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Abstract

From a statistical point of view, the prevalence of non-Gaussian
distributions in financial returns and their volatilities shows that the
Central Limit Theorem (CLT) often does not apply in financial mar-
kets. In this paper we take the position that the independence as-
sumption of the CLT is violated by herding tendencies among market
participants, and investigate whether a generic probabilistic herding
model can reproduce non-Gaussian statistics in systems with a large
number of agents. It is well-known that the presence of a herding mech-
anism in the model is not sufficient for non-Gaussian properties, which
crucially depend on the details of the communication network among
agents. The main contribution of this paper is to show that certain
hierarchical networks, which portray the institutional structure of fund
investment, warrant non-Gaussian properties for any system size and
even lead to an increase in system-wide volatility. Viewed from this
perspective, the mere existence of financial institutions with socially
interacting managers contributes considerably to financial volatility.
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1 Introduction

Financial time series exhibit ubiquitous non-Gaussian statistical regularities

across different countries, assets, and time frequencies. The two most promi-

nent features concern the fluctuations in the prices of financial assets, which

exhibit heavy tails and clustered volatility (see, e.g., Cont, 2001; Pagan,

1996). From a statistical point of view, the prevalence of non-Gaussian dis-

tributions in returns and their volatilities testifies to the importance of long-

range correlations, which ultimately prevent the application of the Central

Limit Theorem (CLT). Traditional finance has paid little, if any, attention to

the origins of these statistical regularities and to the possibly most challeng-

ing question implied by the violation of the CLT: how does a complex system

like the financial market actually allow for a large scale coordination of the

trading positions among millions of agents? The established literature on

informational cascades (see, e.g., Banerjee, 1992; Bikhchandani et al., 1992;

Chamley, 2004) does not address this question because it considers a static,

sequential Bayesian updating approach with a constant ‘true’ state of the

world and lacks any connection to the stylized facts of financial returns. The

three major strands of the agent-based finance literature, on the other hand,

argue in unison that it is precisely the perpetually alternating coordination

of trading strategies over time that is responsible for the stylized facts of

financial returns. Yet each of the approaches has to deal with its own set of

problems.

Percolation models of herd behavior exploit the properties of well known

critical systems from the statistical physics literature (see, e.g., Cont and

Bouchaud, 2000; Iori, 2002; Bornholdt, 2001; Stauffer and Sornette, 1999)

but rely on carefully adjusted model parameters near criticality to produce

non-Gaussian statistics, entirely leaving open how or why a financial mar-

ket composed of millions of agents could self-organize into (and remain in)

such a critical state. The second strand of models follows the seminal work

of Brock and Hommes (1997) where agents interact globally rather than

locally, namely through the price system and public information about the

performance of strategies that is subject to noise (see, e.g., Hommes, 2006;

Chang, 2007). The drawback of this class of models is that they need a

careful fine-tuning of their ‘signal-to-noise ratio’ around unity in order to

resemble the stylized facts. Finally the third strand, and starting point of
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the present paper, is inspired by entomological experiments concerning ants’

foraging behavior that Kirman (1991, 1993) utilized to propose a stochastic

herding model of opinion formation among financial investors. These models

endogenously create swings and herding behavior in aggregate expectations

through social agent interaction, while the stationary distribution of the

stochastic process of opinion formation describes the statistical equilibrium

of the model.

The ‘ant model’ has been reasonably successful in replicating the sta-

tistical features of financial returns, but Alfarano et al. (2008) have shown

analytically that Kirman’s original model suffers from the problem of self-

averaging or N -dependence:1 the model’s ability to replicate the stylized

facts vanishes for a given parametrization when the system size N increases,

a quite common feature in agent-based models that has received relatively

minor attention so far (see, e.g., Aoki, 2008; Egenter et al., 1999; Lux and

Schornstein, 2005). Alfarano and Milaković (2009) establish a direct link be-

tween N -(in)dependence and the communication network among agents in

a generalized version of Kirman’s original model. They show that the model

is immune to self-averaging if the relative communication range of agents

remains unchanged under an enlargement of system size. Interestingly and

rather counter-intuitively, other network features like the functional form of

the degree distribution, the average clustering coefficient, the graph diame-

ter, or the extent of assortative mixing have no impact on the N -dependence

property. Put differently, the average number of neighbors per agent has to

increase linearly with the total number of agents N in order to overcome the

problem of self-averaging in the generic herding model. Among prototypical

network structures such as regular lattices, small-world, or scale-free net-

works (see, e.g., Newman, 2003), it is only the random graph with constant

linking probability that exhibits this feature, yet random graphs are hardly

ever a realistic representation of socio-economic communication networks.

After all, the results of Alfarano et al. (2008) and Alfarano and Milaković

(2009) establish the model’s behavior when the number of agents tends to in-

finity, at the same time illustrating that simple proto-typical network struc-

tures (with the exception of the empirically unsatisfactory random graph)

cannot overcome the problem of N -dependence. The present paper builds

1Aoki utilizes the terms (non) self-averaging in lieu of N -(in)dependence, and we will
subsequently use both terms interchangeably.
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on these insights and investigates whether a certain class of core-periphery

networks might be capable of overcoming the self-averaging property of the

original model. Here we consider a central network with bi-directional links

between core agents or opinion leaders on one hand, and a relatively large

number of uni-directionally linked followers in the periphery on the other.

We vary the number of followers per core agent by randomly drawing from

various distributions, and study the aggregate behavior of system-wide opin-

ion dynamics under an increasing dispersion in the number of followers. In

essence the hierarchical network corresponds to a weighted version of the

original model. As we argue below, the weighted version is a reasonable first

approximation of the institutional structure of financial fund investment.

The central idea is that many investors effectively transfer control over in-

vestment decisions to fund managers who in turn are socially interacting,

with the opinions of some fund managers carrying greater weight than oth-

ers, for instance because they manage larger funds or have performed more

successfully in the past. It turns out that the analytical mean-field predic-

tion used in Alfarano and Milaković (2009) now significantly underestimates

the volatility in system-wide opinion dynamics. The key implication of this

result is that behavioral heterogeneity among interacting agents is not, as

previously thought, the exclusive source of endogenously arising volatility

in agent-based herding models, but that the hierarchical structure of fund

investment is an important auxiliary source of financial volatility.

We take the position that investing in the presence of (actively managed)

financial funds basically corresponds to the hierarchical core-periphery net-

works we study here. Investors who are not wealthy enough to afford a

broadly diversified portfolio of assets, those who participate in retirement

plans, or those who simply feel that they lack the skills or time to make

investment decisions often invest in some type or other of managed fund.

Effectively such agents, who correspond to followers in the periphery of the

network, transfer their wealth to the fund managers in the core, and ulti-

mately allow those to make decisions for them. If fund managers socially

interact with their peers, and empirical evidence by Hong et al. (2005) and

Wermers (1999) strongly suggests that this is indeed the case, we arrive at

the core-periphery networks that we study in this paper.

Essentially, core-periphery networks will lead to an increase of system-

wide volatility because fluctuations in a disproportionately small but central
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part of the network are amplified on a system-wide level. Therefore it seems

rather ironic that investors who want to ‘play it safe’ by investing in a variety

of managed funds will actually end up increasing system-wide volatility if

they delegate investment decisions to herding-prone fund managers.

2 Generic Herding Model

In a prototypical interaction-based herding model of the Kirman type, the

agent population of size N is divided into two groups, say, X and Y of

sizes n and N − n, respectively. The time evolution of the group sizes is

modeled as a Markov chain, characterized by a pair of transition rates that

are sometimes also referred to as birth and death rates. Depending on the

particular financial market framework, the two groups are typically labeled

as fundamentalists and chartists, or optimists and pessimists, or buyers and

sellers. The basic idea is that agents change state for personal reasons or

under the influence of the neighbors with whom they socially interact during

a given time period. The transition rate for an agent i to switch from state

X to state Y in the Markov chain is

ω−
i ≡ ρi(X → Y ) = ai + λi

∑

j 6=i

DY (i, j), (1)

where ai governs the possibility of self-conversion due to idiosyncratic fac-

tors, e.g. the arrival of new information, while λi governs the interaction

strength between i and its neighbors. The function DY (i, j) is an indicator

function serving to count the number of i’s neighbors that are in state Y ,

DY (i, j) =

{

1 if j is a Y-neighbor of i,

0 otherwise,
(2)

hence the sum captures the (equally weighted) influence of the neighbors

on agent i. Symmetrically, the transition rates in the opposite direction are

given by

ω+

i ≡ ρi(Y → X) = ai + λi

∑

j 6=i

DX(i, j) . (3)

Let a =
∑

i ai/N and λ =
∑

i λi/N denote the averages of the behavioral

parameters over agents, and let D denote the average number of neighbors

per agent. If all links are bi-directional, λi > 0 ∀i ∈ {1, . . . , N}, a mean-field
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argument (see Alfarano and Milaković, 2009) shows that the transition rates

for a single switch on the aggregated system-wide level are

ω− = n

(

a+
λD

N
(N − n)

)

, (4)

for a switch from X to Y , and symmetrically

ω+ = (N − n)

(

a+
λD

N
n

)

, (5)

for the reverse switch. An important result of the mean-field approach is

that the relative communication range D/N ultimately determines whether

the Markov chain is self-averaging or not. In the jargon of Alfarano et al.

(2008), the non self-averaging case corresponds to “non-extensive” transition

rates with a constant relative communication range, while the “extensive”

transition rates, as in Kirman’s original model, lead to self-averaging and

hence to counter-factual statistics of returns.2 Notice that non-extensive

transition rates depend on the respective occupation numbers n and N −
n, while extensive transition rates depend on the concentrations n/N and

(N − n)/N of agents in the opposite state, and therefore on the average

communication range per time period in the network. This apparently minor

modification has a crucial impact on the aggregate properties of the herding

model, as illustrated in Figure 1. Hence, in contrast to Kirman’s original

model, the generalized transition rates (4) and (5) illustrate that network

structure matters because the average number of neighbors explicitly enters

the transition rates.

At any time, the state of the system refers to the concentration of agents

in one of the two states, say, z = n/N , which can be treated as a continuous

variable for large N . None of the possible states of z ∈ [0, 1] is an equi-

librium in itself nor are there multiple equilibria in the orthodox economic

sense. Equilibrium rather refers to the stationary distribution of the birth

and death process (4) and (5). The distribution, that is the statistical equi-

librium, describes the proportion of time the system spends in state z and

is known to be a Beta distribution (see, e.g., Alfarano et al., 2008; Alfarano

2The next section explains in more detail how the Markov chain typically enters Wal-
rasian models of the financial market.
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and Milaković, 2009, for a detailed derivation of the following results),

pe(z) =
1

B(ǫ, ǫ)
zǫ−1(1− z)ǫ−1, (6)

where B(ǫ, ǫ) = Γ(ǫ)2/Γ(2ǫ) is Euler’s Beta function. The qualitative be-

havior of the process is parsimoniously encoded in the adimensional shape

parameter ǫ of the distribution

ǫ =
aN

λD
. (7)

When ǫ < 1, the distribution is bimodal with probability mass having max-

ima at z = 0 and z = 1. For ǫ > 1 the distribution is unimodal, and

in the “knife-edge” scenario ǫ = 1 the distribution is uniform. The mean

E[z] = 1/2 is independent of ǫ but the system exhibits very different charac-

teristics depending on the modality of the distribution. In the bimodal case,

the system spends least of its time around the mean, instead mostly exhibit-

ing very pronounced herding in either of the extreme states, as illustrated

in the top panel of Figure 1. Finally, the variance of z,

V ar(z) = E(z2)− E(z)2 =
1

4(2ǫ+ 1)
=

[

4

(

2aN

λD
+ 1

)]−1

, (8)

is known to be a convenient summary measure of the model properties with

respect to an enlargement of system size. If the variance of z remains con-

stant (or even increases) when the system is enlarged, the leptokurtosis and

volatility clustering of returns will be preserved in a standard Walrasian

model of market clearing. A decreasing variance under enlargement of sys-

tem size, on the other hand, is characteristic of self-averaging and thus leads

to counter-factual Gaussian properties of returns, as shown in the bottom

panel of Figure 1 and explained in more detail in the following section.

3 Financial Market Framework

For the sake of completeness, we briefly discuss how the Markov chain of the

previous section would enter into a parsimonious model of an artificial finan-

cial market with interacting heterogenous agents, where it is typically used

as a metaphor of information diffusion among investors (see, e.g., Kirman,
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Figure 1: The two panels on the top illustrate the time evolution of aggregate
opinion dynamics measured as the fraction of agents in one of the two states,
say, z = n/N (top panel N = 500, a = 0.5, λ = 1, D = N ; second panel
N = 10000, a = 0.5, λ = 1, D = 500). The two panels on the bottom
exhibit the corresponding time series of returns generated from a Walrasian
pricing function, as for instance in Eq. (13) of Section 3 (with κ = 1), where
the level of excess demand depends on z. The bottom panel illustrates that
an enlargement of system size under extensive transition rates will lead to
counter-factual Gaussian returns and absence of volatility clustering.

1991, 1993; Alfarano et al., 2005; Alfarano and Lux, 2007; Alfarano et al.,

2008; Alfi et al., 2009; Irle et al., 2011, for more realistic or detailed imple-

mentations). Suppose that market participants are divided into two groups:

the first group is populated by NF fundamentalists, who buy (sell) assets

when the price is below (above) its fundamental value PF . Their excess

demand for assets is given by EDF = NFγF log(PF /P ), where γF > 0 des-
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ignates the sensitivity to deviations between the fundamental value and the

market price P . Without loss of generality, the fundamental price is as-

sumed to be constant over time. The second group is populated by NNT

noise traders, who are essentially driven by herd instincts in their investment

strategies. Depending on their expectations of future price movements, noise

traders can be either optimists (subscript O) or pessimists (subscript P). The

excess demand of the noise trader group will be proportional to their aggre-

gated state, EDNT = γNT (NO −NP ), where NO and NP are the numbers

of optimists and pessimists, respectively, with NNT = NO + NP . The pa-

rameter γNT > 0 governs the impact of the noise traders’ aggregate mood

on the asset price. In line with the notation of the previous section, EDNT

can be parameterized as a function of z = NO/NNT , that is the fraction of

optimists over the total number of noise traders

EDNT = γNT ·NNT (2z − 1) . (9)

While the share of fundamentalists and noise traders is constant over time (so

there are no transitions between those two groups), switches from optimism

to pessimism and vice versa do take place among the noise traders, and

are governed by the Markov chain detailed in Section 2. Hence noise traders

change their opinions about the future prospects of an asset for idiosyncratic

reasons or because of a tendency to follow the majority opinion of their peers.

Assuming sluggish price adjustments by a market maker in the presence

of excess demand, one typically formalizes the price dynamics as

dP

P · dt = θ · ED = θ[EDF + EDNT ] , (10)

where θ is the speed of price adjustment. As an approximation to the re-

sulting disequilibrium dynamics, one may consider instantaneous market

clearing (θ → ∞) or equivalently a Walrasian scenario (ED = 0) and solve

(10) for the equilibrium price

P = PF exp

[

NNT · γNT

NF · γF
(2z − 1)

]

= PF exp [κ(2z − 1)] , (11)

where

κ =
NNT · γNT

NF · γF
. (12)
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Given a realization of the process z, we can see from (11) that periods

of undervaluation (compared to the fundamental price) will alternate with

episodes of overvaluation. In the first case the majority of noise traders are

pessimists, while in the second case most are optimists.

Finally, returns are typically defined as the log-increment of prices

r(t,∆t) = log

(

P (t+∆t)

P (t)

)

= κ∆z , (13)

and the third panel of Figure 1 shows the corresponding time series of log-

returns for a ‘small’ number of traders (NF = NNT = 500), visually already

indicating a leptokurtic return distribution and volatility clustering. In fact,

Alfarano and Lux (2007) have shown that this very simple model quantita-

tively reproduces the stylized facts of financial returns with (i) a fat-tailed

distribution of returns, (ii) an absence of auto-correlation in raw returns,

and (iii) a slowly decaying positive auto-correlation in even functions of re-

turns, i.e. volatility clustering. Increasing the number of agents, for instance

to NF = NNT = 10, 000 (keeping D = 500) as shown in the bottom panel

of Figure 1, turns the abrupt mood swings in z into much smoother paths

and results in counter-factual Gaussian fluctuations of returns.

4 Network Hierarchy and Core Weights

Essentially, we know that the relative communication range D/N in the

transition rates (4) and (5) determines whether or not the model is self-

averaging. Alfarano and Milaković consider prototypical networks with bi-

directional links, in particular regular lattices, random graphs, small-world

networks of the Watts and Strogatz (1998) type, and the scale-free networks

of Barabási and Albert (1999). Among these it is merely the random graph

that exhibits a constant relative communication range since in that caseD =

N ℓ, where ℓ designates the constant linking probability among agents in the

random graph. On the other hand, D/N approaches zero for an increasing

system size in the other network structures, unless one appropriately changes

the respective parameters in the generating mechanisms of these networks.

From a socio-economic viewpoint, however, it is not at all clear how or

why a complex system composed of many interacting agents could possibly

coordinate an appropriate system-wide change in these parameters. The
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Figure 2: A stylized representation of a hierarchical core-periphery network,
where core agents (black; bi-directional links) influence each other in their
opinion formation, while peripheral followers (grey; uni-directional links)
simply mimic their respective core agents. This basically corresponds to a
weighted version of Kirman’s original model.

random graph is not a convincing mapping of socio-economic relationships

either, because it implies that the average connectivity of agents increases

linearly with system size.3 Now suppose instead that N core agents are still

bi-directionally linked among themselves, i.e. they still obey the Markov

chain in Section 2. Additionally, each core agent has a constant number

W of followers in the periphery, with uni-directional links emanating from

the core to the periphery. Uni-directional linking implies that the state of

peripheral followers corresponds to the state of the respective core agents.

Then the total number of followers is W N = F , with a total of F+N agents

in the entire network. In this case, the system-wide concentration of agents

in state X will be

z =
Wn+ n

F +N
=

n(W + 1)

N(W + 1)
=

n

N
, (14)

which just amounts to a relabeling of variables. Put differently, in this special

case the system size F +N can be expanded at will by simply adding follow-

ers F without encountering the self-averaging problem. Thus we preserve

system-wide fluctuations in a population of F+N individuals, although only

N socially interacting core agents are responsible for the fluctuations. At

3A simple example illustrates this implausibility. Suppose you live in Smallville, where
you closely interact with, say, thirty people. Moving to Metropolis, with a population
about three hundred times the size of Smallville, a constant linking probability would
imply that you now closely interact with a number of agents on the order of 105.
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the same time, the hierarchical structure avoids the empirically unsatisfac-

tory random graph structure in the entire population that would otherwise

be necessary to preserve non self-averaging fluctuations. The assumption

of a constant number of followers per core agent, however, is quite arti-

ficial and unsatisfactory. Therefore we want to investigate more general

core-periphery structures by randomly drawing the number of followers per

core agent from various distributions, keeping the total number of followers

constant. We examine whether or how the dynamics of z change when the

dispersion of followers increases. Notice that the respective numbers of fol-

lowers now act as weights in the opinion formation process of core agents,

otherwise we recover the unweighted and already well-understood cases re-

sulting in the large-N limit of the generalized transition rates (4) and (5).

Put differently, we would like to avoid the problem of self-averaging when

enlarging the system, but without taking recourse to random graphs. There-

fore we turn to core-periphery networks as a stylized representation of the

institutional structure of financial markets, and investigate whether these

hierarchical networks overcome the problem of self-averaging when the core

remains small relative to the periphery.

Figure 2 provides a stylized representation of the resulting core-periphery

networks that reflect the organizational structure of managed fund invest-

ment. On one hand, peripheral agents who invest in managed funds effec-

tively delegate all subsequent investment decisions to fund managers until

they decide to withdraw their capital again. On the other hand, the fund

managers in the core influence each other and are prone to herding effects,

as in the empirical findings of Hong et al. (2005) or Wermers (1999). We

can also interpret the number of followers per core agent as the size dis-

tribution of funds, thereby implicitly assuming that the influence of fund

managers on each other’s opinion is proportional to the size of the fund they

are managing. While we are not aware of evidence that directly supports

this assumption, the empirical size distribution of funds does in fact exhibit

wide dispersion and leptokurtosis (see, e.g., Gabaix et al., 2006; Schwarzkopf

and Farmer, 2008).
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5 Simulation Setup and Results

It is important to recall that we can study the (non) self-averaging property

without actually increasing the number of agents in our subsequent simu-

lations, because the addition of followers amounts to changing core agent

weights. Notice that adding core agents instead of followers would corre-

spond to the scenario that Alfarano and Milaković (2009) already studied in

detail, where the structure of the bi-directional (core) network determines

whether the model is self-averaging or not in the large N limit. The in-

troduction of weights, however, prevents a straightforward application of

their mean-field technique: when the weights are widely dispersed, the aver-

age number of followers per core agent obviously no longer provides a good

approximation. Therefore we simulate the opinion dynamics in various core-

periphery models, where we increase the dispersion of weights while drawing

weights from different distributions, or altering the network structure in the

core. We compare the resulting variance of z both to the mean-field pre-

diction and to the variance in another limiting case that we have termed

the independent one-leader scenario below.4 After all, the variance of z is a

useful summary measure of the different scenarios because we know that if it

decreases relative to the mean-field benchmark, the weighted core-periphery

networks will still suffer from the problem of self-averaging. If on the other

hand the variance of z remains constant, the hierarchical model will be im-

mune to self-averaging.

5.1 Network-adapted transition rates

To implement individual transition probabilities, in line with the transition

rates (1) and (3), we first consider the (symmetric) adjacency matrix E = eij

for i, j ∈ {1, . . . , N} that keeps track of the links or edges between core

agents, with eij = 1 if i and j are neighbors and eij = 0 otherwise.5 The

key element in the implementation of the transition rates is to determine for

each agent i the number of neighbors that are in the opposite state, say ni.

Let e(i) denote the i-th column of the adjacency matrix E, which ba-

sically informs us of who is or is not an i-neighbor. While some of the

neighbors will be in the same state as agent i, others will be in the opposite

4Appendix A contains an analytical treatment of this case.
5By convention, eii = 0, so there are no ‘self-loops’ in the network.
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state, and these are the agents that we are interested in when implementing

transition rates. To extract the i-neighbors that are in the opposite state,

consider the projection matrix S(i) of dimension N × N that keeps track

of the i-neighbors that are in the opposite state: that is, for each i the off-

diagonal elements of S(i) are zero, sij = 0 if i 6= j, and obviously sii = 0

as well; on the diagonal of S(i) we have sjj = 1 if the state of neighbor j is

opposite to that of agent i, and sjj = 0 otherwise. Then the column vector

k(i) = S(i) e(i) expresses which i-neighbors are in the opposite state, and

we finally have ni = k
T (i)k(i).

Thus in the absence of followers we would posit the transition probability

π̃i = (a+λni)∆t for switching states on the individual level. To ensure that

0 ≤ π̃i ≤ 1 ∀i, we need ∆t ≤ 1/(a + λnmax) , where nmax designates the

number of neighbors of the node(s) with the highest degree in the network.

Since an agent can be connected at most to all other agents, we utilize the

transition probability

π̃i =
a+ λni

a+ λN
(15)

for individual switches, hence agent i’s probability to remain in the current

state is 0 ≤ 1− π̃i ≤ 1.

In the presence of followers, we first need to make sure that our simula-

tion results are comparable with the mean-field prediction arising from (15),

hence the individual transition probabilities need to be adapted to the core

weights stemming from the hierarchical network setup. Let the column vec-

tor w, with elements wi, record the number of followers or weights for each

core agent i, so F =
∑

iwi is the total number of followers in the network,

and let 〈f〉 = F/N be the average number of followers per core agent. Now

we are interested in the weighted sum of core agents who are in the opposite

state of an agent i, denoted fi. Since k(i) describes the i-neighbors that

are in the opposite state, the weighted sum of core agents in the opposite

state is straightforwardly computed as fi = k
T (i) w = e

T (i) S(i) w, and

the probability pi to observe a change in the state of agent i in the weighted

scenario is now given by

πi =
a+ λfi/ 〈f〉
a+ λN

(16)

Notice several points about the formulation of the herding term in the nu-

merator of (16). First, using the definition of 〈f〉, we can rewrite it as

fi/ 〈f〉 = N fi/F . Since 0 ≤ fi/F ≤ 1, we see that the denominator in (16)
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ensures 0 ≤ πi ≤ 1 ∀i. Put differently, since 0 ≤ ni ≤ N , the weighted for-

mulation has the same boundaries as the unweighted one. Second, if all core

agents have the same number of followers, we have that ∀i fi = ni 〈f〉, so we

recover the unweighted original formulation (15). Third, the ratio fi/ 〈f〉 in
the sum of (16) is a direct measure of the dispersion of core weights, readily

illustrating why we should not expect the mean-field approximation to be

accurate when the dispersion becomes large.

5.2 Simulation setup

In our simulations, we fix the number of core agents at N = 500 and draw

the number of followers from Gaussian, uniform, exponential and Pareto dis-

tributions with mean 〈f〉 = 1000 such that each randomly drawn number is

rounded to the nearest (absolute) integer value. Let N+ and F+ respectively

denote the number of core agents and followers that are in the optimistic

state. The system-wide concentration of agents in the optimistic state is now

z = (N+ +F+)/M , where M = N +F is the total number of agents. In all

scenarios we set the parameters a, λ in such a way that ǫ = 1, which yields

a uniform distribution of z with V ar(z) = 1/12 ≈ .083 when the mean-field

approximation applies. One ‘sweep’ of the system corresponds to one round

of sequential updating of all core agents in the system, thus requiringN steps

per sweep, and each simulation run consists of half a million sweeps. Finally,

we successively increase the standard deviation σf of the respective distribu-

tion while ensuring that the weights remain positive and record the variance

of z for each sequence of increasing σf . Recall again that when V ar(z) in-

creases (decreases) above (below) the “knife-edge” value of one twelfth, this

implies that the distribution of z transforms from a uniform to a bimodal

distribution with non-trivial averaging behavior (unimodal distribution with

trivial self-averaging).

5.3 Core structure and one-leader benchmark

The simulation results for a fully connected core are magnified in the inlay

of Figure 3. When core weights are not overly dispersed, the mean-field

prediction still performs well, but pronounced deviations ultimately do occur

as the dispersion of weights increases. Intuitively, this happens because

a few core agents become increasingly influential in the opinion formation
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Figure 3: The impact of increasing heterogeneity in core weights on system-
wide volatility. The simulations (with a fully connected core D = N and
behavioral parameters a = λ = 1, so ǫ = 1) demonstrate that rising hetero-
geneity leads to increasing volatility, irrespective of the particular distribu-
tion from which the weights are drawn.

dynamics of the system, thereby increasing the time during which the system

is near one of the two extreme states. Hence hierarchical networks are not

only immune to self-averaging, but actually amplify volatility in the system.

It is noteworthy that the outcome does not depend on the functional form

of the distribution from which the weights are drawn.

In order to determine the limit of the variance amplification, we consider

an extreme case that we label as the one-leader scenario. In this case, we

allocate an equal number of followers to all but one core agent (the leader),

who is then assigned a weight such that the average number of followers

corresponds again to 〈f〉 = 1000. Let 1/N < p < 1 denote the fraction of

followers that are connected to the one-leader, such that the leader has pF

followers, and assume that the remaining (1 − p)F followers are allocated

with equal weight among the N − 1 remaining core agents. When p = 1/N ,

all core agents have the same number of followers, F/N . Conversely when

p → 1, the system is almost entirely represented by the leader. In each
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new simulation run, we successively shift a larger number of followers to

the leader by increasing p. The result is shown in Figure 3, with V ar(z)

intuitively approaching a value of one-fourth since the leading agent will

represent almost the entire system by itself, and cannot be influenced by

others anymore. Thus its actions will consist of random switches between the

two states, while the few remaining core agents mimic the leader’s behavior.

Hence the system spends half its time in one state and half in the other,

resulting in a variance of one-fourth.

In addition, we present some analytical results for the related benchmark

scenario of an independent leader who in a sense acts “outside” the core net-

work: in contrast to the preceding one-leader scenario, the independent

leader now does not care about the state of other core agents. We explain

the details of this benchmark setup and how we simulated it in Appendix A.

Figure 3 also illustrates the benchmark outcome of both the prediction and

the simulation for the independent leader scenario. In summary, the figure

establishes two central results. First, the mean-field approximation works

reasonably well if the dispersion in the number of followers is relatively

small, that is when the core is fairly homogeneously weighted. Second,

a heterogeneously weighted core actually leads to increasing system-wide

volatility, asymptotically approaching the independent one-leader scenario,

which constitutes the most extreme degree of heterogeneity. The heterogene-

ity of core agents thus represents an auxiliary source of fluctuations in the

model. Basically, the simulations establish the model’s behavior between the

mean-field and independent leader benchmarks, illustrating that the core-

periphery setup quickly diverges from the mean-field approximation and

asymptotically approaches the independent leader benchmark. The social

interactions among core agents are crucial for overcoming N -dependence,

because a vanishing herding propensity would lead to independently acting

core agents, and thereby to a degenerate self-averaging distribution of their

aggregate opinion with a sharply peaked mean of one-half. Moreover, if

the core was enlarged (instead of the periphery) we would also confront the

self-averaging problem, unless the core network was the empirically unsat-

isfactory random graph. It is therefore the contemporaneous presence of a

hierarchical network with a relatively small core, and the social interactions

in the core that ultimately overcomes the problem of N -dependence.
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5.4 Varying the core structure

Our previous investigations show that a hierarchical network with a fully

connected core not only overcomes the self-averaging problem, but also am-

plifies volatility. A remaining issue is whether these results are robust with

respect to the network structure in the core itself. On that account, we per-

form another series of simulations with varying core network structures, and

record how the different core networks respond to an increasing dispersion

of weights.

For comparison with our previous findings we keep the size of the core

fixed at N = 500, and construct the following networks in the core: a circle

with neighborhood forty, a random network with linking probability of ten

percent, and a scale-free network with an average of five thousand links. For

the random and the scale-free graph we construct ten different realizations

of the core network, and run the simulations again for half a million sweeps,

subsequently averaging over the ten respective core realizations. The details

of the respective network parametrizations are not crucial, because in each

scenario we set λ = 1 in the transition rates (16), and adapt the behavioral

parameter a in light of a particular parametrization of D such that the

mean-field prediction would again yield a uniform distribution (ǫ = 1). The

simulation results in Figure 4 demonstrate that core network structure has

merely second-order effects on the macroscopic properties of the model. As

before, an increasing dispersion of followers increases volatility, while the

mean-field prediction holds true if the dispersion of weights is not too large.

We also simulated a very extreme scenario by considering a scale-free

graph with deterministically assigned core weights that are proportional to

the degree of a core agent. We can think of such a proportional weights struc-

ture as the asymptotic limit of positive feedback effects in the time evolution

of the network, for instance if highly central core agents increasingly attract

the interest and wealth of investors, or if core agents with a large weight

become increasingly connected among their peers in the core. Whatever the

ultimate reason might be for observing such a double-weighted hierarchy, it

is noteworthy that volatility increases considerably compared to the other

scenarios shown in Figure 4, even for very small deviations in the number

of followers.
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Figure 4: The impact of different core network structures on system-
wide volatility has merely second-order effects, except for the “proportional
weights” scenario: if the core is a scale-free graph with core weights that are
proportional to the degree of each agent in the core, the mean-field approx-
imation immediately fails to produce accurate results and the variance of z
rapidly increases, almost doubling compared to the other scenarios where
core weights are still randomly assigned when varying the network structure
in the core. As before, the simulations were conducted for N = 500 agents
with λ = 1, and a and D set in such a way that ǫ = 1.

6 Conclusions

Hierarchical core-periphery structures turn out to overcome the problem

of N -dependence in probabilistic herding models of the Kirman type. On

one hand, this is good news from the viewpoint of the model’s asymptotic

properties, because one is able to replicate the stylized facts of financial

returns with behaviorally heterogeneous agents for any system size, without

having to tune any of the behavioral parameters. On the other hand, our

findings have somewhat stark implications from the viewpoint of investment

strategy, and they also raise pressing new questions about the origins of

hierarchical network structures.

The introduction of hierarchical network structures represents an addi-

tional source of volatility on top of the behavioral heterogeneity that has
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previously been considered as the exclusive source of volatility in social in-

teraction models. If one accepts our premise that hierarchical networks are a

useful representation of fund investor relationships in financial markets, then

popular and traditional investment advice to ‘diversify one’s portfolio’ has

to be judged with caution. Investors who are not wealthy enough to broadly

diversify their portfolios, those who participate in funded retirement plans,

or those who simply feel that they lack the skills or time to make appropriate

investment decisions might very well delegate their investment decisions to

institutional investors. But if these fund managers are socially interacting

and influencing each other in their investment decisions, as the quoted em-

pirical evidence suggests, this becomes a self-defeating strategy because we

have argued that system-wide volatility increases under such circumstances.

Put in more provocative terms, all the good intentions of investors to diver-

sify risk can lead to the opposite effect if fund managers are prone to social

interaction effects. Moreover, the presence of positive feedback effects in the

time evolution of hierarchical networks seems to worsen the situation fur-

ther, rather than improving it, since positive feedbacks would significantly

increase the level of volatility in our simulations.

From the viewpoint of policy-making, our study indicates that a reduc-

tion of financial volatility would be facilitated by a shrinking degree of hi-

erarchical organization in financial markets, corresponding to an increasing

decentralization of investment decisions. While such advice sounds straight-

forward in principle, its implementation would most likely be more painful

and complex: our results suggest that already very small values of p (or

market share for that matter) lead to a sudden and pronounced increase in

volatility. Keeping p very close to zero, on the other hand, would more or

less imply getting rid of managed funds altogether, which hardly appears to

be a feasible option.
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A Independent One-Leader Benchmark

Let us start by considering an arbitrary agent in the fully connected core

who is always in a fixed state and does not change opinion. As before,

let 1/N < p < 1 denote the fraction of followers that are connected to

the fixed-opinion agent, or independent leader, such that the agent has pF

followers, and assume that the remaining (1−p)F followers are allocated with

equal weight among the remaining core agents, indexed by i = 1, . . . , N − 1.

When p = 1/N , all core agents have the same number of followers, F/N .

Conversely when p → 1, the system is almost entirely represented by the

leader. For ease of notation, let us write the transition probability as

πi = (a+ λNFi/F ) ∆t for i = 1, . . . , N − 1, (17)

where Fi now denotes the system-wide number of followers in the opposite

state, so the N − 1 equally weighted core agents will obey the transition

rate (17). As before, we set ∆t = 1/(a + λN). Furthermore, let β be an
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indicator function that takes on the values 0 or 1 depending on whether

the state of agent i equals or is different from the state of the fixed-opinion

agent. Then we can rewrite the herding term in Eq. (17), NFi/F , taking

into account the fixed opinion of the leader (say, being optimistic)

N
Fi

F
=

N

F

(

Fpβ + (n− 1)
F (1− p)

N − 1

)

, (18)

which yields the modified version of the transition probability (17),

πi =

(

a+ λNpβ + λ
N

N − 1
(1− p)n

)

∆t (19)

≈ (a+ λNpβ + λ(1− p)n) ∆t

for large N . Depending on the value of the indicator function β, the transi-

tion probabilities of agent i are either

πi = (ε+ (1− p)n) λ∆t or (20)

πi = (ε+Np+ (1− p)n) λ∆t , (21)

where we adapted ε to the definition (7) by noting that a fully connected

core implies D = N .

Fixing the opinion of one agent is equivalent to creating an asymmetry

in the autonomous component that stems from the additional term Np in

the modified transition rates. Put simply, the system exhibits a tendency

towards the fixed opinion that depends on p. A straightforward mean-field

argument (see, e.g., Alfarano and Milaković, 2009) results in the following

system-wide transition probabilities, analogous to an extensive version of

the transition rates (4) and (5),

π− =
n

N

ε+ (1− p)(N − n)

ε+N
, (22)

π+ =
(N − n)

N

ε+Np+ (1− p)n

ε+N
. (23)

The equilibrium distribution of such a unary Markov process is (see, e.g.,

Garibaldi et al., 2003) the Polya distribution R(ε1, ε2; z), with z = n/N and

24



shorthands6

ε1 =
ε+Np

1− p
, ε2 =

ε

1− p
. (24)

Increasing the value of the control parameter p leads to an increasingly

asymmetric distribution peaked around the opinion of the leader. Fixing the

opinion of one agent, however, yields a very unsatisfactory approximation

for the simulations in Section 5, where the leader is not in a fixed state but

rather switches states as well. Therefore we proceed by assuming that the

‘independent’ leader switches opinion randomly, without being influenced

by other agents, which basically means that the autonomous term in the

mean-field transitions (22) and (23) is now stochastic and time-dependent,

hinging on the random realizations of the leader’s state.

Such a situation is harder to tackle analytically because it leads to a

stochastic differential equation with random coefficients. In order to ap-

proximate the full mathematical problem, we employ a so-called adiabatic

approximation that neglects the adjustment of the system to the switch-

ing of the leader by assuming that the leader’s switches are slow enough in

order for the N − 1 agents to reach statistical equilibrium. Then we can

consider the system as being in statistical equilibrium most of the time and,

consequently, the resulting equilibrium distribution Ge becomes the super-

position of two independent equilibrium distributions, corresponding to the

two possible configurations of the leader,

Ge =
1

2
R(ε1, ε2; z) +

1

2
R(ε2, ε1; z) , (25)

which is an average of the previous asymmetric distributions among the two

alternative configurations of the leader. The equilibrium distribution is now

symmetric (note the interchange of the parameters ε1 and ε2) and U-shaped.

From Eq. (25), the second moment of the equilibrium distribution M2,e is

given by

M2,e =
1

2
M2(ε1, ε2) +

1

2
M2(ε2, ε1) , (26)

where M2(·, ·) denotes the second moment of the respective asymmetric

Polya distribution with parameters ε1, ε2, and the variance of the equilib-

6The Polya distribution converges to the Beta distribution for large N . The results
of this section, however, do not significantly depend on whether we use a continuous or
discrete approach (material upon request).
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rium distribution for a given p is

V ar[z]p =
1

2
V ar[ε1, ε2] +

1

2
V ar[ε2, ε1]

+
1

2

{

M2
1 [ε1, ε2] +M2

1 [ε2, ε1]
}

−
(

1

2

)2

, (27)

where M1 designates the first moment of the respective asymmetric Polya

distribution, and 1/2 is obviously the mean of the equilibrium distribution

Ge. The two variances are equal since they are the same under an exchange

of the two parameters ε1, ε2, hence the previous equation can be written as

V ar[z]p = V ar[ε1, ε2] +
1

2

{

M2
1 [ε1, ε2] +M2

1 [ε2, ε1]
}

− 1

4
. (28)

It is possible to show (see, e.g., Garibaldi et al., 2003) that

M1[ε1, ε2] =
ε1

ε1 + ε2
, (29)

V ar[ε1, ε2] =
ε1ε2

(ε1 + ε2)2
ε1ε2 +N

N(ε1ε2 + 1)
, (30)

and utilizing these in Eq. (28) yields

V ar[z] =
1

4
− ε1ε2

(ε1 + ε2)(ε1 + ε2 + 1)
. (31)

Finally, recalling the shorthands in (24), we obtain the variance as a function

of the control parameter p,

V ar[z]p =
1

4
− 1 + pN

(2 + pN)(3 + pN − p)
, (32)

under the parameter choice ε = 1, i.e. λ = 1 and a = 1. For N ≫ 1, we

immediately see that Eq. (32) provides boundary values that are consistent

with our previous findings: if p = 1/N , the variance tends to 1/12, repre-

senting the correct value for the uniform distribution (recall the parameter

choice ε = 1); if p → 1, the variance tends to 1/4, representing a distribu-

tion concentrated either in 0 or 1. We simulated the modified model with

a randomly switching leader, successively increasing the control parameter

p in a fully connected core of size N = 500 with a total of F = 500, 000

followers. As before, we simulated each parametrization with half a million
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sweeps.

The results, along with the prediction (32), are shown in Figure 3. For

easier comparison with the simulation results in Figures 3 and 4, we calculate

the standard deviation in the number of followers for each parametrization

of p, which is

σ =

√

1

N
(pF )2 +

N − 1

N

(

(1− p)F

N − 1

)2

−
(

F

N

)2

, (33)

and invert the relation to obtain

p =
σ
√
N − 1

F
+

1

N
. (34)

While the independent leader scenario exhibits a quicker convergence to

the limiting variance of one-fourth than the one-leader model, both versions

are qualitatively similar in the sense that there is sudden and pronounced

increase in volatility already for small values of p. The main difference be-

tween the independent vs one-leader scenarios is that the independent leader

switches randomly (thus independently) between the two states, while the

switches of the one-leader in Section 5.3 still depend on the interactions

with the other core agents, which intuitively slows down the variance am-

plification relative to the independent leader case. As far as the creation of

fluctuations and therefore risk is concerned, the important common feature

of both models is that they exhibit a sudden and pronounced increase in

system-wide volatility as soon as a relatively small number of core agents

obtains a disproportionately large weight in the core network.
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