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ABSTRACT

Data drain for peer active units operating in the same sector is a major factor that

prevents policy makers from developing flawless strategic plans for their organisation. This

study introduces a hybrid model that incorporates a purely deterministic method, Data

Envelopment Analysis (DEA), and a semi-parametric technique, Artificial Neural Networks

(ANNs), to provide a strategic planning tool for efficiency optimization applicable to short-

term lag of data availability. For consecutive time instances, t and 1t + , the developed

DEANN model returns optimum “regression-type” input and output levels for every sample

operational unit, even for the fully efficient ones, that may decide to alter the levels of the

efficiency determinants, respecting the t -time efficiency frontier.

Keywords: Forecasting, Optimization, Efficiency, Data Envelopment Analysis (DEA),

Artificial Neural Networks (ANN), Adaptive Techniques

1. INTRODUCTION

Efficiency  optimization  is  a  primary  profitability  strengthening  driver  for  private

companies (Banker et al., 1984). It also is a prerequisite for public organisations

that have adopted the New Public Management concept (3Es: Efficiency,

Effectiveness, and Economy). Although relative efficiency measurement is

important  in  the  strategic  planning  of  an  operational  unit,  a  time  lag  of  data

availability  exists  (e.g.,  level  and  cost  of  resources  engaged,  level  of  outputs

produced, and revenues obtained). For instance, companies’ balance-sheet

reports are released a minimum of six months after the end of the fiscal year.

Due to this delay, there is a financial and production data drain. This drain delays

policymakers from finalising completed economic analyses and strategic plans for

their organisation that take into account the decisions of its counterparts. As a

result, during the ‘idle time’, only ceteris paribus analyses can be conducted in

which  the  policymakers  of  just  one  player  make  crucial  decisions  for  the

operational unit regarding the peer units as inactive.

We tackle the issue at stake by developing a semi-parametric tool to optimize the

input-output or cost-revenue mix. Concurrently, the tool firstly estimates a
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stochastic best-practice frontier, or a stochastic production function, and secondly

identifies the link between input and output data of the sample units or efficiency

optimization. The stochastic reference set is more tolerant to data perturbations

and short-term modifications, hence, more robust for short-term forecasting than

the frontier determined by non-parametric methods such as DEA.

The novelty of the developed short-term comparative optimization forecasting

model relaxes the future period prediction of the optimum output levels,

introducing the feasible input levels for the selected operational unit (output-

oriented approach), or vice versa (input-oriented approach), anticipating the

short-period production frontier variation. An important factor is that data of the

sample operational units for one period are adequate for the future period input-

output value determination.

The  paper  is  organised  as  follows.  In  the  first  section,  we  analyse  the  DEA

(Variable  Returns  to  Scale)  and  the  ANNs  (feed  forward  and  recurrent  neural

network  architectures),  as  well  as  discuss  a  review  of  the  literature  on  hybrid

DEA-ANN  applications.  In  the  following  section,  we  apply  the  DEANN  model  to

real data. In the last section, we elaborate on the managerial implications of the

DEANN model, the concluding remarks and potential for future research.

2. LITERATURE REVIEW

Discussion  of  the  DEA  and  ANNs,  the  two  components  of  the  DEANN  method,

follow, as well as studies related to joint DEA and ANNs applications. The scope of

this review is the understanding of the DEANN technique’s functional

underpinnings and potentials towards optimization forecasting.

2.1 Data Envelopment Analysis (DEA)

Based  on  the  seminal  paper  of  Charnes,  Cooper  and  Rhodes  (1978),  a  non-

parametric relative efficiency evaluation technique has been developed. DEA

relies on linear programming to identify the best-practice or efficient operational

units within a sample of homogenous counterparts; consequently the optimum

input-output transformation process, and also the ability to estimate the target

input or output values for every inefficient unit in order to mimic its best-practice

reference peers. DEA relaxes the comparative efficiency assessment, discharging

any assumption for the underlying production function of the sample active units,

to estimate the best-practice reference set comprised solely of the relatively best

input-output transformers.

The sample under evaluation consists of homogenous units, or Decision Making

Units (DMUs), that perform common operations and engage uniform inputs to

produce uniform outputs (Athanassopoulos & Curram, 1996). The differences

between the sample DMUs concentrate on the level of the resources used and the

level of goods and services produced.

DEA models have a twofold interpretation, depending either on the orientation of

the  transformation  process  decided  by  the  units’  policy  makers  or  on  the

controllability  of  the  operational  unit  over  the  resources  or  the  outputs.  To  be
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more precise, the production process may be input oriented or output oriented. In

the  former  case,  aim  of  the  comparative  analysis  is  the  estimation  of  the

appropriate reduction on input levels (target inputs) holding the output levels

fixed, and in the output oriented approach, we seek to reveal the maximum

relative output values (target outputs), respecting the current input levels

towards the efficiency attainment of every operational unit’s production process.

CCR  (Charnes  et  al.,  1978)  and  BCC  (Banker  et  al.,  1984)  are  the  two  source

models which differ in the returns to scale assumption underlying the production

process.  The  former  model  assumes  Constant  Returns  to  Scale  (CRS)  and  the

latter Variable Returns to Scale (VRS). As a result, the BCC model leads to better

fitting  efficiency  reference  set  to  the  sample  data,  comparing  to  the  CCR  best-

practice frontier, while they are returns to scale sensitive. Additionally, BCC is

deemed  more  appropriate  than  CCR  in  case  various  size  DMUs  comprise  the

evaluation sample (Cooper et al., 2007).

The formulas developed to apply the BCC model are presented below:
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where DMUo stands  for  one  of  the  sample  DMUs  under  assessment,
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represent the i th input and r th output of DMUo respectively, and  (λ )
j

lambdas are

the input and output non-negative weights.

2.2 Artificial Neural Networks (ANN)

A neural network (simply called NN) is a large-scale system which contains large

numbers of special, non-linear processors. These processors are called ‘neurons’.

Each neural network is characterised by a state, an input set the weights of which

come from other neurons and an equation, which describes the dynamical

function  of  the  NN.  The  weight  factors  are  renewed  (their  values  are  changed

through the periods of time) with the help of a learning process which takes place

along  with  the  minimisation  of  a  cost  function  (error).  As  a  result,  the  weight

factors are renewed gradually. The optimal values of the weight factors1 then are

stored and used during the solution of a problem which requires the presence of

the NN.

1
 Weight factor is a measure of the connection strength between two neurons.
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2.2.1 General form of an artificial neuron – the perceptron

Basic definition

The general form of an artificial neuron can be described in two stages (Figure 1).

In  the  first  stage,  the linear combination of  inputs  is  calculated.  Each  value  of

input array is associated with its weight value, which is normally between 0 and

1. The summation function (Function 1) often takes an extra input value q  with

weight value equal  to unity to represent the threshold or bias of  a neuron. The

summation function will be then performed as,

1

                 (1)
N

i i

i

x AW q
=

= +å

Figure 1. General Neural Model

The  above  McCulloch-Pitts  Threshold  Logic  Unit  (TLU)  mode  is  also  called

“perceptron” (Tzafestas, 2001). The perceptron was the result of merger between

two concepts from the 1940s, McCulloch-Pitts model of an artificial neuron and

Hebbian learning rule of adjusting weights.

The perceptron algorithm

A single layer feed-forward network consists  of  one or more output neurons o ,

each of which is connected with a weighting factor with every i input variable. In

the simplest case, the network has only two inputs and a single output (Figure 2).

Figure 2. Single Perceptron Network

The input of the neuron is the weighted sum of the inputs plus the bias term q .

The output of the network is formed by the activation of the output neuron, which

is the outcome of an input-dependent functional form (Function 2).
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The activation function F  can be linear or nonlinear so that we have a linear or

nonlinear network respectively. At this point, we consider the threshold,

alternatively, Heaviside or sgn , function.
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The output of the network thus is either +1 or -1 depending on the input. The

network now can be used for a classification task: “it can decide whether an input

pattern belongs to one of two classes (linear separability)”.  If  the total  input is

positive,  the pattern will  be assigned to class +1; if  the total  input is  negative,

the sample will be assigned to class -1.In this case, the separation between the

two classes is expressed by a straight line, given by the following equation:

1 1 2 2
0              (4)w x w x q+ + =

The above equation is the dot product .W x  to which a bias q  is added.

It  should  be  noted  that  the  learning  methods  are  weight-adjustment  iterative

procedures.

2.2.2 Multilayer perceptrons (MLP) – backpropagation algorithm

(BP)

The MLPs are perhaps the most popular and widely applied models of the many

existing  ANN  types.  Hornik  et  al.  (1990)  have  shown  that,  subject  to  mild

regularity conditions, these models can approximate any function and its

derivatives to any degree of accuracy.

The  MLPs  basic  properties  are  summarised  in  the  triplet:  multi-layer,  feed-

forward and supervised neural network. Their processing elements, known as

‘neurons’, are organised in at least three layers: the input layer, the output layer

and the hidden layer(s) in between. These neurons all  are  fully  connected

between adjacent layers. MLPs are feed-forward networks (e.g., all connection

points in one direction, from the input towards the output layer). Finally, they are

supervised networks since all patterns of inputs and outputs must be provided.

The  development  of  a  neural  network  model  requires  the  specification  of  a

‘network topology’ and a ‘training strategy’.

To add layers, we need to do an additional step than just connect up some new

weights. To be more precise, we need to introduce a non-linearity (g(a))

assumption. In general, the non-linearity we will use works to make the outputs

from  each  layer  crisper.  This  is  accomplished  by  using  a sigmoidal activation

function.
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There are two basic commonly used sigmoidal activation functions:

· The Logistic Sigmoid (logsig) that is the integral of the statistical Gaussian

distribution.

1
( )                             (5)

1
a

g a
e
-

=
+

· The  Tangental  Sigmoid  (tansig)  that  is  derived  from  the hyperbolic

tangent. It has the advantage over the logsig of being able to deal directly

with negative numbers.
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The backpropagation (BP) algorithm is a method for computing partial derivatives

in  a  network.  In  short,  it  is  nothing  more  (nor  less)  than  the  chain  rule  from

calculus. One of its virtues is that it is an extremely efficient computation due to

its recursive formulation. Note that while it is used most commonly to compute

first  derivatives,  it  may  also  be  used  to  compute  second  derivatives  (or

derivatives of any order), albeit at additional computational expense.

For  instance,  let's  assume that  we  are  training  a  network  with  three  layers:  an

input layer which is connected to a hidden layer which, in turn, is connected to an

output  layer.  The  first  thing  to  do  is  to  select  a  log  likelihood  function  that  is

appropriate for the nature of the task. To be more precise, let's assume that the

task is regression-type in which the target output * ( )y t  is a noise-corrupted

version of some function of the input ( )x t :

*( ) ( ( ))                   (7)y t f x t e= +

where  that is:

* ( ) ( ( ( ),1)y t N f x t฀

The log likelihood function is:

2

2

1
log *( ) ( )

2

1
         = Σ [ *( ) ( )]               (8)

2

t

t i i i

L y t y t

y t y t
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where the index t  ranges  over  all  training  patterns,  and  the  index i  ranges

through all output units.

We  want  to  compute  the  derivatives  of  the  log  likelihood  with  respect  to  the

network's weights.

Let's assume that we are doing “batch” training, meaning that the weights remain

constant within an epoch (a pass through all data patterns) but change between

epochs. For notational convenience, two time indexes will be used: n  expresses

epochs and t  steps (pattern presentations within an epoch). Using the chain rule,

computation of the desired derivatives may be broken up into three stages. It is

easier if we consider output units and hidden units separately. For an output unit,

the stages are represented by the three partial derivatives on the right-hand side

of the equation:
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where ( )
i
s t  is the weighted sum of the unit i 's inputs at step t , and ( )

ij
w n  stands

for the weight on the connection between the hidden unit j  and output unit i  at

epoch n . For a hidden unit, the stages are:
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2.2.3 Recurrent Neural Networks – Elman Networks

Typical NN models are closely matched to statistical models and have gained

promising results in a large range of applications. For noisy time series prediction,

neural networks typically take a delay embedding of previous inputs which is

mapped into a prediction.

In the Elman network, positive  feedback  is  used  to  construct  memory  in  the

network.  The  network  is  consisted  of  input,  hidden  and  output  layers.  Special

units called context units save previous output values of hidden layer neurons.

Context unit values then are fed back fully connected to hidden layer neurons and

thus serve as additional inputs to the network. Networks output layer values are

not fed back to the network. The Elman network has a high depth and low

resolution memory, since the context units keep exponentially decreasing trace of

past hidden neuron output values.

2.3 DEA and ANN models

Both  DEA  and  ANNs  are  non-parametric  techniques  that  make  no  assumptions

about the production function that links inputs with outputs. However, unlike

DEA, which is deemed an extreme method as it estimates a production function

based on the relatively best performing sample operational units, ANNs uncover

an adaptive functional form with stochastic underpinnings (Wang, 2003). Thus,

the ANNs’ outcomes are less sensitive than the DEA results to data perturbations

due to the noise inherited by their regression-type architecture.

Acknowledging DEA and ANN methods’ properties, there are several studies that

introduce  joint  application.  The  scope  of  such  a  combination  is  the  efficiency

assessment  or  prediction  (Yaghoobi  et  al.,  2010;  Wu  et  al.,  2006;  Wu  et  al.,

2004; Pendhakar & Rodger, 2003; Wang, 2003), the efficiency assessment and

the comparison of the accuracy of the outcomes obtained by the two methods

(Athanassopoulos & Curram, 1996).  In these studies,  DEA is  used in first-stage

analysis  to  preprocess  actual  input  and  output  data  for  the  following  stage  in

which ANNs are applied. DEA in conjunction with ANNs lead to a semi-parametric

method development.

The limitations of the existing DEA-ANN methods are concentrated on the

selection  of  the  “efficient”  sample  DMUs,  discarding  the  remaining  “inefficient”

units  from  the  training  process  of  the  ANN  model  (second-stage  analysis).  In

other  words,  these  approaches  ignore  the  magnitude  of  a  significant  portion  of
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the sample on the efficiency assessment. The current DEA-ANN methods’

classification between efficient and inefficient units does not adopt the traditional

DEA  concept.  For  instance,  for  the  ANNs’  training  phase,  efficient  units  are

deemed those imputed efficiency scores less than unity in order to identify an

adequate  number  of  DMUs  that  meets  the  minimum  ANNs’  processing

requirements.  According  to  Trout  et  al.  (2003),  the  number  of  units  used  for

ANNs’ training purposes should be greater than ten times the number of input

variables.

Additionally, the DEA-ANN papers omit the input and output levels’ estimation in

future periods, which is a major concern of policy makers. They solely analyse the

efficiency parameter.

3. DEANN METHODOLOGY

The  DEANN  model  for  short-term  optimization  forecasting  is  a  hybrid  DEA  and

ANN  stochastic  technique.  The  developed  model  applied  DEA  in  a  first-stage

comparative analysis for “filtering” the input and output data. To be more precise,

the first-stage analysis leads to sample units’ efficiency scores and target inputs

(input orientation) or target outputs (output orientation) as a roadmap for fully

efficiency attainment (efficiency score = 1.000). The second-stage analysis,

where the appropriate ANN model (e.g., feed forward, recurrent) and topology

(e.g., number of hidden layers and number of nodes per hidden layer) are

applied, identifies the stochastic functional form that links the optimum input-

output mix. The functional form expresses the “regression-type” efficiency

frontier of the sample DMUs that is adaptive to short-term data variations, unlike

the pure DEA reference set that is deterministic. Based on the DEANN efficiency

frontier, we predict the optimum input-output mix for efficiency attainment for

every sample DMU, anticipating the input-output games the peer units may play

during the “idle-time”.

The  phases  of  the  DEANN  model  implementation  are  epitomized  into  the

subsequent algorithm:

Step 1: Run DEA (BCC) in order to identify sample DMUs efficiency scores and

           target input or output values (filtered values), depending on the

           orientation preferred.

Step 2: Apply the filtered values to the appropriate ANN model and topology to

           reveal the stochastic efficiency reference set (functional form).

Step 3: Impute new input or output values to the DEANN functional form for

           selected sample DMUs to predict the optimum solutions for efficiency

           attainment.

The orientation of the DEANN model depends on the disposability of resources,

the market dynamic and structure, and the units’ controllability over input or

output variables. In case the input-oriented approach is selected, the DEANN

model  predicts  the  optimum  input  values  for  given  outputs  (different  from  the

actual  output  levels)  selected  by  the  policymaker.  The  output  values  are

estimated when the output-oriented approach is applied. The selected values are

feasible variable levels for the unit(s) regarding the period t to 1t + .
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By applying filtered values for the stochastic functional form estimation instead of

actual values, as recommended by previous studies (e.g., Yaghoobi et al., 2010;

Hu et  al.,  2008; Wu et  al.,  2006; Wu et  al.,  2004; Pendhakar & Rodger,  2003;

Wang,  2003;  Costa  &  Markellos,  1997;  Athanassopoulos  &  Curram,  1996),  we

improve the DEA and ANN synergy for identifying the efficiency reference set. The

DEA target dataset that represents the optimum input-output mix for every

sample DMU to full efficiency attainment increases the flexibility and applicability

of the DEANN outcomes to real conditions. To be more precise, we do not exclude

the inefficient or the arbitrarily deemed “inefficient”, based on the researchers’

criteria, units from the training process, expanding the applicability of the DEANN

model  to  a  smaller  sample  size  and  enhancing  the  accuracy  of  the  estimated

stochastic efficiency frontier.

A peculiarity of the DEANN model is the sample size used for the training phase of

the second step of the algorithm; namely, the number of DMUs should be greater

than ten times the number of input variables (Troutt et al., 1995).

Additionally, by using efficient and potentially efficient DMUs (using DEA target

values)  for  the  stochastic  best-practice  frontier  estimation,  we  respect  a  major

economic assumption: monotonicity (Pendhakar & Rodger, 2003).

4. NUMERICAL EXAMPLE

4.1 Data description

The  DEANN  model  is  applied  to  data  from  the  Citizen  Service  Centers  (CSCs),

decentralised governmental one-stop-shops. One hundred SUs comprise the

sample, out of 1020 operating in Greece, serving about 70% of the citizens who

apply  to  CSCs  for  administrative  issues.  There  are  five  input  variables  in  the

dataset (number of  full-time employees,  weekly working hours,  number of  PCs,

number  of  fax  machines  and  number  of  printers),  and  three  output  variables

(number of electronic protocol registered services provided, number of manual

services provided and number of served citizens).

4.2 DEANN application

By implementing Step 1 of  the DEANN algorithm, applying the BCC DEA model,

the efficiency scores of the sample hundred DMUs and the target input or output

values (filtered values), depending on the orientation selected, are assigned. In

this study, we load the DEANN model for both-sided orientations.

The DEA application reveals that 51% and 31% of the sample operational  units

are fully efficient in case of input and output orientation, respectively (Table 1).

Table 1. DEA Statistics

Units Orientation

Input Output

Efficient 51 31

Inefficient 49 69

Total 100 100
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In order to exhaust the available data and limit the sample size requirements for

applying ANNs, we select the DEA target input and output levels, that potentially

lead the DMUs to the non-parametric efficiency frontier for the second stage

analysis.  By  experimenting  with  ANN  models  and  architectures  on  the  filtered

dataset, we identify the most statistically significant functional form that

minimises the mean square error. Based on the input-output distribution, the

training function applied to the second phase of the input-oriented DEANN

analysis is the Levenberg-Marquardt (Figure 3),  and of  the output-oriented,  the

Conjugate Gradient with Polak-Ribiere Restarts (Figure 4).  The former is  a feed

forward and the latter a recurrent (Elman) ANN model. The topology of the input

and output-oriented DEANN data processing consists of one hidden layer with six

and  fifteen  nodes  respectively.  For  training  of  the  ANN,  for  both  orientations,

seventy DMUs were selected. The remaining thirty operational units were used to

cross-validate the adaptability of the network.

Figure 3. Feed-forward ANN Architecture Applied to the Input-Oriented Analysis

Figure 4. Recurrent (Elman) ANN Architecture Applied to the Output-Oriented Analysis

Table 2. ANN Properties

Properties Orientation

Input Output

Data Selection Random

Inputs 3 5

Hidden Layer(s) 1 1

Neurons 6 15

Outputs 5 3

Training Function Levenberg-Marquardt Conjugate Gradient with

Polak-Ribiere Restarts

Mean Square Error <101 101 < MSE < 102

R 0.9818 0.9927

Subsequent  to  revealing  the  functional  form,  a  distinct  function  for  each

orientation, that expresses the stochastic best-practice frontier, the DEANN

optimum  input  and  output  levels  are  estimated.  For  instance,  the  deviation

between  the  DEA  filtered  input  and  their  ANN  counterparts,  in  case  of  input-

oriented  analysis,  depicted  in  Table  3,  expresses  the  correction  based  on  the
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stochastic reference set. To be more precise, sixty eight out of the one hundred

fifty  ANN-obtained  input  values  were  not  altered  more  than  10%  from  the

equivalent DEA filtered levels. Additionally, 68% of the ANN optimum input

values,  holding  the  outputs  fixed,  were  moved  upward  compared  to  the  DEA

target values (Table 3).

Table 3. DEA Filtered and ANN Input Values Deviation (Input-Oriented Analysis)

DMUs Deviation DMUs Deviation

Full-Time

Employees

Working

Hours

PC Fax Printers Full-Time

Employees

Working

Hours

PC Fax Printers

71 0.117 0.101 0.075 -0.216 0.246 86 -0.147 -0.106 0.462 -0.543 -0.553

72 -0.042 0.081 0.441 -0.392 1.273 87 0.150 0.070 0.090 -0.012 0.625

73 0.150 0.031 0.268 -0.108 0.607 88 0.000 0.201 0.456 -0.105 0.400

74 -0.038 0.391 0.094 0.007 0.113 89 0.037 -0.042 -0.043 0.001 -0.057

75 -0.016 0.144 0.126 -0.125 0.881 90 0.099 -0.058 0.103 0.001 0.825

76 0.135 0.049 0.040 0.001 0.354 91 0.109 -0.002 0.298 -0.226 -0.041

77 -0.079 -0.085 0.523 0.001 -0.054 92 0.070 0.151 -0.029 -0.286 0.476

78 0.033 -0.191 0.265 0.001 0.420 93 -0.201 0.059 -0.087 0.024 0.959

79 0.117 -0.034 0.207 0.001 0.882 94 0.048 0.043 0.280 -0.386 0.473

80 0.166 0.048 -0.189 -0.264 0.602 95 0.085 0.130 -0.022 0.024 0.127

81 0.073 -0.128 0.645 -0.303 0.365 96 0.052 0.260 -0.043 0.001 0.399

82 0.233 -0.096 0.105 -0.008 0.896 97 -0.100 0.351 -0.231 0.743 0.038

83 0.072 0.056 -0.047 0.001 0.003 98 0.038 0.066 0.900 -0.399 0.406

84 -0.043 0.288 0.067 0.138 0.046 99 -0.049 -0.069 0.365 -0.279 0.152

85 0.099 0.036 0.181 -0.009 0.142 100 0.038 0.199 0.901 -0.399 0.407

The respective deviations yielded from the output-oriented analysis are included

in Table 4 (Appendix).

By imputing input or  output values,  depending on the output or  input approach

adopted, respectively, the optimum DEANN output or input levels are projected

for  the  period  starting  at  point t and ending at 1t + .  The  inputs  or  outputs

imputed are the outcome of a relative stochastic efficiency assessment.

5. CONCLUDING REMARKS AND FURTHER RESEARCH

The scope of  this  paper is  the development of  a stochastic  optimization tool  for

short-term forecasting without requesting assumption of the production function

underlying the input-output transformation process. The developed DEANN model

incorporates  the  virtues  of  a  pure  deterministic  technique  (DEA)  and  a  noise-

embedded adaptive method (ANN) in order to estimate the best fitting frontier for

the efficient and potentially efficient sample DMUs. Due to the parametric

properties of the frontier, it is tolerant to short-term data perturbations. Based on

the stochastic efficiency frontier, the DEANN model provides an input-output

optimization roadmap to policy makers for feasible scenarios towards efficiency

attainment, and consequently profit increase.

By using filtered input and output values, we respect the monotonicity

assumption dominating the economic theory. The selected ANN for the stochastic



12

optimum input-output functional form estimation is not predetermined but

customised to the properties of the dataset. To be more precise, the ANN model

selection,  and  the  particular  architecture  and  topology  of  the  network  are  the

outcomes of a resampling computational statistical process in which the

minimisation of the Mean Square Error is pursued.

Further research is needed to obtain a generalised stochastic efficiency frontier

that  embraces  simulated  population  data,  as  well  as  to  introduce  a  stochastic

long-term optimization forecasting model without need to arbitrarily select

particular production functional form.
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APPENDIX

Table 4. DEA Filtered and ANN Output Values Deviation (Output-Oriented Analysis)

DMUs Deviation DMUs Deviation

eProtocol

Services

Manual

Services

Served

Citizens

eProtocol

Services

Manual

Services

Served

Citizens

71 -0.026 -0.250 -0.095 86 -0.225 0.524 -0.299

72 0.031 0.493 0.632 87 -0.077 -0.075 -0.083

73 -0.101 -0.184 -0.215 88 -0.193 -0.169 -0.167

74 -0.080 -0.125 0.107 89 0.032 0.151 0.102

75 -0.032 0.069 -0.890 90 -0.013 0.035 -0.052

76 -0.131 -0.042 -0.126 91 0.208 0.163 0.115

77 -0.566 -0.246 -0.624 92 0.223 0.886 0.750

78 1.513 1.045 1.427 93 -0.036 0.301 0.215

79 -0.168 -0.045 -0.101 94 0.728 1.092 1.485

80 0.101 0.127 0.199 95 0.545 1.235 0.970

81 0.227 -0.271 -0.195 96 0.386 0.768 0.492

82 -0.148 -0.068 -0.067 97 0.058 0.747 0.180

83 -0.062 0.081 0.008 98 0.780 0.544 0.795

84 -0.075 0.309 0.186 99 0.094 -0.243 -0.081

85 -0.006 -0.201 -1.000 100 0.445 0.536 0.564


