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ABSTMCT

Two applications of the concept of statistical equilibrium, taken from statistical

mechanics, are compared: a simple model of a pure exchange economy, constructed as

an alternative to a walrasian exchange equilibrium, and a simple model of an industry,

in which statistical equilibrium is used as a complement to the classical long period

equilibrium. The postulate of equal probability of all possible microstates is critically
re-examined. Equal probabilities are deduced as a steady state of linear and non-linear

Markov chains.
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Introduction

The concept of statistical equilibrium is a fundamental analytical tool in
physics and particularly in statistical mechanics. After having borrowed the classical

mechanics concept of equilibrium, economic theory has occasionally turned its
attention to the other concept of probabilistic equilibrium. In fact, since the

contributions which appeared in the 50s and the early 60s it is only recently that

serious attempts have been made to revise and develop the notion of statistical

equilibrium in economics. Past contributions include Champernown (1953), Simon-

Bonini (1958), Newman-Wolf (1961) and Steindl (1962) and were mainly related to

Gibrat's Law (1931) and to Pareto distribution. Recent works, explicitly linked to
thermodynamics, are E. Farjoun - M. Machover (1983) and, in paficular, Foley

(1991, 1994) .

In economics a statistical equilibrium is a most probable distribution of certain

economic entities (say firms or individuals) which cannot all be distinguished one from

another, rather than a particular configuration in which each entity is identified. In

other words, this equilibrium is a macrostate with maximum number of realizations

(microstates) and, as such, is a distinct concept from a state obtained by the simple

inclusion of some random variable in the relations which determine a classical

equilibrium.l In this work two applications of the concept of statistical equilibrium to

economic theory will be formulated and compared using simple models. Furthermore it
will be shown that, under sufftcient conditions, a state of equal probability of
microstates - a basic postulate in statistical mechanics - in the long period is consistent

with unequal transition probabilities.

In section 1 the first application is a model of a pure exchange economy,

constructed as a special case of Foley's (1994) model in which statistical equilibrium

appears as an altemative to the Walrasian equilibrium. In section 2 the second

application is a model of an industry in which statistical equilibrium is used as a

complement to the classical long period equilibrium. It will be argued that only the

latter application maintains the notion of statistical equilibrium adopted in the field of
physics; whereas the former differs from it on an essential point and resolves itself into

a concept of equilibrium similar to that of temporary equilibrium adopted in
economics. In section 3 the postulate of equal probability is re-examined and a

simple case of linear Markov chains is presented, in which equal probability is a steady

state of a stochastic process. In section 4 this uniform probability outcome is

generalized to non-linear Markov chains, applying a theorem proved by Fujimoto and

Krause (1985).

I See Parrinello (1990).



l. Statistical eauilibrium in a oure exchanee economv

Let us make a simple example of statistical equilibrium for an exchange

economy, as a special case of the statistical theory of markets developed by Foley

(1991-1994). In this theory the elementary unit of analysis is the individual offer set :

"The marlret begins with agents defined by offer sets reflecting their information,

technical pos sibilitie s, endowments and preferenc e s " (p. 3 2 4.
"In terms of standard production-exchange model,...., offer sets consist of technically

feasible transactions leading to Jìnal consumption bundles that are preferred to initial
endowments" ( Foley p.32a)

Suppose that there are only 4 agents e,o2,bt,b2 and two goods X,Y the

quantities of which are measured by integers. There is a total of 4 units of good X and

4 of good Y which are equally distributed at the beginning: each individual therefore

has an endowment of one unit of each good. V/e will athibute to the agents very simple

preferences: agerrts ar,a., like good X, but are indifferent to good Y; whilst agents

br,b, like good Y, but are indifferent to good X. An agent's transaction is a vector of
quantities of the two goods with a plus sign to indicate a net acquisition, a minus sign

for a net cession and zero if the initial endowment is maintained.

The offer set of an agent is the set of transactions which are weakly preferable

to and feasible for him in relation to his initial endowment. In Foley's model the

agents that have the same offer set are considered indistinguishable and represent a

tvoe of asent.

In the figures below the lattices represent parts ofthe offer sets ofagents oftype A and

B as feasible transaction sets. The null transaction (0,0) is included among the

possibilities.



Type A

2

Type B

In the example we can therefore find two types of agents: type A (to which ar,a,

belong) and type B (to which br,brbelong). These types can be identified by their offer

sets which are distinct as far as their preferences are concemed, but not for their

endowments.

Table I describes the feasible microstates of the exchange economy.

TABLE. I

(0 0) (r -1) (-1 l)
ar ra, ,br rb,

ar rb qr b,

Ar,b. a1 b1

a"b, al b.,

arb, ar b1

0t ,Cl, br,b,

It is to be noted that no exchange takes place in the first microstate and each agent in

the last one acquires one unit of his preferred good against one unit of his indifferent

good. In the other four microstates two agents make one preferred transaction, whilst

the other two remain in their initial position.

Let us consider the feasible statistical aggregates or macrostates of the

exchange economy by treating agents of the same type as indistinguishable and

grouping all microstates with the same distribution of types of agents. In the example
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we find three macrostates, two of which are made of only one microstate (the first and

the last one represented in table I) and one made by four microstates (the others).

Let us assign equal probabilities to all feasible microstates.

A statistical equilibrium is a macrostate with maximum probability, that is with the

maximum number of feasible equally probable microstates. In the example this

macrostate is the one with four microstates, in which, for each type of agent, one of the

two benefits from the exchange by acquiring a unit of his preferred good and by giving

up a unit of the indifferent good, whilst the other agent remains at the status quo.

A market statistical equilibrium in the model developed by Foley possesses the

following interesting features that contrast with those shared by a walrasian general

equilibrium:

1.In general it is not Pareto-efficient;

2.It does not imply a uniform exchange ratio between each pair of commodities over

all

transactions;

3.A uniform entropy price is associated to each good: this price is a shadow price

determined by solving an entropy maximizing problem under the total endowment

constraints.

Property I is straightforward in our exchange model, as the most probable macrostate

is Pareto-inferior compared to that in which all the agents obtain a unit of the preferred

good in exchange for the other good. Instead properties 2 and 3 are not evident in this

simple model and we shall not be concerned with them for the sake of the following
argument.

It should be emphasized that the statistical equilibrium of the exchange

economy is determined by offer sets that depend on the initial endowments of each

individual. In general the offer sets undergo endogenous change if the economy is

conceived in real time. To make this point clear, it is suffrcient to assume that the two
goods are non perishable and that the economy is subject to two trials and two
corresponding observations. Let us suppose that the following microstate is realized in
the first trial:

Then at the second trial the individual endowment will differ from that at the beginning

of the first trial. Therefore the types of agents and the number of each type will differ
from the initial stage, even if we assume that the preferences do not change. Hence the



macrostate which has been defined as statistical equilibrium at the first trial is
longer so at the second. At the second trial each agent will represent a distinct type:

a, with endowments (1,1) and offer set {(0 0) (l -l) (2 -l)...\
a, with endowments (2,0) and offer set {(0 0)}

ór with endowments (1,1) and offer set {(0 0) Cl 1) Cl 2) ....}

b2 wfth endowments (0,2) and offer set {(0 0)};

At the second trial the agents ar, b, prefer their respective initial endowments to the

outcome of any feasible transaction; whilst the agents ar, b, prefer any positive amount

of the preferred good in exchange for the unit of the good they are indifferent towards.

The feasible microstates after the second trial are described below

TABLE II
(0 0) (l -l) (-l 1)

ar ro, ,br rb,

o"bt qr bl

From the statistical point of view the sample space has changed. The two microstates

in table II each have probability ll2 at each trial. Howevef, as the trials are repeated an

indefinite number of times, the second microstate will be realized with probability I
and when that happens the economy will have reached a Pareto-efficient

configuration.2 At that point the of[er set of each agent will be represented by the null
vector (0,0), that is by the absence of any further transaction.

One may well ask whether the statistical equilibrium of exchange, as defined

above, preserves the concept of statistical equilibrium in physics. The answer is no.

The latter has the relative persistence of its determinants in common with the classical

equilibrium in economics; by contrast, the statistical exchange equilibrium, as

illustrated in the example, does not possess this prerequisite and from this point of
view it is similar to the concept of temporary equilibrium in economics. Furthennore,

if the model of statistical equilibrium of the exchange economy is interpreted in real

time, it becomes a model of statistical disequilibrium, with certain transition

probabilities that imply an absorbing microstate. This state is a Pareto-efficient

2In a certain sense the agenl.s ar,a2,b1,b, cottld not be distinguished into type A and B right from the very first
trial if "distinguishability" also requires "observability". In fact at the beginning all agents have the same initial
endowments, whilst their preferences, the only feature which in this case identifies the types, are not observable
characteristics.
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equilibrium. The stochastic feature is inherent only in the adjustment (or relaxation)

process but not in the final equilibrium of the exchange. In a more general model with
many Pareto-effrcient microstates, we would find a problem of indeterminacy similar

to the one found in a Walrasian exchange model if we assume that transactions can

occur at disequilibrium prices in the adjustment process towards equilibrium. In this

case the convergence of the stochastic process towards a Walrasian equilibrium is
possible, but in general this equilibrium state is not a walrasian equilibrium relatively

to the initial endowments. As a consequence, the statistical exchange equilibrium is

"statistical" only because it is reached by a succession of stochastic disequilibria when

it is stable, but it is not statistical in so far as it coincides with a microstate which takes

probability I at the limit.

2. A model of stotisticol eauilibrium of the industrv

Now we shift to a more poúe application of statistical equilibrium. Let us

suppose now that an industry is in a long period competitive equilibrium, under

constant retums to scale at the firm level. Suppose that its product can take only integer

numbers 1,2,3,... Let Q be the quantity produced and N the number of firms which can

produce at the minimum cost per unit of output. With these hypotheses, if D is the

demand for the product at the long period prices, the theory of classical equilibrium

determines Q from the equation Q: D, but does not determine the size of each firm.

Let us consider now the feasible microstates of the industy which can be

obtained by distributing in every possible way the N firms among the possible sizes

measured by the quantities 0,1,2,3.... In order to illustrate this we will present an

example similar to that used by others (A. F. Brown, 1967) to introduce the concept of
statistical equilibrium with reference to the distribution of a given amount of energy

among agivennumberof particles of aperfect gas. Letus assume Q:3; N:4 and

call the four firms (a),(b),(c),(d). The 20 feasible microstates of the industry are

described in the following table.
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TABLE III

Firm size measured by amounts of output

t2
1l (a) (b) (c) (d)

2l (a) (b) (d) (c)

3l (a) (c) (d) (b)

4l (b) (c) (d) (a)

sl (a) (b) (c) (d)

6l (a) (b) (d) (c)

71(a) (c) (b) (d)

8l (a) (c) (d) (b)

el (a) (d) (b) (c)

101 (a) (d) (c) o)
l ll G) (c) (a) (d)

I2l (b) (c) (d) (a)

131 (b) (d) (a) (c)

r4l o) (d) (c) (a)

151 (c) (d) (a) (b)

161 (c) (d) (b) (a)

t7l (a) (b) (c) (d)

181 O) (a) (c) (d)

lel (c) (a) (b) (d)

201 (d) (a) (b) (c)

Let us adopt the term "macrostate" to indicate a statistical aggregate of
microstates (a distribution), obtained by assuming that the firms are not distinguishable

from each other. The firms are not distinguished either because we are not interested in
their identification or because they cannot be distinguished. In our example three

macrostates of the industry are feasible

- three inactive firms and a firm of size 3;

J0
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- two inactive firms, a size-l firm and asize-2frmr;

- one inactive firm and three size-l firms.

The first macrostate is generated by the hrst four microstates; the second by the next

12 and the third by the last four.

In the general case let us indicate

n: (no,n1,/t2,....,ne) a feasible macrostate in which no firms are size 0, n, firms are

size |,....,no firms are size Q on the condition that

no+nt*nr*....nn=N (l)
Let w(n) be the number of feasible microstates with distribution n :
(no,nr rÍ12,....rflg).

Combinatorial analysis gives

rr(n)= . .t'. ,
nolnrlnr!...nn1,

where by convention 0!:1.

(2)

A macrostate n: (n0,nr,fi2,....,flg) is feasible if it satisfies, besides the equality (l),
the conservation condition of the total quantity Q

Ùno +ln, +2n, +'..+ Qro = Q (3)

The total number of feasible microstates is

z = lw(n),
with summation over all macrostut", whiclisatisfr (1) and(3).

We may have an idea of the order of change in w(n) in response to variations in
n, as the number of firms is slightly larger than the number represented in the table, if
we assume3 N: 20 and Q:20. In this case, we will have for the macrostate made up

of 8 inactive firms, 6 size-l frrms, 4 size-2 firms and 2 size-3 firms:
201

w = 

- 

=2x108.8t6l4t2l
By contrast for the macrostate in which all the firms are of a uniform size equal to I we

find
201w- '-1.
201

It is clear how enormous the difference is between the multiplicity of microstates in the

first case, which represents a decreasing distribution compared with the single

3This numerical example has been taken from Brown (1967.p. I23)
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microstate with a uniform distribution. So far we have followed combinatorial

analysis.

To move onto the concept of statistical equilibrium we have to assume a

probability distribution. In statistical physics we find more than one assumption of
probability on this point. In the so-called Maxwell-Boltznann distribution equal

probability is athibuted to each microstate; different assumptions of probability can be

found, however, at the basis of the Bose-Einstein and of the Fermi-Dirac distributions.a

V/e will adopt the Maxwell-Boltzmann hypothesis of equiprobability initially as an a

priori; then we will obtain this uniform probability from other assumptions.

In the example illustrated in table III, each microstate has probability 1/20;

whilst the three macrostates have respectively probabilities l/5, 315,ll5. The statistical

equilibrium of the industry is the second macrostate with probability 3l5.In this case

the small number of microstates, used for the purpose of the exposition, does not yet

enable us to attribute a useful theoretical role to this equilibrium macrostate. In fact

statistical equilibrium needs a sufficiently large number N (a typical case is that of the

particles of gas considered in statistical physics).

In general, in order to determine !, the following maximum problem has to be

solved

maxr.r,(n) =
noftt*-"ne nolnrlnrl...nnl

subject to no + nt t n2r....nn = N

Ùno +ln, +2nr+...+Qnn : Q.

By adopting a similar demonstration to that given in statistical physicss, the following

solution, as shown in Appendix I, can be obtained by an approximation in the

continuum and for N and Q large numbers.

N!

e-pt
4 = ^i o I s = o,1,...,e.

S --F"tvL/
s=0

(4)

with p = l^(I +

where ln is the natural logarithm.

;)
> 0. (s)

4 For a comparison of Maxwell-Boltanann's, Bose-Einstein's and Fermi-Dirac's so-called statistics, see

W. Feller (1970).
sSimilar demonstrations can be found in Fast (1970); Brown (1967), .Hollinger and, Zenzpn(1985).
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Hence the most probable macrostate n is a distribution of firms which decreases

according to a geometric progression as the size increases; as

no nl 
...,....nr_, = ", 

. (6)
nt n2 ne

From (5) we obtain

eF -r

Having reached this result, the initial assumption that Q, the quantity produced by the

industry, is a quantity in non-statistical classical equilibrium, determindd on the

demand side, becomes important. Substituting Q: D in (7), we obtain:

eF -l

Equations (6) and (8) show that as the demand D increases, ceteris paribus, the

coeffrcient p decreases and, therefore, the dispersion of firms among classes of ever

increasing size grows. It is worth noting that the ratio DA.{, demand per number of
ftrms, plays a similar role to that played by temperature T in the corresponding

physical problem determining the most probable distribution of particles or harmonic

oscillators among a certain amount of energy.

Entroplt

We can interpret the equilibrium of the industry in terms of entropy. Let p, be

the probability of microstate i; and let us measure the improbabilify of microstate i by

the logarithm

010
J-XI, 

---LrLp..P, t

We can then define entropy S(n) of ttre macrostate n the average improbability of the

microstates of which it is composed, where the weights are the probabilities p,:

O_
N

(8).
D
N

(7)

w(n)

S(n) : -I
L

orh pi OK
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If all microstates in the macrostate n have probability p,

nis

the entropy of

S(n) = !^*6)

and the entropy of a most probable macrostate n is S(n) = I* w (n).
Therefore s statistical equilibrium of the industry is a macrostate that has maximum

entropy; hence, under the assumption of equal probability, a macrostate with maximum
h/(n)

number of possible realizations. As N increases, the ratio ; decreases, whilst

t)lxù rnl(n)----n- tends to 1, where m is the total number of microstates. Then, for N large,
Lnm

the entropy of the industry in its most probable state can be written
n

S(w(n) ) = lnn. Since the improbability of. a macrostate n is

0m0nLrL- - Ln m-dn w(n), we can also say that for a large N a statistical
w(n)

equilibrium belongs to a set of macrostates with almost zero improbability, in the sense

that w(n)turns out incomparably greater than w(n) associated with any other

macrostate n outside the equilibrium set.

This property means that a macroscopic regularity (equilibrium) exists in terms

of firm distribution. Such regularity emerges in real time, if we suppose that the

number of potential firms N and the quantity in demand D are stationary. A statistical

equilibrium can therefore be considered like the image of a film, which is made up of
the same perceived scene repeated on a large number of frames, interspersed every so

often with pictures of other scenes: when the film is run at a sufficiently high speed,

the viewer is hardly aware of these odd scenes at all, whilst he perceives the main.

scene. Leaving this metaphor to one side, it must be stressed that the notion of
statistical equilibrium which has been formulated here, does not substitute the

classical equilibrium of the industry, but it does presuppose it and stands as a
complement to it. In fact the stationarity of Q is not a physical necessity (like energy

conservation), but rather a property of classical equilibrium in which Q is determined

by the effective demand at the long run competitive prices. It is to be noted that the

stationarity of the most probable distribution of firms hides an incessant movement at a

microeconomic level: if it were possible to observe the trajectory of each firm (a not so

impossible task compared with the case of a trajectory of a particle in physics) over a

suffrciently long period, a ftrm would be seen to move through the whole range of

1
t

lr(n)



13

sizes and the industry would pass through all feasible microstates. This would be true

in principle.

In economics, as in the physics of gas, the number of units involved has to be

large for this concept to be of use for the analysis. Thus in the model of the industry

the number of firms N has to be large enough.It must be noted, incidentally, that there

are some diffrculties in observing N, in so far as many potentially active firms are

inactive in equilibrium. Also the quantity Q, which is measured by integers, had to be

assumed to be large for the pu{pose of the solution given in appendix I. Clearly the

problem of the numerosity of Q differs from the one concerning N, as it does not seem

so harmful to assume a suffrcient divisibility of the product.

3. The choice of the sample space and the assumofioh of eaual probability

In all main formulations of the method of statistical equilibrium in physics (the

Maxwell-Boltzrnann distribution, the Bose-Einstein distribution and the Fermi-Dirac

distribution), a set of feasible microstates (the sample space) is defined at a certain

level of analysis and then equal probability is assigned to these microstates. This

analytical level is chosen on the basis of the logic of the problem, of a separate theory

or of an intuition, the usefulness of this choice being tested by its predictive capability.

In applying the statistical equilibrium approach, two methodological pitfalls should be

avoided. With respect to the phenomenon under investigation: a) the assumed sample

space might lack persistency and b) the assumed microstates might not have equal

probability. Let us examine now the applications of the statistical equilibrium

approach to the exchange economy (section 1) and to the economy of the industry

(section 2) atthe light of the above criterion.

In the application to the exchange economy, the choice of the sample space

and the hypothesis of equal probability must be assessed on the basis of some implicit
assumption of "rational" individual behaviour.s In this case it is hard to explain why

the probability of a Pareto-effrcient microstate is and remains not greater than the

6 \\e principle of insrfficient reason has been called upon by Foley (1994) to justif the hypothesis of
equal probabilities of the feasible microstates. Of course this principle is of little use for justiffing the
choice between feasible and unfeasible microstates.
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probability of any inefficient microstate which were not Pareto-inferior to the initial
state. For example, the microstate described in the first row of Table I does not

represent any Pareto-improvement, but it has, nevertheless, been athibuted the same

probability as any of the other microstates (described in the other rows) that do in fact

imply an improvement. We observe that the latter problem prevents the exchange

statistical equilibrium from strengthening its theoretical role in the following case,'in

which the diffrculty arising from the non-persistence of the initial endowments does

not arise. In the pure exchange economy let us assume the goods to be labour services,

instead of durable goods, and the initial endowments to be made up only of persistent

labour capacities of workers to provide those services. By this hypothesis, if we assign

all the feasible microstates equal probability, it is possible to formulate a statistical

equilibrium for the exchange of labour services in real time, instead of a temporary

statistical equilibrium. In spite of this, there still remain the same objections to the

hypothesis of equal probability: as if on each trial the agents described by the model

would look for each other and accept with equal chance any transaction which does not

entail an inferior position for them, compared to the absence of exchange. The

rationality of these agents seem to be minimal. It would be more reasonable to attribute

equal probability to those microstates which imply Pareto-efficient allocations of
labour-services and lower probabilities to all the other microstates?. Unfortunately no

general criterion seems to be available a priori for assigning non-uniform probabilities

within exogeneously given offer sets.

Also in the application to the economy of the industry, illustrated in section 2,

the appropriatness of the choice of the sainple space and of the equal probability

assumption can be questioned, albeit for different reasons. .

On the one hand, we observe that the choice of the sample space, made of all
possible microstates of the industry, belongs to the general model of placing randomly

a given number of balls (firms) in a given number of cells (firm sizes); then

aggregation runs by treating the balls as indistinguishable, whereas the cells are kept as

distinct entities. I This model might not be appropriate, if the distribution of many

customers among many firms is an essential element in the enumeration of the

microstates of a production system with exchange. Suppose for simplicity that in the

model described by Table III there are three customers and each customer demands

one unit of outptut, as if he would represent an economic "quantum". In this case,

7 Foley himself in his working paper (Foley, l99l) assumed as feasible only those microstates which
imply Pareto-superior and efficient allocations.

8As Feller (1970) has warned us, meaningful statistical aggregates can be constructed as composed

events by treating the cells, instead of the balls, as indistinguishable entities.
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many microstates listed in table III must be re-interpreted as composed events: for
instance row 1 would stiill describe a simple event with a single realization, in which

firm (d) supplies one unit of output to each customer, whereas the other firms

(a),(b),(c) are inactive; by contrast row 5 would describe a composed event with 3

rcalizations, as firm (c) can supply one unit of output to each of the three customers

altematively, whereas firm (d) supplies one unit to each of the two residrlal

customers and firms (a), (b) remain inactive. From this perspective, many

microstates in Table III should be conceived as macrostates that must be decomposed

in further microstates by replacing the occupancy model of balls and cells with a
model that counts all possible ways for assigning three quanta, initially

distinguishable, to four particles, initially distinguishable as well. Only at this

extended micro-level, the equal probability assumption should be applied and the

definition of the macrostates should be chosen.

On the other hand, the equal probability assumption refers to absolute

probabilities. It remains to be proved that a state of uniform absolute probability is a

steady state outcome of a stochastic process and that this outcome is independent from

the initial probability vector. In particular, in the industry model, gradual structural

changes could be more probable than major alterations in the size of the firms during

the same period of time. Thus, in the example described in Table III, it can be

supposed that, if the initial microstate is the one described in line I (with flrms a,b,c,

inactive and firm d of size 3), it can be more probable that microstate 5 (with firms a

and b still inactive, f,rrm c af size I and firm d at síze 2) will be realized in the

following trial than microstate 2 (firms a,b,d inactive and firm c of size 3). However,

under certain assumptions, these unequal conditional probabilities are compatible with
equal absolute probability of all possible microstates. In particular it can be

immediately proveds, using the theory of Markov chains that, if the transition matrix

is given and it is a doublv stochastic and primitive,lo then all microstates take equal

probabilities at the limit of a series of repeated trials and this uniform probability is

independent of the initial microstate (or, more generally, of the initial probability

vector). A special case of doubly stochastic transition matrix arises if we assume that

reversibility exists in the probabilistic sense between each pair of microstates of the

e See Feller (1970), chapter XV page 399; and Seneta (1973).

10

Let pii be the transition probability from microstate i to microstate i in one trial and let 
" 

= t;l1) the mxm

transition matrix. P is called doubly stochast ic it l. P, = l, Z, p, = l, that is both the row sums and

the column sums of P are unity. Primitivity of P implies that there exists some power matrix P(t) of P whose
elements are all strictly positive.



L6

industry at each trial; that is the probability that the microstate i occurs, following the

realizatíonof the microstate j, is the same as the probability that j occurs, following the

realization of i. This hypothesis is represented by a mxm symmetrical transition

matrix.

In the next section it will be proved that equal probabilities can be deduced as

a limit property under assumptions less restrictive than that of double stochasticity.

4. Equal probabílity through non-línear Markov chains with lagged variables.

Let us introduce time lags and write

xr*l = f (x, ,xr-, ,....rxt-^) for t = 0r1r2,....

The vector x, = (r,r ,xp1...exs,)' shows the absolute probability x,, of microstate i in

period f . A prime indicates transposition. V/ith no fear of confusion, we also write

î = (ft,fz,...,fn)' . Let X, = (x,-, ,xr-m+',...,Xr )'. When the given function / is

homogeneous of degree one in each vector variable and continuously differentiable,

the above equation is now written as

Xr*r = AX' O)
where A is(ram)by (nxm) and

010000
001000
0001

A=

,,r^, 
"tt-tl 

: : . fO,

A typical element of F(*) 1, --òl-." úr-k,i

To apply the Propositionin Appendix II, the assumptions we now make are:

Ass l. f is non decreasing in each variable.

Ass2. f, is homogeneous of degree one.

Ass 3. F(') has at least one positive entry in each row zts well as in each column.
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F(t) has at least one positive diagonal enfry.

Ass 4. e = f(e,e,...,e), where e = (l I n, I I n,.....,11 n).

Originally, f is defined on a subset of Bl.' because x, is a vector of
probability distribution. To satisfi Ass l, f is first to be extended to the whole ni*'
in anatural way. Ass 3 is to assure the primitivity of the process, i.e. the matrix A;
while Ass 4 requires that if the equal probabilities have been observed in the

consecutive m past periods, then that situation be continued as an equilibrium. It
should be noted that this is more general than the assumption of double stochasticity in
the linear case. More importantly, the equal distribution of the present period is not

enough to enswe the equilibrium state to be repeated.

Now we can apply the Proposition in Appendix II, and can assert that starting

from any Xo in B1*^, the process (p) , i.e. X,*, = AX,, yields a series which

converges to a unique X*. By the special form of A, we can deduce

X* : (x*, x*, ...,x*).

Finally by Ass 4, x*: e if each x* should be normalized so that it belongs to the unit

simplex.

With time lags being introduced, a more natural interpretation of the model is

now possible. That is, a society has a chain of memory, and accumulate the experience

of shift from one microstate to another, and these piled up "experience" or "memory"

affect the transition probabilities most plausibly in non-lineat way. Besides, in the

linear case, the speed of convergence is quick and at a geometric rate. Let us hope this

nice property continues to hold also in the non-linear case, and establishes the equal

probabilities in a blink as Nature may wish. Nature somehow seems to love "equality"

or at least equal opportunities for all.

Strong ergodicity in the case of nonlinear positive mappings has been extended

to the transformations on Banach spaces (see Fujimoto and Krause (1994). The

arguments above can hence be carried over to the spaces of an infinite dimension. It
may serve also to give a lower-level foundation to the equal-share principle in
thermodynamics and, in spirit, to that in quantum theory.

5. Fìnal consideralions

The two applications developed in sections I and2 have enabled us to point out

certain limitations on the transfer of the statistical equilibrium method from physics to

economics. These limitations seem to hold beyond the specific cases examined above.
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The basic difficulty for that transfer lies in the changeover from particles in physics to

intelligent units with memory and leaming skills. The method seems to be fully
successful only in those theoretical areas of economics where the microstates cannot be

ordered in terms of preferences or profrtability and furthermore the determinants of
statistical equilibrium are relatively persistent. These requirements have proved to be

plausible in the application to the economics of the industry, but they appeared rather

problematical in the application to a pure exchange economy. It should be noticed that,

in the application to the economics of the industry, rationality is not absent, because it
underlies the given demand D for the product, that can be interpreted as a classical

equilibrium quantity determined by a wider model of the economy.

Although the arguments presented in these notes have shown some comparative

advantage of the transfer of statistical equilibrium as a complement of classical long

period equilibrium, against the transfer of the same concept as a substitute for a

walrasian notion of equilibrium, some basic questions remain unanswered here for

further applications of the notion of statistical equilibrium within the former approach.

First, are there really any important areas of indeterminacy still left by the

classical equilibrium method apart from that of the constant returns industry examined

here ? We believe this to be so, even under the assumption of free competition where

there are no cases of indeterminacy due to strategic interactions among agents. One

important case of indeterminacy can be found in classical theory of value and

distribution if the labour force is supposed to be homogeneous as far as productive

efficiency is concemed, but to have non-homogeneous tastes. Suppose an economic

system with single product industries, constant returns to scale, free competition and a

fixed interest rate. In this case the non substitution theorem holds: the choice of the

cost-minimising technique and the long period prices of the commodities are uniquely

determined, but the amount and the composition of employment in terms of individual

tastes cannot be determined by the same economic criterion, even if some

correspondences are supposed to exist among prices, incomes and effective demand.

Hence the composition of social product remains indeterminate as well.

Secondly, in the case of the industry, it was assumed that the classical

method of equilibrium first determines the total output at the long period prices and

then the method of statistical equilibrium step in to frll the gap of indeterminacy left by

the first stage of analysis. In the more general cases such a logical sequence in the

application of two equilibrium methods might not work. This could happen in the

industry example, if the demand D would be affected in tum by some characteristic

value of the most probable structure of the industry itself, e.g. by the multiplier B

which appears in the firm distribution function (4).
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Thirdly, the concepts of Pareto-effrcient and Pareto-superior states of
the economy should be re-examined, if we adopt the method of statistical equilibrium.
In particular the notion of exoected utility seems more suitable compared to the
deterministic one adopted in section I in order to characterize some properties of
Foley's model.

It is left for future research programmes to explore the two routes through
which the concept of statistical equilibrium can be exported from physics to
economics. On the side of the classical approach, it is left to study whether that
concept is capable of filling other gaps of indeterminacy and to ascertain to what extent
the logical succession between the two stages of analysis mentioned above can be

usefully maintained. On the side of the approach proposed by Foley, it is left a more
ambitious task; in so far as that approach aims to replace other notions of equilibrium
for theorizing the economic system as a whole.
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Appendix I

Solve

41w(n) = - 
l/!

to,t b-.,t o nolnrlnrl...nnl

subject to no + nr t nrt....nn = N (a)

0no +ln, +2nr+...+Qn, = Q (b).

For n large, the following approximation can be shown to hold using Stirling's

fomrula:

{nrt - n.l,rnn- n

where h t"the natr.ral logarithm.

We will freat t4orflr.rfrrr....fre as continuous variables and apply Lagrange

multiplier method.

We obtain the solution:

e-p"
4 = t 

-g- ^ | s = 0,1,---rQ- 
(c)

I "-P's=0

where p is an undetermined coeffrcient.

Let us consider the geometric progression:
a

Z"-'" = I + x * x2 +....+xa, with r = e-e.
s0

o1
Hence, as Q I @r Z"-u" + ;--. Substituting the limit in (c), we get:

s=o I- X

4 = Ne-p'(l - "-0) 
. s:0,1...Q (d)

Substituting (d) in the constraint (b):

aN(l-e").>se-e"=Q (e)
s=0
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To solve (e) with respect to B, we use the equation which holds at the limit
$ ^-u' 1

?u= 1-"
Differentiating both sides of this equation, we get:

a e-9I t"-u"
s=o (l- 

"*)'

By substitution of (f) in (e):

o-F*.---e (g)l-e

From (g)

p -hQ*{l
Q,

which make solution (c) determined.

Appendix II

Suppose there exist n microstates, and letx be an n-column vector whose Èth
element represents the probability of microstate i. The symbol R" denotes the
Euclidean space of dimensionn, Ri the non negative ortant of R,, and
s' = {r e Rile''x = 1}, where e is an n-column vector whose elements are all unity.
In -R", an order > is induced by the cone Ri. we writex>y whenx >y and
x + y. and also write x >> y when x - y is in the interior of ,R "

Now a given continuous transformation / maps Rí i;;o itself, and satisfies the
following assumptions.

Assumptionl: f is monotone, i.e., l@)>/(y) whenx >y.

Assumption2: f isweakly homogeneous, i.e.,for any
x e Ri, î.eR*, we have f(),x): h(Ì,")f(x),
where : h: R* J R* is such that h(?,')/Ì,, is non increasing and ft(0):0.

Assumption3: f isprimitive, i.e., there exists a natural number m such that forxy e
Ri, x>y implies f' (x) >> f' (y).

Assumption 4: 'Whenx e S, then /(x)e S.

Assumption 5: f (el n): el n.
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Using the theorem and corollary I in Fujimoto and Krause (1985), it is easy to show
that Assumptions l-4 are sufficient to have a unique strictly positive x* e S.

Since x* is unique, this must coincide with elnbecatse of Assumption 5. Summaized
fts

Proposition Given Assumptions l-5, starting from any x e S, .f 
t (*) converges to

eln as f goes to infinity.
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