than quadrupling that of the Midwest.  Note also that Model IV is preferred statistically to 

Models I – III in that the restrictions needed to obtain those models from IV are easily rejected 

by likelihood-ratio tests.  

 We return below to discussing the implications of Model IV, but before doing so we need 

to check whether our results are sensitive to the way that we have measured industrial similarity.  

We can think of two reasons why our industry similarity index might mask important differences 

in industrial structure and suppress the importance of industry in explaining concordance.  First, 

the level of aggregation, which is limited by data availability, might be too blunt to capture 

differences that matter.  In particular, our index does not distinguish between the durable and 

nondurable goods sectors, which might be problematic because the durable goods sector should 

be more sensitive to monetary policy, for example.  Second, perhaps our index, which averages 

                                                 
12 Note that the log likelihoods for Models II and III are identical, whereas a likelihood ratio test easily reject the 
null that there is no difference between Models III and I. 
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across all sectors, is masking the importance of a subset of sectors.  Table 3 summarizes the 

results we obtain under measures of industrial similarity that ameliorate both of these concerns.  

Separate data for durable and nondurable sectors are unavailable for three of our cities, so the 

results in Table 3 are for 55 cities only. 

  Model IVa simply confirms that we obtain the same general results with our 55 cities as 

for Model IV with the full sample.  Model IVb constructs the industrial similarity index with 

separate data for durables and nondurables, obtaining almost identical results to Model IVa.  

Model IVc dispenses with the similarity index and use measures of similarity for sectors whose 

sensitivity to the employment cycle should differ from the average:13 manufacturing and mining, 

logging, and construction tend to be more sensitive than average, whereas the government sector 

tends to be less sensitive than average.  Nonetheless, we do not find that similarity in any of 

these sectors is related to concordance.  Finally, Model IVd differs from Model IVc in that it 

looks at durable-goods similarity rather than manufacturing similarity.  Again, this has no effect 

on our results. 

 To summarize the importance of geographic factors in explaining the pattern of city 

contractions, the expected concordances from Model IV are provided in Table 4.  For example, 

the employment cycles of two cities in different regions and states should be in synch 71.7 

percent of the time, as obtained from the intercept term.  If the two cities are in the same state in 

the South or West, where regional similarity does not matter, they should be in the same phase 

80 percent of the time.  But if they are in the same state in the Northeast of Midwest, where 

                                                 
13 For each industry the similarity between cities i and j is  1 .

ij ik j kk ik j
Similari x x xty x  

.
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regional similarities matter, they should be in the same phase 84.6 percent and 88 percent of the 

time, respectively.  So, depending on where the cities are located, geographic similarity can have 

up to a 16.3 percentage point difference on their expected concordance. 

 Our city dummies can be as important in determining concordance as the geographic 

factors, as summarized by Table 5, which provides the estimated city effects from Model IV and 

converts them into percentage points.  To prevent perfect collinearity, the city dummies were 

restricted to sum to 1, so each shows the difference relative to the average.  A positive city effect 

indicates that, controlling for industrial and geographic similarity, the city tended to be more in 

synch with others than was the average city.  The city effects for Charlotte and Miami meant that 

their concordances with others were more than 9 percentage point higher, whereas the city 

effects for Cincinnati, San Diego, and Detroit reduced their concordances with others by more 

than 12 percentage points.  The geographic pattern of the city effects is shown by Figure 10.  

Because the regional effects have been taken out by the four regional dummies, cities with the 

highest and lowest city effects are scattered across the country.  There seems to be some 

commonality within some states, however, particularly California, Ohio, New Jersey, and 

Florida. 

 These city effects can capture many things, including some that are not necessarily city 

specific.  For example, they might be capturing state-specific effects if the relationship between 

concordance and being in the same state differs across states.  Our state dummy does not 

distinguish between states, so any state-specific effect that differs from average will be captured 

by the city effects.  The city dummies can also capture how a city’s concordance with all other 
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cities differs because of the city’s very particular industrial structure.  For example, a reasonable 

explanation for the large negative city effects for Detroit, Warren, San Diego, and Virginia 

Beach is that they have very specific industries that set them apart: automobile manufacturing in 

the cases of Detroit and Warren, and large military bases in the cases of San Diego and Virginia 

Beach.  So, although these industries are important in explaining the employment cycles of their 

particular cities, they are not prevalent enough across cities to explain the geographic patterns 

depicted above. 

 

5. Geography vs. Other Similarities 

 Our results above indicate that cities within the same state and perhaps the same region 

tend to have similar employment cycles.  These results are driven either by the existence of 

spatial propagation whereby switches in and out of contractions spread via some underlying 

spatial links between cities, or cities in the same state or region tend to share certain 

characteristics that we have not controlled for.  In this section we examine whether any of four 

sets of variables capturing similarities in human capital, monetary-policy channels, industrial 

diversity, and agglomeration are related to concordance.14  Further, if they are related, we can 

compare their inclusion in the estimation on our estimates of geographic factors to see if they are 

driving our findings.  The results of this exercise are provided in Table 6.   

                                                 
14 The data for these variables are from the Census Bureau’s State and Metropolitan Area Data Book: 2006, which 
included online updates as of February 9, 2009.  This source typically provides data for one year because of changes 
in the composition of cities over time. 
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 For the first set of results—Model V—we added three measures of human capital 

similarity to Model IV: a racial similarity index constructed along the lines of the industrial 

similarity index, and two measures of educational similarity (high school and bachelor’s degree 

attainment) constructed along the lines of the single-industry similarity measures used above.15  

We know from previous research that cities’ performance in either phase of the employment 

cycle is related to human capital as measured by education and race (Owyang, Piger, Wall, and 

Wheeler, 2008), and that the employment effects of recessions differ by race and education level 

(Hoynes, 2000; Engemann and Wall, 2010).  Our question here is a bit different from this: Do 

similarities between cities in their racial composition and educational attainment make them 

more likely to be in the same phase of the employment cycle?  Figures 11 and 12, which plot 

employment by race and educational attainment over our sample period, illustrate why one might 

think this to be so.   

 Note the period surrounding the aggregate employment contraction of the early 2000s 

(Figure 11):  Black employment started falling in 1999, prior to the start of the aggregate 

contraction, whereas white employment peaked in 2001, after the aggregate contraction had 

begun. This suggests that cities with relatively similar racial compositions might have had 

relatively similar employment cycles, although the less-clear pattern around other turning points 

suggests otherwise.  The differences between levels of educational attainment in the employment 

effects of contractions are more stark than those between races (Figure 12):  The drop in 

                                                 
15 We use four racial categories: white, black, Asian or Pacific Islander, and Native American.  High school 
attainment is the share of the population over 25 years of age who have a high school diploma and have no 
additional education.  Bachelor’s degree attainment is the share of the same group with at least a bachelor’s degree.  
All variables are for 2006. 
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employment for those with at least a bachelors degree is almost imperceptible whereas steep and 

early drops and late recoveries are the norm for those with only a high school diploma.16  All else 

constant, cities with a labor force that has relatively many with only a high school diploma 

should, therefore, have a significantly different employment cycle from those with relatively 

many with at least a bachelors degree. As summarized by Table 6, when we add our human 

capital variables to Model IV, only the similarity in high school attainment is positive and 

statistically significant:  Two cities with similar levels of high school attainment tend to have 

more-concordant employment cycles.  Further, as Model IV is nested in this model, we can use a 

likelihood ratio test to reject the null that inclusion of these three variables has no effect on the 

model.   

 Previous research has found that the effects of monetary policy differ across states and 

regions (Carlino and Sill, 1998 and 1999), so it is possible that the city-level differences in 

employment cycles are driven in part by varying responses to monetary policy shocks.  To 

capture differences in the magnitudes of various channels of monetary policy, Model VI adds 

three variables to Model V.  The money channel, whereby monetary policy has larger effects on 

manufacturing than other industries, is already captured by our industry-similarity variable.  To 

capture the broad credit channel, through which large firms are better able to absorb monetary 

policy shocks because of lower information and transactions costs, we have included the 

similarity in mean establishment size.  Through the narrow credit channel small banks are 

thought to be more limited than large banks in finding alternative funding under tight monetary 

                                                 
16 Note that these are the only education and racial categories available at a quarterly frequency and that the data on 
educational attainment begin in 1992. 
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policy, so we have included two bank-size measures.  The first, average bank size—deposits per 

bank—represents this channel directly, and the second, banks per establishments, represents the 

availability of banking options for firms within a city.  As shown in Table 6, we find evidence 

that the broad money channel is related to city business-cycle similarity in that the sign on the 

similarity of mean establishment size is positive and statistically significant.   

 The final two models, VII and VIII, examine whether employment cycle similarities can 

be attributed to similarities in industrial diversity and agglomeration, respectively.  Simon (1988) 

found that a more industrially diversified city will have less frictional employment because its 

labor force will be more able to adjust to any negative shock.  In our context, this might mean 

that two cities that are similarly diversified should have similar employment cycles because they 

could adjust more quickly during a contraction.  It turns out, however, that although the 

similarity of industrial diversity is positively related to concordance, its effect is not statistically 

significant and inclusion of it has no statistically significant effect on the model.  Finally, to test 

whether similarly agglomerated cities tend to have similar employment cycles, we estimated 

Model VIII, which adds similarity of city density and city size to Model VI.  Neither variable is 

close to being statistically significant. 

 According to likelihood ratio tests, Model VI is preferred statistically to all other 

specifications we have considered.  The same geographic variables that were significant in 

Model IV are still significant in Model VI, with only minor changes in their magnitudes.  From 

Model VI we conclude that employment-cycle similarity is related to similarity in geography, 

high school attainment, and mean establishment size.   
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 To see the extent to which these similarities matter, Table 7 calculates the expected 

concordances under the various combinations of these similarities.  The first column of results, 

which is analogous to Table 4, assumes that two cities have the sample-average similarities in 

high school attainment and mean establishment size, but can differ geographically.  Note first 

that for two such cities in different regions and states, the expected concordance is 73.1.  If the 

two cities were in the same state in the South or West, they should have a concordance of 81.2.  

If they are in different Northeastern or Midwestern states their expected concordances are 77.3 

and 79.5, respectively.  If they are in the same state in the Northeast or Midwest, their expected 

concordances rise to 85.9 and 88.4, respectively. 

 The second and third columns of results assume, respectively, that the two cities have the 

same levels of high school attainment and mean establishment size.  Having the same level of 

high school attainment adds 1.4 to 1.6 points to the concordances in the first column of results, 

whereas having the same mean establishment size adds 1.6 to 1.7 points.  The final column 

assumes that the cities have the same high school attainment and mean establishment size, 

resulting in concordances of between 76.2 and 91.1, depending on the level of geographic 

similarity.  Our addition of human capital and monetary-policy channels contributes something, 

but not a whole lot, to our explanation of city concordances.  Geographic similarity is still 

explaining large chunks of the differences in concordance.  Perhaps there are other city-level 

characteristics that we have not considered that are being picked up as geographic similarity.  

Alternatively, the geographic similarity is picking up a spatial propagation mechanism such as 

trade by which turns in the employment cycle are spread from city to city.  
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6. Summary and Conclusions 

 We estimated city-level employment cycles for 58 large U.S. cities and documented the 

substantial cross-city variation in the timing, lengths, and frequencies of their employment 

contractions.  We also showed how the spread of city-level contractions associated with U.S. 

recessions has tended to follow recession-specific geographic patterns.  Cities within the same 

state or region have tended to have similar employment cycles, but cities with similar industrial 

mixes did not.  Additionally, cities with more-similar high school attainment and mean 

establishment size have tended to have more-similar employment cycles.  

 According to our statistically preferred model, two cities that are geographically 

dissimilar and have the sample-average similarities in high school attainment and mean 

establishment size should be in the same employment cycle phase 73.1 percent of the time.  

However similar the cities’ high school attainment and mean establishment size, geographic 

similarity can raise their concordance by as much as 15.3 percentage points (if the cities are in 

the same state in the Midwest).  For any degree of geographic similarity, having identical high 

school attainment and mean establishment size will raise concordance by 3.1 points.     
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Appendix 1. Summary Statistics 

  
Contraction 
Frequency 

Mean 
Concordance 

Concordance 
with U.S. 

Atlanta-Sandy Springs-Marietta, GA 0.361 79.1 91.7 
Austin-Round Rock, TX  0.167 76.8 80.6 
Baltimore-Towson, MD  0.292 79.4 90.3 
Bethesda-Gaithersburg-Frederick, MD 0.514 70.7 81.9 
Boston-Quincy, MA 0.278 81.1 91.7 
Buffalo-Niagara Falls, NY   0.389 72.5 80.6 
Charlotte-Gastonia-Concord, NC-SC   0.278 81.2 88.9 
Chicago-Naperville-Joliet, IL 0.264 81.0 87.5 
Cincinnati-Middletown, OH-KY-IN   0.681 59.6 65.3 
Cleveland-Elyria-Mentor, OH   0.569 67.3 73.6 
Columbus, OH   0.444 70.3 72.2 
Dallas-Plano-Irving, TX 0.208 80.3 87.5 
Denver-Aurora, CO  0.153 77.0 81.9 
Detroit-Livonia-Dearborn, MI 0.681 56.4 59.7 
Edison, NJ 0.083 72.1 75.0 
Fort Lauderdale-Pompano Beach-Deerfield Beach, FL 0.278 71.1 77.8 
Fort Worth-Arlington, TX 0.264 80.7 90.3 
Hartford-West Hartford-East Hartford, CT   0.472 65.4 75.0 
Houston-Sugar Land-Baytown, TX   0.333 76.2 80.6 
Indianapolis-Carmel, IN   0.194 78.0 86.1 
Jacksonville, FL   0.333 79.0 94.4 
Kansas City, MO-KS   0.347 74.8 84.7 
Las Vegas-Paradise, NV   0.306 77.9 86.1 
Los Angeles-Long Beach-Glendale, CA 0.347 75.1 84.7 
Louisville-Jefferson County, KY-IN   0.194 74.6 80.6 
Memphis, TN-MS-AR   0.528 71.1 80.6 
Miami-Miami Beach-Kendall, FL 0.236 81.5 90.3 
Milwaukee-Waukesha-West Allis, WI   0.236 80.1 90.3 
Minneapolis-St. Paul-Bloomington, MN-WI   0.403 77.2 87.5 
Nashville-Davidson--Murfreesboro, TN   0.194 75.0 83.3 
Nassau-Suffolk, NY 0.139 72.1 77.8 
Newark-Union, NJ-PA 0.181 69.7 73.6 
New Orleans-Metairie-Kenner, LA   0.472 62.7 72.2 
New York-White Plains-Wayne, NY-NJ 0.292 80.2 90.3 
Oakland-Fremont-Hayward, CA 0.597 59.9 59.7 
Oklahoma City, OK   0.139 76.9 80.6 
Orlando-Kissimmee,  FL   0.264 78.8 90.3 
Philadelphia, PA 0.306 80.5 88.9 
Phoenix-Mesa-Scottsdale, AZ   0.417 77.2 91.7 
Pittsburgh, PA   0.292 76.9 79.2 
Portland-Vancouver-Beaverton, OR-WA   0.194 79.8 86.1 
Providence-New Bedford-Fall River, RI-MA   0.194 74.3 83.3 
Richmond, VA   0.236 80.2 90.3 
Riverside-San Bernardino-Ontario, CA   0.264 62.1 62.5 
Rochester, NY   0.375 72.0 79.2 
Sacramento-Arden-Arcade-Roseville, CA   0.236 63.6 65.3 
St. Louis, MO-IL  0.264 81.0 87.5 
Salt Lake City, UT   0.167 76.4 77.8 
San Antonio, TX   0.319 76.0 81.9 
San Diego-Carlsbad-San Marcos, CA   0.667 58.5 61.1 
San Francisco-San Mateo-Redwood City, CA 0.458 70.7 76.4 
San Jose-Sunnyvale-Santa Clara, CA   0.208 78.0 81.9 
Santa Ana-Anaheim-Irvine, CA 0.347 70.8 79.2 
Seattle-Bellevue-Everett, WA 0.181 76.9 81.9 
Tampa-St. Petersburg-Clearwater, FL   0.347 78.8 93.1 
Virginia Beach-Norfolk-Newport News, VA-NC   0.028 67.8 69.4 
Warren-Troy-Farmington Hills, MI 0.486 64.9 68.1 
Washington-Arlington-Alexandria, DC-VA-MD-WV 0.125 72.5 79.2 

Cross-City Average 0.285 73.8 81.9 
United States 0.276  
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New York 92 92 88 82 83 92 96 88 78 96 81 83 92 94 58 83 63 85 64 83 81 67 83 81 86 94 61 79 88 61 81 78 68 82 53 85 67 89 86 90 81 74 68 82 79 82 74 89 85 79 63 76 78 82 85 85 81

Los Angeles 83 79 76 78 83 88 82 72 88 86 78 83 86 53 78 68 79 72 75 72 61 86 75 78 86 67 74 79 58 75 72 63 76 50 79 69 81 78 82 72 71 65 74 74 74 68 81 79 71 57 74 72 82 76 76 75

Chicago 88 90 81 92 96 79 86 96 72 86 ## 89 67 83 60 79 58 86 89 67 81 83 92 97 58 82 90 58 78 86 76 82 58 88 58 92 89 99 89 76 71 88 82 90 74 92 82 82 63 79 75 74 88 76 75

Houston 81 74 88 92 75 74 89 68 79 88 85 65 74 61 75 57 79 88 71 82 76 88 85 65 69 83 65 74 76 75 78 60 78 60 88 82 86 82 64 64 81 69 83 75 79 78 75 72 67 71 69 81 75 76

Atlanta 71 82 86 86 93 86 74 79 90 82 76 90 64 69 60 79 85 76 76 90 82 88 63 72 83 68 68 88 81 83 65 83 60 88 88 92 88 78 67 81 81 81 83 88 89 78 72 83 82 67 78 72 71

Washington 81 82 71 67 85 78 72 81 83 47 75 46 99 75 72 69 53 67 72 78 83 44 96 76 44 94 67 57 74 42 82 78 78 75 79 69 79 85 71 82 71 60 83 76 68 51 85 61 65 79 71 69

Dallas 90 79 78 93 72 92 92 89 61 83 54 79 64 92 86 64 75 86 94 94 61 79 93 53 75 78 74 88 53 88 67 94 92 90 81 74 76 90 79 90 68 89 85 88 68 76 69 74 90 79 81

Philadelphia 83 82 97 76 82 96 93 63 82 64 83 60 82 85 71 85 79 90 93 63 78 86 63 82 82 72 81 57 83 63 90 85 94 85 72 67 83 78 86 78 88 83 78 64 75 79 78 83 81 79

Phoenix 90 83 82 74 79 85 71 93 69 72 71 74 71 79 74 85 74 82 68 67 78 74 68 76 72 89 63 78 74 82 82 81 74 78 61 72 75 69 86 82 92 72 67 78 90 72 72 83 76

Minneapolis 82 72 75 86 78 81 92 68 65 64 75 78 81 69 86 78 83 67 68 79 72 64 83 82 88 69 79 67 83 83 88 81 79 63 76 76 76 88 83 88 74 65 79 89 63 74 74 72

Boston 76 85 96 93 63 85 61 83 60 85 85 68 82 82 90 96 60 81 89 60 79 82 72 83 57 86 63 93 88 94 85 75 69 86 81 86 75 90 86 81 64 78 76 78 86 81 79

Snta Ana-Anah 67 72 78 53 81 68 79 83 64 61 61 75 75 67 75 67 74 68 58 75 64 60 79 50 74 81 69 69 71 61 79 68 63 76 63 68 78 82 60 54 82 72 71 68 68 67

Seattle 86 83 67 78 49 71 61 97 86 58 72 86 86 89 56 76 96 47 67 81 68 79 47 85 58 89 92 88 83 68 79 96 82 93 63 86 79 93 65 76 64 68 90 74 78

St. Louis 89 67 83 60 79 58 86 89 67 81 83 92 97 58 82 90 58 78 86 76 82 58 88 58 92 89 99 89 76 71 88 82 90 74 92 82 82 63 79 75 74 88 76 75

Baltimore 58 86 57 85 61 83 81 67 81 83 83 92 56 79 88 58 83 78 65 82 53 85 64 89 86 90 81 74 68 82 82 79 74 92 88 79 63 79 78 79 85 82 83

Warren 72 68 46 47 67 72 86 56 72 61 64 69 51 68 78 47 72 85 71 75 63 50 67 69 68 75 63 54 68 65 68 76 64 71 68 68 63 69 43 63 65 64

Tampa 63 74 67 78 75 75 69 92 78 86 61 74 82 67 69 81 74 93 64 85 69 86 86 85 78 85 68 76 82 74 82 89 96 76 68 85 83 68 79 76 75

San Diego 47 60 46 60 79 76 54 54 57 93 42 50 76 49 51 78 64 71 50 57 54 51 58 57 56 36 47 44 50 72 54 61 42 50 50 68 56 47 61 63

Nassau-Suffolk 76 71 68 54 68 71 76 82 46 94 75 46 96 65 56 72 40 81 79 76 74 78 68 78 83 69 81 69 61 82 75 67 50 83 63 67 78 72 71

Riverside 58 53 53 61 67 61 61 67 74 60 47 72 50 57 74 42 65 92 58 61 57 47 74 76 57 63 57 57 64 68 54 46 74 61 54 63 60 61

Denver 86 58 69 86 89 89 53 76 96 47 67 81 68 79 47 85 61 89 92 88 83 68 82 99 82 96 63 86 79 96 68 76 64 68 93 74 75

Pittsburgh 72 78 83 86 86 64 74 90 61 69 81 82 76 61 82 53 89 89 90 92 65 68 88 76 88 74 83 76 82 71 74 67 65 82 74 72

Cleveland 64 69 64 64 81 49 63 89 56 69 88 74 81 60 58 69 67 68 72 63 46 60 60 60 90 64 76 63 71 60 78 51 57 74 72

San Francisco 67 75 78 75 63 74 61 67 69 63 65 56 68 56 78 72 82 78 57 51 71 65 71 71 75 71 65 57 63 69 76 68 71 72

Orlando 81 86 58 76 90 58 67 83 76 90 56 90 67 89 94 85 81 79 76 85 85 82 74 89 93 85 71 88 75 65 85 74 78

San Jose 89 61 76 88 53 75 78 74 82 53 85 67 92 86 90 81 71 76 90 74 93 68 83 79 85 68 71 69 68 90 74 75

Miami 56 85 93 56 78 83 74 85 56 90 61 92 92 96 86 79 74 88 85 88 71 94 85 85 63 82 72 76 90 79 78

Oakland 40 54 75 47 50 82 68 69 51 64 58 56 57 56 54 43 54 43 57 71 53 63 49 57 49 67 51 51 63 67

Edison 81 40 90 71 58 72 40 86 74 76 79 81 74 81 89 75 86 75 56 85 72 72 47 89 57 61 81 67 65

Portland 51 71 85 72 83 51 89 60 93 96 92 88 72 78 94 86 92 67 90 83 92 64 81 68 72 92 78 79

Cincinnati 47 67 76 63 86 51 53 58 56 60 64 54 35 49 51 49 85 56 65 51 74 51 72 49 46 65 61

Newark 64 57 68 42 76 75 72 69 76 67 74 79 65 76 68 60 78 71 63 51 79 64 63 74 71 67

Kansas City 68 74 64 82 50 83 86 88 89 68 68 82 85 82 79 83 79 85 71 76 72 63 76 68 67

Columbus 81 76 69 60 74 74 75 74 69 58 69 61 72 78 71 72 64 67 67 71 50 69 69 71

Las Vegas 63 83 76 85 85 81 71 83 72 78 75 78 78 85 92 75 67 81 79 64 83 75 76

Detroit 49 44 56 53 60 61 57 35 49 49 49 76 56 60 49 71 51 61 46 46 57 58

Indianapolis 65 88 90 86 82 78 81 83 89 83 67 90 83 83 61 83 68 67 89 72 76

Sacramento 61 61 57 47 74 79 60 63 60 63 64 71 57 51 74 67 54 65 63 61

Fort Worth 94 93 86 71 71 90 82 88 74 89 88 88 68 76 75 74 88 82 83

Milwaukee 90 86 74 76 90 85 88 71 92 88 90 68 82 72 71 88 79 81

Charlotte 90 75 69 89 83 89 75 93 83 83 64 81 76 75 86 78 76

San Antonio 65 65 85 85 85 79 83 76 85 68 74 69 65 79 71 69

Fort Lauderdale 75 67 78 67 67 79 81 64 53 86 68 58 75 69 63

Virginia Beach 81 81 81 50 76 69 78 56 83 51 50 83 58 60

Austin 81 97 64 85 78 94 67 75 65 67 92 72 74

Nashville 78 67 88 81 83 58 89 65 64 81 72 71

Salt Lake City 64 82 75 92 67 72 65 64 92 69 71

Memphis 71 81 67 75 67 85 58 61 69 68

Richmond 88 82 63 88 72 74 88 76 78

Jacksonville 78 72 83 82 69 81 78 79

Louisville 72 72 63 64 89 72 74

New Orleans 58 60 47 64 58 57

Providence 68 61 75 67 65

Bethesda 68 63 76 69

Hartford 67 75 68

Oklahoma City 72 76
Buffalo 82

Appendix 2: Cross-City Concordances (Ordered by City Size) 

 100 
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Figure 4. 

Frequency of Recession Across Cities, 1990-2008

(Percentage of Time in Contraction)

0.00 to 0.21
0.21 to 0.29
0.29 to 0.42
0.42 to 0.69
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Figure 5. 
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1990.Q2

1991.Q2

1992.Q2

Figure 6. Early 1990s Contractions 

Cities in Contraction are in Black 
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  Figure 7. Early 2000s Contractions 

Cities in Contraction are in Black 
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2008.Q1

2007.Q1

Figure 8. Late 2000s Contractions 

Cities in Contraction are in Black 
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Figure 9. 

Concordances Between City and U.S. Business Cycles

0.60 to 0.74
0.74 to 0.79
0.79 to 0.82
0.82 to 0.88
0.88 to 0.90
0.90 to 0.95
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City Effects in Percentage Points

-14.0 to -3.6
-3.6 to 0.8
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7.8 to 10.6

Figure 10. 



37 
 

 

11000

12000

13000

14000

15000

16000

100000

105000

110000

115000

120000

125000

19
90

 -
Q

2

19
91

 -
Q

1

19
91

 -
Q

4

19
92

 -
Q

3

19
93

 -
Q

2

19
94

 -
Q

1

1
9
9
4
 -

Q
4

1
9
9
5
 -

Q
3

1
9
9
6
 -

Q
2

1
9
9
7
 -

Q
1

1
9
9
7
 -

Q
4

1
9
9
8
 -

Q
3

19
99

 -
Q

2

20
00

 -
Q

1

20
00

 -
Q

4

20
01

 -
Q

3

20
02

 -
Q

2

20
03

 -
Q

1

20
03

 -
Q

4

20
04

 -
Q

3

20
05

 -
Q

2

20
06

 -
Q

1

2
0
0
6
 -

Q
4

2
0
0
7
 -

Q
3

White (left scale)

34500

35000

35500

36000

36500

37000

37500

25000

27000

29000

31000

33000

35000

37000

39000

41000

43000

45000

1
9

9
0

 -
Q

2
1

9
9

0
 -

Q
4

1
9

9
1

 -
Q

2
1

9
9

1
 -

Q
4

1
9

9
2

 -
Q

2
1

9
9

2
 -

Q
4

1
9

9
3

 -
Q

2
1

9
9

3
 -

Q
4

1
9

9
4

 -
Q

2
1

9
9

4
 -

Q
4

1
9

9
5

 -
Q

2
1

9
9

5
 -

Q
4

1
9

9
6

 -
Q

2
1

9
9

6
 -

Q
4

1
9

9
7

 -
Q

2
1

9
9

7
 -

Q
4

1
9

9
8

 -
Q

2
1

9
9

8
 -

Q
4

1
9

9
9

 -
Q

2
1

9
9

9
 -

Q
4

2
0

0
0

 -
Q

2
2

0
0

0
 -

Q
4

2
0

0
1

 -
Q

2
2

0
0

1
 -

Q
4

2
0

0
2

 -
Q

2
2

0
0

2
 -

Q
4

2
0

0
3

 -
Q

2
2

0
0

3
 -

Q
4

2
0

0
4

 -
Q

2
2

0
0

4
 -

Q
4

2
0

0
5

 -
Q

2
2

0
0

5
 -

Q
4

2
0

0
6

 -
Q

2
2

0
0

6
 -

Q
4

2
0

0
7

 -
Q

2
2

0
0

7
 -

Q
4

HS Only

(right scale)

Bachelors or Higher
(left scale)

Figure 11. Employment by Race 

Shaded areas are U.S. Employment Contractions 
thousands 

Figure 12. Employment by Educational Attainment 

Shaded areas are U.S. Employment Contractions 
thousands 



38 
 

 

 Table 1. The Occurrence of City-Level Contractions 

(A █ indicates a contractionary quarter and shaded areas are US contractions) 

2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1
Atlanta-Sandy Springs-Marietta, GA █ █ █ █ █ █ █                                    █ █ █ █ █ █ █ █ █ █ █ █ █ █ █            █ █ █ █
Austin-Round Rock, TX                                            █ █ █ █ █ █ █ █ █ █ █ █                  
Baltimore-Towson, MD █ █ █ █ █ █ █ █ █ █            █                      █ █ █ █ █ █ █ █ █ █                    
Bethesda-Gaithersburg-Frederick, MD █ █ █ █ █ █ █ █ █ █ █          █ █ █ █                   █ █ █ █ █ █ █ █ █ █ █ █ █ █         █ █ █ █ █ █ █ █
Boston-Quincy, MA █ █ █ █ █ █ █ █ █                                    █ █ █ █ █ █ █ █ █ █ █                  
Buffalo-Niagara Falls, NY   █ █ █ █ █ █ █ █ █ █             █         █          █ █ █ █ █ █ █  █ █ █ █      █   █ █  █ █      
Charlotte-Gastonia-Concord, NC-SC  █ █ █ █ █ █ █                                     █ █ █ █ █ █ █ █ █ █ █ █ █                 
Chicago-Naperville-Joliet, IL █ █ █ █ █ █ █                                      █ █ █ █ █ █ █ █ █ █ █ █                 
Cincinnati-Middletown, OH-KY-IN  █ █ █ █ █ █ █ █ █ █ █ █                        █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
Cleveland-Elyria-Mentor, OH   █ █ █ █ █ █ █ █ █                               █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
Columbus, OH    █ █ █ █ █                                      █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █  █ █ █ █
Dallas-Plano-Irving, TX    █ █ █ █ █                                     █ █ █ █ █ █ █ █ █ █                   
Denver-Aurora, CO                                            █ █ █ █ █ █ █ █ █ █ █                   
Detroit-Livonia-Dearborn, MI █ █ █ █ █ █ █ █     █   █         █        █  █ █ █ █ █ █ █ █  █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
Edison, NJ █ █ █ █ █ █                                                                   
Fort Lauderdale-Pompano Beach-Deerfield Beach, FL █ █ █ █ █ █ █                         █ █             █ █ █     █          █    █ █ █ █ █ █
Fort Worth-Arlington, TX   █ █ █ █ █ █                                   █ █ █ █ █ █ █ █ █ █ █ █ █                  
Hartford-West Hartford-East Hartford, CT  █ █ █ █ █ █ █ █ █ █ █ █ █ █     █    █ █ █ █ █ █ █    █           █ █ █ █ █ █ █ █ █ █ █                   
Houston-Sugar Land-Baytown, TX    █ █ █ █ █ █ █ █                          █ █        █ █ █ █ █ █ █ █ █ █ █ █ █ █               
Indianapolis-Carmel, IN  █  █ █ █ █                                     █   █ █ █ █ █ █ █                    █
Jacksonville, FL   █ █ █ █ █ █ █ █                                  █ █ █ █ █ █ █ █ █ █ █               █ █ █ █ █
Kansas City, MO-KS  █ █ █ █ █                                █   █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █               █ █
Las Vegas-Paradise, NV    █ █ █ █ █ █                                     █ █ █ █ █ █ █ █ █             █ █ █ █ █ █ █
Los Angeles-Long Beach-Glendale, CA █ █ █ █ █ █ █ █ █ █ █ █ █ █ █                              █ █ █ █  █ █ █ █ █                  █
Louisville-Jefferson County, KY-IN                                          █ █ █ █ █ █ █ █ █ █ █ █ █ █                   
Memphis, TN-MS-AR  █ █ █ █ █ █ █ █ █ █                              █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █      █ █ █ █ █ █ █ █
Miami-Miami Beach-Kendall, FL █ █ █ █ █ █ █                                      █ █ █ █ █ █ █ █ █ █                   
Milwaukee-Waukesha-West Allis, WI    █ █ █ █                                     █ █ █ █ █ █ █ █ █ █ █ █                 █  
Minneapolis-St. Paul-Bloomington, MN-WI  █ █ █ █ █ █ █                                    █ █ █ █ █ █ █ █ █ █ █ █ █ █         █ █ █ █ █ █ █ █
Nashville-Davidson--Murfreesboro, TN  █ █ █ █ █                                     █ █ █ █ █ █ █ █                       █
Nassau-Suffolk, NY █ █ █ █ █ █ █ █ █ █                                                               
Newark-Union, NJ-PA █ █ █ █ █ █ █ █ █ █            █                                  █    █             
New Orleans-Metairie-Kenner, LA       █ █ █ █                         █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █  █ █ █ █ █         █ █ █ █
New York-White Plains-Wayne, NY-NJ █ █ █ █ █ █ █ █ █ █ █                                  █ █ █ █ █ █ █ █ █ █                   
Oakland-Fremont-Hayward, CA    █ █ █ █ █ █ █ █ █ █ █ █ █ █ █                           █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
Oklahoma City, OK    █    █                                       █ █ █ █ █ █ █ █                    
Orlando-Kissimee,  FL    █ █ █ █                                     █ █ █ █ █ █ █ █ █ █ █                █ █ █ █
Philadelphia, PA █ █ █ █ █ █ █ █ █ █                                   █ █ █ █ █ █ █ █ █ █ █ █                 
Phoenix-Mesa-Scottsdale, AZ  █ █ █ █ █ █ █ █ █ █ █                                █ █ █ █ █ █ █ █ █ █ █ █            █ █ █ █ █ █ █
Pittsburgh, PA    █ █ █ █                                      █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █             
Portland-Vancouver-Beaverton, OR-WA    █ █ █                                       █ █ █ █ █ █ █ █ █ █ █                   
Providence-New Bedford-Fall River, RI-MA  █ █ █ █ █ █                                      █ █ █ █                      █ █ █ █
Richmond, VA  █ █ █ █ █ █ █                                     █ █ █ █ █ █ █ █ █                   █  
Riverside-San Bernardino-Ontario, CA     █ █ █ █  █ █ █ █ █ █ █ █                                                  █ █ █ █ █ █ █
Rochester, NY    █ █ █ █ █ █ █ █     █ █         █                  █ █ █ █ █ █ █ █ █ █ █         █ █ █ █ █       
Sacramento--Arden-Arcade--Roseville, CA      █ █ █ █ █ █ █ █ █                                                    █ █ █ █ █ █ █ █
St. Louis, MO-IL █ █ █ █ █ █ █                                      █ █ █ █ █ █ █ █ █ █ █ █                 
Salt Lake City, UT                                              █ █ █ █ █ █ █ █ █ █ █ █                 
San Antonio, TX  █ █ █ █ █                                     █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █              
San Diego-Carlsbad-San Marcos, CA  █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █                         █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
San Francisco-San Mateo-Redwood City, CA █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █                          █ █ █ █ █ █ █ █ █ █ █ █ █ █ █               
San Jose-Sunnyvale-Santa Clara, CA      █ █ █ █                                      █ █ █ █ █ █ █ █ █ █ █                 
Santa Ana-Anaheim-Irvine, CA █ █ █ █ █ █ █ █ █ █ █ █ █ █ █                              █ █ █ █ █                   █ █ █ █ █
Seattle-Bellevue-Everett, WA    █           █                             █ █ █ █ █ █ █ █ █ █ █                   
Tampa-St. Petersburg-Clearwater, FL  █ █ █ █ █ █ █ █                                   █ █ █ █ █ █ █ █ █ █ █              █ █ █ █ █ █
Virginia Beach-Norfolk-Newport News, VA-NC                                                                        █ █
Warren-Troy-Farmington Hills, MI  █ █ █                              █  █      █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █  █ █ █ █ █ █ █ █ █ █ █ █ █
Washington-Arlington-Alexandria, DC-VA-MD-WV █ █ █ █ █ █ █ █ █                                                                
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Table 2. Industrial vs. Geographic Similarity  

 I  II  III  IV  

Industrial Similarity 0.8135    -0.0349  -0.2570  
      Index (0.5393)    (0.5214)  (0.5130)  

Same Principal State   0.1076 * 0.1076 * 0.1100 * 
   (0.0237)  (0.0236)  (0.0227)  

Same Secondary State   -0.0343  -0.0342  -0.0468  
   (0.0317)  (0.0316)  (0.0331)  

Same Region   0.0222 * 0.0223 *   
   (0.0075)  (0.0074)    

Both in Northeast       0.0550 * 
       (0.0191)  

Both in South       -0.0106  
       (0.0110)  

Both in Midwest       0.0953 * 
       (0.0269)  

Both in West       0.0103  
       (0.0176)  

Contiguous   0.0413  0.0414  0.0432  
   (0.0313)  (0.0314)  (0.0310)  

Constant 4.3092 * 4.2769 * 4.2760 * 4.2724 * 
 (0.0149)  (0.0032)  (0.0145)  (0.0143)  

Log Likelihood 1257.73  1306.45  1306.45  1318.65  

The dependent variable is the log of the concordance between the two cities, all 
five models include city dummies, and all independent variables except for 
dummies are in logs.  Statistical significance at the 5 percent level is indicated by 
―*‖.  Standard errors are White-corrected. 
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Table 3. Robustness Across Measures of Industrial Similarity  

 IVa  IVb  IVc  IVd  

Industrial Similarity -0.1908        
 (0.5609)        

Industrial Similarity 
(durables and nondurables) 

  -0.1915      
  (0.5791)      

Mining, Logging, and 
Construction Similarity 

    -0.0130  -0.0151  
    (0.0921)  (0.0906)  

Government Similarity     0.2401  0.2268  
     (0.2059 ) (0.2072)  

Manufacturing Similarity     -0.1110    
     (0.0950)    

Durables Similarity       -0.0757  
       (0.1362)  

Same Principal State 0.1156 * 0.1155 * 0.1138 * 0.1134 * 
 (0.0261)  (0.0261)  (0.0255)  (0.0255)  

Same Secondary State -0.0446  -0.0446  -0.0450  -0.0451  
 (0.0340)  (0.0340)  (0.0339)  (0.0340)  

Both in Northeast 0.0488 * 0.0489 * 0.0469 * 0.0471 * 
 (0.0197)  (0.0197)  (0.0195)  (0.0196)  

Both in South -0.0021  -0.0021  -0.0011  -0.0011  
 (0.0114)  (0.0114)  (0.0114)  (0.0115)  

Both in Midwest 0.0960 * 0.0960 * 0.0964 * 0.0956 * 
 (0.0271)  (0.0272)  (0.0271)  (0.0271)  

Both in West 0.0064  0.0065  0.0065  0.0068  
 (0.0177)  (0.0178)  (0.0178)  (0.0178)  

Contiguous 0.0614  0.0615  0.0605  0.0613  
 (0.0340)  (0.0340)  (0.0342)  (0.0343)  

Constant 4.2732 * 4.2729 * 4.2811 * 4.2827 * 
 (0.0156)  (0.0168)  (0.0107)  (0.0112)  

Log Likelihood 1175.26  1175.26  1176.76  1176.42  

The dependent variable is the log of the concordance between the two cities, all five 
models include city dummies, and all independent variables except for dummies are 
in logs.  Statistical significance at the 5 percent level is indicated by ―*‖.  Standard 
errors are White-corrected.  Because of data availability, Austin, TX; Bethesda, MD; 
and Fort Lauderdale, FL are not included in this data set. 
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Table 4. Expected Concordances from Model IV 

Two cities in: 
Expected 

Concordance 

1) different regions and states 71.7 

2) the same state in the South or West 80.0 

3) different Northeastern states 75.7 

4) different Midwestern states 78.9 

5) the same Northeastern state 84.6 

6) the same Midwestern state 88.0 
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Table 5. Estimated City Effects from Model IV 

City 
City Effect 
(est. coeff.) 

Standard 
Error 

 

City Effect 
(% points) 

Charlotte-Gastonia-Concord, NC-SC   0.1114 (0.0112) * 9.6 
Miami-Miami Beach-Kendall, FL 0.1091 (0.0103) * 9.4 
Boston-Quincy, MA 0.1002 (0.0088) * 8.5 
Fort Worth-Arlington, TX 0.0993 (0.0089) * 8.4 
Richmond, VA   0.0980 (0.0094) * 8.3 
Dallas-Plano-Irving, TX 0.0942 (0.0102) * 7.9 
Philadelphia, PA 0.0933 (0.0086) * 7.9 
Chicago-Naperville-Joliet, IL 0.0928 (0.0111) * 7.9 
St. Louis, MO-IL 5 0.0916 (0.0117) * 7.8 
Atlanta-Sandy Springs-Marietta, GA 0.0934 (0.0092) * 7.8 
Baltimore-Towson, MD  0.0903 (0.0098) * 7.5 
Portland-Vancouver-Beaverton, OR-WA   0.0885 (0.0127) * 7.4 
New York-White Plains-Wayne, NY-NJ 0.0830 (0.0095) * 7.0 
Jacksonville, FL   0.0840 (0.0077) * 7.0 
Tampa-St. Petersburg-Clearwater, FL   0.0813 (0.0089) * 6.7 
Milwaukee-Waukesha-West Allis, WI   0.0786 (0.0112) * 6.6 
Orlando-Kissimmee,  FL   0.0765 (0.0092) * 6.2 
Phoenix-Mesa-Scottsdale, AZ   0.0632 (0.0126) * 5.0 
Las Vegas-Paradise, NV   0.0604 (0.0230) * 4.8 
Pittsburgh, PA   0.0590 (0.0115) * 4.7 
Oklahoma City, OK   0.0563 (0.0141) * 4.5 
Indianapolis-Carmel, IN   0.0533 (0.0133) * 4.3 
Seattle-Bellevue-Everett, WA 0.0502 (0.0136) * 4.0 
Minneapolis-St. Paul-Bloomington, MN-WI   0.0496 (0.0121) * 3.9 
Houston-Sugar Land-Baytown, TX   0.0475 (0.0098) * 3.8 
Denver-Aurora, CO 4 0.0483 (0.0146) * 3.8 
San Jose-Sunnyvale-Santa Clara, CA   0.0482 (0.0133) * 3.7 
Austin-Round Rock, TX  0.0448 (0.0140) * 3.5 
Salt Lake City, UT   0.0422 (0.0135) * 3.3 
San Antonio, TX   0.0387 (0.0129) * 3.0 
Nashville-Davidson--Murfreesboro, TN   0.0300 (0.0144) * 2.2 
Louisville-Jefferson County, KY-IN   0.0262 (0.0151) 

 

2.0 
Los Angeles-Long Beach-Glendale, CA 0.0163 (0.0108) 

 

1.2 
Providence-New Bedford-Fall River, RI-MA   0.0106 (0.0134) 

 

0.8 
Kansas City, MO-KS   0.0093 (0.0123) 

 

0.7 
Buffalo-Niagara Falls, NY   -0.0155 (0.0089) 

 

-1.1 
Washington-Arlington-Alexandria, DC-VA-MD-WV -0.0169 (0.0214) 

 

-1.2 
Memphis, TN-MS-AR   -0.0185 (0.0200) 

 

-1.3 
Rochester, NY   -0.0242 (0.0101) * -1.7 
Fort Lauderdale-Pompano Beach-Deerfield Beach, FL -0.0259 (0.0131) * -1.8 
Bethesda-Gaithersburg-Frederick, MD -0.0274 (0.0155) 

 

-1.9 
Edison, NJ -0.0322 (0.0204) 

 

-2.3 
Nassau-Suffolk, NY -0.0325 (0.0190) 

 

-2.3 
Santa Ana-Anaheim-Irvine, CA -0.0451 (0.0140) * -3.1 
San Francisco-San Mateo-Redwood City, CA -0.0465 (0.0127) * -3.2 
Columbus, OH   -0.0522 (0.0176) * -3.6 
Newark-Union, NJ-PA -0.0576 (0.0164) * -3.9 
Virginia Beach-Norfolk-Newport News, VA-NC   -0.0859 (0.0230) * -5.6 
Cleveland-Elyria-Mentor, OH   -0.1023 (0.0229) * -6.5 
Hartford-West Hartford-East Hartford, CT   -0.1291 (0.0232) * -7.9 
Warren-Troy-Farmington Hills, MI -0.1394 (0.0201) * -8.4 
New Orleans-Metairie-Kenner, LA   -0.1452 (0.0177) * -8.5 
Sacramento--Arden-Arcade--Roseville, CA   -0.1562 (0.0205) * -9.2 
Riverside-San Bernardino-Ontario, CA   -0.1828 (0.0196) * -10.4 
Oakland-Fremont-Hayward, CA -0.2202 (0.0274) * -11.9 
Cincinnati-Middletown, OH-KY-IN   -0.2315 (0.0290) * -12.3 
San Diego-Carlsbad-San Marcos, CA   -0.2474 (0.0288) * -12.8 
Detroit-Livonia-Dearborn, MI -0.2852 (0.0268) * -14.0 

Statistical significance at the 5 percent level is indicated by ―*‖. 
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Table 6. More Covariates of Concordance  

     V      VI     VII      VIII  

Industrial Similarity -0.3966  -0.4656  -0.5649  -0.4598  
 (0.5179)  (0.5186)  (0.5275)  (0.5215)  

Industrial Diversity     1.2155    
     (0.9447)    

Same Principal State 0.1072 * 0.1071 * 0.1075 * 0.1070 * 
 (0.0227)  (0.0227)  (0.0227)  (0.0228)  

Same Secondary State -0.0485  -0.0462  -0.0457  -0.0462  
 (0.0339)  (0.0339)  (0.0340)  (0.0339)  

Both in Northeast 0.0561 * 0.0571 * 0.0580 * 0.0573 * 
 (0.0192)  (0.0183)  (0.0183)  (0.0185)  

Both in South -0.0078  -0.0064  -0.0060  -0.0064  
 (0.0112)  (0.0111)  (0.0111)  (0.0111)  

Both in Midwest 0.0909 * 0.0858 * 0.0864 * 0.0857 * 
 (0.0266)  (0.0265)  (0.0265)  (0.0265)  

Both in West 0.0107  0.0131  0.0134  0.0131  
 (0.0182)  (0.0190)  (0.0190)  (0.0190)  

Contiguous 0.0420  0.0404  0.0403  0.0405  
 (0.0315)  (0.0316)  (0.0316)  (0.0317)  

Racial Similarity -0.0108  -0.0209  -0.0296  -0.0208  
 (0.1259)  (0.1233)  (0.1231)  (0.1236)  

High School Attainment 0.2300 * 0.2160 * 0.2156 * 0.2174 * 
 (0.0756)  (0.0755)  (0.0756)  (0.0778)  

Bachelor’s Attainment -0.0732  -0.0631  -0.0596  -0.0612  
 (0.0804)  (0.0802)  (0.0806)  (0.0820)  

Average Bank Size   1.1743  1.1706  1.1832  
   (0.7853)  (0.7854)  (0.7835)  

Banks per Establishments   -2.2632  -2.1760  -2.2694  
   (2.0817)  (2.0833)  (2.0853)  

Mean Establishment Size   1.5899 * 1.5615 * 1.5921 * 
   (0.6339)  (0.6346)  (0.6372)  

City-Density       -0.0067  
       (0.0621)  

City-Size       -1.6489  
       (15.3058)  

Constant 4.2776 * 4.2919 * 4.2954 * 4.2913 * 
 (0.0170)  (0.0185)  (0.0186)  (0.0190)  

Log Likelihood 1322.50  1327.15  1327.72  1327.16  

The dependent variable is the log of the concordance between the two cities, all five 
models include city dummies, and all independent variables except for dummies are 
in logs.  Statistical significance at the 5 percent level is indicated by ―*‖.  Standard 
errors are White-corrected. 
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Table 7. Expected Concordances From Model VI 

Two cities in: 

Different HS 
Attainment and 
Establishment 

Sizea 
Same HS 

Attainment 

Same 
Establishment 

Size 

Same HS 
Attainment and 
Establishment 

Size 

1) different regions and states 73.1 74.5 74.7 76.2 

2) the same state in the South or West 81.2 82.6 82.8 84.3 

3) different Northeastern states 77.3 78.7 79.0 80.4 

4) different Midwestern states 79.5 80.9 81.2 82.6 

5) the same Northeastern state 85.9 87.3 87.5 89.0 

6) the same Midwestern state 88.4 89.8 90.0 91.4 
a The difference in high school attainment and average establishment size is the average across the city pairs. 


