

Does economic development cause intra-industry trade? The case of India: 1971 to 2000

Banerjee, Sarmila and Bhattacharyya, Ranajoy

Calcutta University

2004

Online at https://mpra.ub.uni-muenchen.de/30961/ MPRA Paper No. 30961, posted 19 May 2011 09:40 UTC

Does Economic Development Cause Intra-Industry Trade? The Case of India: 1971 to 2000

Sarmila Banerjee Department of Economics, Calcutta University

Ranajoy Bhattacharyya Department of Business Management, Calcutta University

Abstract

India's intra-industry trade (IIT) is evaluated and analyzed from 1971 to 2000. IIT is found to have an upward trend with a growth rate that is close to the growth rate of GNP. A host of macro economic indicators are cointegrated with IIT suggesting that there is a stable relationship between IIT and the level of economic development of India. The causation of this relationship is not however unidirectional as the existing theoretical literature on IIT suggests. There is bi-directional causality for these variables. This implies that though economic development boosts IIT, it can equally be interpreted as a proxy for economic development and a predictor of future industrial progress rather than one that strictly follows it.

JEL classification: F12 Keywords: Intra Industry Trade, Economic Development, Causality.

Corresponding author: Ranajoy Bhattacharyya Department of Business Management Calcutta University 1, Reformatory Street Kolkata 700027 INDIA Email: branajoy@yahoo.com

* An earlier version of this paper was presented at the Indian Statistical Institute, Bangalore. We are indebted to the participants of the conference for their comments. We are especially indebted to Dipankar Coondoo for his detailed comments on an earlier version of this paper. Excellent research assistance provided by Tanusree Bhattacharya and Satadru Chakraborty is gratefully acknowledged.

Does Economic Development Cause Intra-Industry Trade? The Case of India: 1971 to 2000

1 Introduction

It is generally believed that the level of economic development of a country is positively related to the extent of intra industry trade (IIT). However the analytical question is: does economic development cause IIT? The suggestion in the literature seems to be in the affirmative. Such an argument, for example can easily be constructed from Krugman (1981) where IIT positively depends on the extent of horizontal product differentiation and economies of scale - factors that are positively influenced by economic development. Also in many models [including the above one and, say, the vertical IIT model suggested by Shaked and Sutton (1989)] there is a positive relationship between IIT and the level of purchasing power of the consumer. At the empirical level, research work by many authors like Havrylyschyn and Civan (1983), Helpman (1987) and more recently Bhattacharyya (2002) have explicitly confirmed this relationship between IIT and economic development by using multiple regression methods on cross-country data over different periods of time. Also, it has been repeatedly shown that for roughly the same years IIT in DCs are much greater than that in LDCs [see, for example, Tharakan (1986), Havrylyschyn and Civan (1983), Globerman and Deane (1990)]. These empirical and theoretical results apparently seem to complement each other and decisively establish the relationship between economic development and IIT. In reality, however, this is not generally true. The theoretical works not only imply a positive relationship but also implicitly argue in favor of a one-way causation from economic development to IIT. The empirical results on the other hand are silent on the issue of dynamic causation. In this paper we look at the time series data of a less developed country (India) to address this issue. Since country specific studies of IIT in less developed countries (LDCs)

are extremely rare¹, the paper is also expected to be informative regarding the magnitude, trend and determinants of IIT in these countries².

The rest of the paper is arranged as follows: in the next section we take a look at India's IIT data to study some of its broad characteristics. We also justify our choice of variables to be used in the regression analysis and report the simple correlation results with these variables. In section 3 we briefly discuss the theoretical rationale for our empirical analysis. Section 4 presents the results of the unit root, cointegration and causality analysis. Section 5 concludes the paper.

2 IIT in India

2.1 The basic data

In line with the general trend in case of less developed countries, there has been very little effort to study IIT in India. Bhattacharyya (1994) presented a time series data for India's IIT between 1971 and 1987. The paper concluded that (1) about 20 to 24 per cent of total trade in India is intra-industry in character and there is a positive time trend to the data, (2) among the different categories of industries considered, manufactured products (SITC 6) had the highest amount of IIT and (3) India's bilateral IIT appears to be higher with developed rather than with less developed trading partners. However the paper did not comment on the determinants of IIT in the context of India thus missing out crucial insights into the nature and characteristics of her IIT³.

Table 1 and figure 1 report the value of the Grubel-Lloyd (uncorrected) index ($I_{GL(U)}$, first suggested by Grubel and Lloyd (1975)) for India between 1971 and 2000. The index is defined as follows:

¹ There has however been a lot of work on groups of less developed countries like the Transition countries (see Aturupane, Chonira, et al (1999), Kandogan (2003) and others)

² For more on IIT in developing countries see, for example, Clark and Stanley (1999) and Ekanayake (2001).

$$I_{GL(U)} = 1 - \frac{\sum_{i} |X_{i} - M_{i}|}{\sum_{i} (X_{i} + M_{i})}$$

Where X_i and M_i are the export and import values of the ith industry⁴. The value of the index varies from zero (no IIT) to 1 (all trade is IIT). The time trend and the growth rate of the series can be inferred from the following equations:

$$IIT_t = 0.17 + 0.006t$$
(1)

(11.4) (7.8) $\bar{R}^2 = .67$ F = 61.09

 $Ln IIT_t = -1.77 + 0.03t$ (2)

(-29.6) (7.8) $\bar{R}^2 = .68$ F = 62.1

The first equation suggests that IIT in India clearly has a positive time trend. Its growth rate over time is about 3 per cent per annum. Interestingly this growth rate is very close to the average annual growth rate of GNP over the same period (the so called 'Hindu rate of growth'). However the estimate of the slope coefficient in a regression with IIT as the dependent variable and GNP as the independent variable has fallen over the decades⁵. This is also obvious from table 2 where we regress IIT with GNP and report the actual and the predicted values of IIT when the decade of the 1980s is predicted from the nature of the

³ Panchamukhi (1997) observes that IIT for India is higher in natural resource intensive and human capitalintensive products than in labour intensive and technology intensive products. However, for a cross section data on Indian Industries in 1990, he finds no evidence of any statistically significant relationship between economies of scale and labour intensity of products to IIT.

⁴ The raw data for calculating the IIT values has been taken from the various issues of the International Trade Statistics Yearbook.

 $^{^5}$ The coefficient changes from .00019 in the 1970s to .00005 in the 1980s to .0000057 in the 1990s.

relationship from the 1970s and that for the 1990s from that of the 1980s. It can be seen that in all cases the predicted value of IIT is much higher than the actual value confirming he fall in slope.

Table 3 compares India's IIT with some other less developed countries. On an average about 27 per cent of total trade was intra-industry in character in the countries reported in the table. It should be noted that among the countries chosen India has the lowest per capita GNP but it ranks sixth as far as IIT is concerned. Thus economic development is not the only criteria determining the magnitude of IIT. Turning to the commodity composition of IIT in India we find that Manufactured goods (SITC 6) accounts for the highest amount of IIT (48.7%) followed by machinery and transport equipment (SITC 7) (27.9%) and then chemical products (SITC 5) (18.7%). The overwhelming importance of SITC 6 is also confirmed from table A.1 in the appendix where it is seen that *all* industries with high bilateral IIT with different countries are of this category. Finally turning to the direction of India's IIT it can be seen from table 4 (and table A.1 in the appendix) that India's IIT is overwhelmingly with developed rather than underdeveloped countries. USA, UK and Singapore are the three largest IIT partners of India. To the extent that these countries are also India's major trading partners, India's bilateral IIT suggests a positive relationship between IIT and the trading volume of a country.

2.2 Determinants of IIT

Some of the standard determinants of IIT in developed countries (DCs) are: (1) Variables that affect export, or the supply side variables proxying for industrial structure, notably (a) the extent of economies of scale (b) the extent of horizontal product differentiation and/or (c) the extent of vertical differentiation. (2) Variables that affect import, or the demand side variables such as average purchasing power of consumers. (3) Policy variables like tariff. It should however be noted that the variables that are usually found to be relatively important for DCs do not automatically qualify as probable candidates for a LDC.

High levels of industrial concentration, small number of varieties for a product and little or non-existent scale advantages for the average industrial firm usually characterizes the production structure in LDCs such as India (see, for example, Rodrik (1988)). Firms in India

typically have a low and declining propensity to adapt to foreign technology, low level of R & D expenditure (Katrak, 1985) and as a result lower levels of competitiveness compared to foreign firms (Kathuria (1995)). Here firms are even known to have negative externality in the core sectors (Patibandala 1992). Thus, the so-called 'supply side' variables need to be modified or replaced by more general variables that are meaningful. In our context, given our broad emphasis on economic development, one such variable is the size of the manufacturing sector (MANU). We consider this as the 'supply side' variable (determining the level of production) which proxy for economic development from the supply side.

Secondly, since it has been observed that the LDCs such as India have higher IIT with DCs rather than LDCs, so not only exports in general, but also export to DCs would be of special importance. Thus, a high and rising IIT with DCs should imply that goods are more and more conforming to the market demands of these countries. Relatively more capital or technology intensive goods have a larger market in DCs. This means that the level of capital intensity of the goods should determine the pattern of production from the supply side and hence the extent of IIT in countries like India. It is also a broad indicator of economic development implying industrial sophistication. We thus choose the capital-labor ratio (denoted by KL) over economies of scale and the extent of product differentiation to define industrial structure in the regression analysis below.

From the demand side, for obvious reasons, we have retained the variable that is considered for DCs, that is Gross National Product per capita (GNP). Also as a policy variable we have retained tariffs (TARF) for this section. Unlike in the case of DCs, the variable, for a country like India, is of indeterminate sign. On the one hand tariffs by hindering trade in general also hinders IIT. On the other hand, tariffs by giving protection to domestic industries enhances it production and possibility of export, which coupled with the fact that there is usually a large demand for foreign industrial goods in LDCs like India may well lead to an increase in IIT. Finally, we have added the role of foreign direct investment (FDI) as an additional cause of IIT in LDCs such as India⁶ which would typically proxy the

⁶ FDI in India has been very low for the last forty years mainly because the government has actively discouraged it. In the 1980s the annual average rate of FDI inflow was only about 92 million dollars. Most of these had come through foreign capital participation in collaboration agreements.

extent of opening up of the economy. Table 5 presents the proposed causal determinants of IIT and their respective data sources.

2.3 Adjusting the data

Let us now turn to see whether we can establish any relationship between the explanatory variables and IIT⁷. For this we conduct a simple correlation analysis on IIT in India. In doing so, however, we need to keep in mind that our ultimate objective is drawing conclusions regarding causality through regression techniques. Since IIT is a positive fraction the application of OLS regressions will lead to erroneous results.

To overcome this problem Bergstrand (1983) suggests a logit transformation:

where ui's are homoscedastic disturbance terms. This implies that:

$$\ln \{ IIT_i / (1 - IIT_i) \} = x'_i \beta + \ln \{ u_i / (1 - u_i) \}$$

=
$$\mathbf{x}_i'\boldsymbol{\beta} + \varepsilon_i$$
 (say) (3')

assuming $Z_i^{1} = \ln \{ IIT_i/(1-IIT_i) \}$ we regress Z_i^{1} on the independent variables. However, for the transformed regression the random error term $\varepsilon_i = f(u_i) \sim N(\theta, f' \delta_u^{2})$. Thus, $V(\varepsilon_i) = \sigma_u^{2}/\{ IIT_i/(1-IIT_i) \}$ and the transformed model has heteroscedastic disturbances. So, while running the regression we will have to apply $\{ IIT.(1 - IIT) \}^{1/2}$ as weights⁸. So the series that we will be working with ultimately is an adjusted version of the actual series.

⁷ Note that through out this paper financial years have been made consistent with calendar years by taking, say, the 1971-72 data as the data for 1971 (in which it has nine months) and not 1972 (in which it has three months).

⁸ It should be noted that adjusting the data set in the above manner has certain (restrictive) implications regarding the rate of fluctuation of the dependant variable with respect to the independent variables.

2.4 A Simple Correlation Analysis

Since adjusting a series in the above fashion distorts the series to a large extent it is useful to look at the simple correlation between the dependent and the independent variables of both the actual and the adjusted series. This would help us to determine whether the nature of the relationship between the two has been significantly affected due to the adjustment. This will also help us to get an indication about the results that we should expect from the regression analysis. Tables 6 and 7 report the simple correlation results both with and without adjustment. It can be seen from the tables that *both before and after adjustment* all the independent variables, except tariff, have a significant correlation with IIT. Thus the nature of the relationship between the dependent and the independent variables has not been affected by the adjustment of the data. The tables also suggest that there should be a strong statistical link between the extent of economic development and IIT in India, though such a link may not exist for trade policies like tariff.

3 Theoretical Rationale for the causality analysis

It has now been demonstrated that the level of economic development of India and her IIT are positively correlated. Theoretically such an argument can for example, be easily constructed from Krugman (1979,1981) where the extent of IIT positively depends on the extent of horizontal product differentiation and economies of scale - factors that are positively influenced by economic development. Also in many models (including the above one and, say the one suggested by Shaked and Sutton (1989)) there is a positive relationship between IIT and the level of purchasing power of the consumer. In addition empirical works by Harylyschyn and Civan (1983) (and also Helpman (1987) and Bhattacharyya (2002)) have explicitly confirmed this relationship between IIT and economic development by using multiple regression methods on cross-country panel data. Also, it has been noted that for roughly the same years, IIT of DCs is much greater than that of LDCs (see, for example, Tharakan (1986), Havrylyschyn and Civan (1983) Globerman and Deane (1990)).

At a first glance these empirical and theoretical results apparently seem to complement each other and to work in tandem to firmly establish the relationship. In reality however this is not generally true. The theoretical works not only imply a positive relationship but also implicitly argue in favor of a one-way causation from economic development to IIT. The empirical results on the other hand in so far as they use simple regression techniques or compare static values of IIT across developed and underdeveloped counties are silent on the issue of causation. In the rest of the paper we take another look at the Indian time series data to address this causality aspect.

4 Results for the Time Series Analysis

4.1 Unit root tests

To take a closer look at the IIT series we first determine its nature and order of stationarity. We use the usual three following equations to do this:

$$\Delta Y_t = \gamma Y_{t-1} + u_t$$

$$\Delta Y_t = \alpha + \gamma Y_{t-1} + u_t$$

$$\Delta Y_t = \alpha + \beta t + \gamma Y_{t-1} + u$$

where Δ is the first difference operator and in all cases we test for the null hypothesis of $\gamma=0$ (presence of unit root) against the alternative of $\gamma<0$. Acceptance of H₁: $\alpha \neq 0$ implies the presence of a drift in the series and acceptance of H₁: $\beta \neq 0$ implies the presence of a trend in the series. Table 8 reports the estimates of equations (5) and (6). A one period lag had to be used to eliminate autocorrelation in the equations as is testified by the LM values in column 5 of the table. The ϕ_1 , ϕ_2 and ϕ_3 values respectively test for $(\alpha, \gamma) = (0, 0)$ in equation (5) and for $(\alpha, \beta, \gamma) = (0, 0, 0)$ and $(\alpha, \beta, \gamma) = (\alpha, 0, 0)$ in equation 6. Turning to ϕ_3 first, the table value for rejecting the null hypothesis is 10.61 for 25 observations and 9.31 for 50 observations (see Hamilton (1994) page 764). Since the number of observations here is 30 in our case we use the first of these table values. The test thus points out the presence of unit root in the IIT series. The conclusion is further strengthened by looking at the ϕ_1 tests whose table value for 100 observations in 4.88, see Holden and Perman (1994), p- 100). The t-tests for $H_0=0$ vs $H_1<0$ for γ also confirm the same conclusion (see Fuller (1976) table 8.5.2). Thus we conclude that the IIT series has a unit root (see also figures 2-4).

A similar exercise with the first difference of the IIT series shows that Δ IIT (plotted in fig 2) is stationary. This test and all such tests with the independent variables are summarized in table 9. It can be noted from the table that all he variables are I(1) except TARF which is I(2).

4.2 Cointegration

Before coming to the cointegration results it should be noted that in view of the high correlation between MANU, GNP and KL (which are all I(1)) as reported in table 7 muticollinearity is a potential problem to be encountered in the cointegrating regressions. To avoid this problem we consider the variables separately in the cointegrating regressions⁹. The Johansen method of cointegration for the above variables has been used. The results are reported in table 10. It can be seen that all the independent variables except TARF conitegrate with IIT. However since MANU and GNP have more than one cointegrating vectors as opposed to a single one for KL, we can say that the relationship between IIT and KL is less "stable" (See Dickey, Jansen and Thronton (1994) p 22) than the rest of the variables. The failure of TARF was in fact imminent from tables 6 and 7 where the simple correlations with variables having high correlations with IIT were also very low. Its failure implies that trade policy has not significantly affected IIT in India and that other factors have overwhelmed it. It should be noted that the result could also be due to the fact that we have used a proxy for TARF (see table 5). However since TARF is not an indicator for economic development this does not affect our basic contention regarding the positive relationship between economic development and IIT.

4.3 Causality

⁹ Correlation with ΔATARF (which is I(1)) is -.31 (GNP), -.32 (MANU) and -.34 (AKL).

We use the error correction model to test for causality (see Mehra (1994) p- 154). The steps are as follows: first estimate a set of equations similar to the second step of the Engle-Granger procedure (for this discussion we assume that x_t and y_t are both I(1)):

$$x_t = \alpha_0 + \beta_0 y_t + \nu_{1t}$$
$$y_t = \alpha_1 + \beta_1 x_t + \nu_{2t}$$

After calculating v_{it} from the above we estimate the following error correction equations:

$$\Delta x_{t} = \alpha_{3} + \lambda_{1} v_{1 t-1} + \sum_{s} \beta_{1s} \Delta x_{t-s} + \sum_{s} \beta_{2s} \Delta y_{t-s}$$

$$\Delta \boldsymbol{y}_{t} = \boldsymbol{\alpha}_{4} + \boldsymbol{\lambda}_{2} \boldsymbol{v}_{2 \ t\text{-}1} + \sum_{s} \boldsymbol{\beta}_{2s} \Delta \boldsymbol{x}_{t\text{-}s} + \sum_{s} \boldsymbol{\beta}_{1s} \Delta \boldsymbol{y}_{t\text{-}s}$$

Where λ_1 and λ_2 are error correction coefficients. If $\lambda_1 \neq 0$ then y_t Granger causes x_t and if $\lambda_2 \neq 0$ x_t Granger causes y_t (since v_{it-1} depends on lagged levels of the ith variable, i = 1,2) Further if $\beta_{2s} = 0$ then lagged y_t 's (x_t 's) do not enter the x_t (y_t) equation.

The results of this test are presented in table 11. It can be seen that generally not only is there causality from the variables to IIT but reverse causality is also clearly present from IIT to the variables. Thus IIT is indeed caused by economic development and the process of causation is a complex one, as proxies of economic development do not cause it unidiretionally. In this sense it apparently seems to behave more like a parameter that itself has a role to play in the development process of the nation. Since, as we have already pointed out, economic theory implicitly suggests a one-way causation form the different variables signifying economic development to IIT, the second implication of the result seems to be rather surprising. However, let us note that Granger causality has a thematic implication that is not always appreciated while interpreting results derived from it (see Hamilton (1994) page 11). By its very statistical nature Granger causality is a tool that comments on the extent to which a series can forecast the values of another series. This ability to forecast may well translate into causality if economic logic supports it. If economic logic dictates something which is quite contrary to what the Granger causality analysis suggests, then all we can say is

that the series contains "the market's best information as to where (the explained series) might be headed" (Hamilton(1994) p 307). The reverse causation from IIT to GNP and MANU, in this interpretation is thus a reflection of the fact that it is itself an indicator of economic development and can be considered as an yardstick for it.

5 Conclusion

As an economic phenomenon IIT is a relatively recent discovery, its presence being almost unknown before the mid 1970s. Much is yet to be determined regarding the nature and causes of such trade between nations. One interesting issue that has been sparsely analysed in the literature is the nature of IIT in LDCs and its relationship with the level of economic development. In this paper we have investigated this issues with the Indian data. We have found that, in India, IIT is present, has an upward trend and has a positive relationship with economic development but the nature of the linkage is complex rather than a straightforward one. Though economic development boosts IIT, it can equally be interpreted s a proxy for economic development and a predictor of future industrial progress rather than one that strictly follows it.

YEAR	IIT	YEAR	IIT
1971	0.143	1986	0.237
1972	0.142	1987	0.285
1973	0.151	1988	0.346
1974	0.161	1989	0.355
1975	0.176	1990	0.301
1976	0.215	1991	0.311
1977	0.259	1992	0.354
1978	0.311	1993	0.351
1979	0.226	1994	0.256
1980	0.222	1995	0.270
1981	0.218	1996	0.340
1982	0.249	1997	0.302
1983	0.279	1998	0.317
1984	0.242	1999	0.365
1985	0.231	2000	0.339

Table 1: India's IIT: 1971 - 2000

Source: Calculated from the International Trade Statistics Yearbook, UN, (various issues).

OBSERVATION	ACTUAL	PREDICTED	$\mathbf{U}_{\mathbf{i}}^{1}$	σ_u^2			
	Based on 1971 to 1979 data						
1980	0.222	0.267	-0.045	0.021			
1981	0.218	0.310	-0.092	0.024			
1982	0.249	0.314	-0.065	0.024			
1983	0.279	0.377	-0.098	0.029			
1984	0.242	0.402	-0.160	0.031			
1985	0.231	0.431	-0.200	0.034			
1986	0.237	0.456	-0.219	0.037			
1987	0.285	0.475	-0.190	0.038			
1988	0.346	0.580	-0.235	0.049			
1989	0.355	0.647	-0.292	0.056			
	Based of	n 1971 to 1989 d	lata				
1990	0.301	0.371	-0.070	0.040			
1991	0.311	0.366	-0.055	0.040			
1992	0.354	0.384	-0.030	0.041			
1993	0.351	0.405	-0.054	0.043			
1994	0.256	0.437	-0.181	0.046			
1995	0.270	0.471	-0.201	0.049			
1996	0.340	0.513	-0.173	0.054			
1997	0.302	0.535	-0.233	0.056			
1998	0.317	0.570	-0.253	0.060			
1999	0.365	0.606	-0.241	0.065			
2000	0.339	0.635	-0.296	0.068			

Table 2: Static Forecasts of IIT Based on OLS Regression of IIT on (Intercept and) GNP

Notes: 1. Error 2. Standard Deviation of error. Computed value of the F statistic for predictive failure test: F (10, 7) = 4.72^* for IIT and 1.07 for Δ IIT (for the first regression) F(3, 17) = 3.17^* for IIT and 2.67 for Δ IIT (for the second regression) where '*' implies F values are statistically significant at 5%.

COUNTRY	IIT	COUNTRY	IIT
1.PAKISTAN	0.031	10.PHILIPPINES	0.282
2.PERU	0.037	11.MEXICO	0.296
3.CHILE	0.084	12.BRAZIL	0.323
4.COLUMBIA	0.121	13.INDIA	0.354
5.SRILANKA	0.123	14.THAILAND	0.355
6.VENEZUELA	0.126	15.KOREA	0.433
7.INDONESIA	0.136	16.MALAYSIA	0.489
8.ARGENTINA	0.202	17.SINGAPORE	0.676
9.URUGUAY	0.217	18.HONG KONG	0.796

Table 3: India's IIT compared to some other LDCs and NICs (1992)

Source: Calculated from the International Trade Statistics Yearbook, UN, (various issues).

Developed countriesUSASINGAPOREUKITALYGERMANYJAPAN	IIT
Developed countries USA SINGAPORE UK ITALY GERMANY JAPAN	
USA SINGAPORE UK ITALY GERMANY JAPAN	
SINGAPORE UK ITALY GERMANY JAPAN	0.218
UK ITALY GERMANY JAPAN	0.194
ITALY GERMANY JAPAN	0.179
GERMANY JAPAN	0.167
JAPAN	0.152
	0.130
HONG KONG	0.098
SWITZERLAND	0.087
NETHERLANDS	0.084
FRANCE	NA
Underdeveloped countries and NICs	
MALAYSIA	0.094
KOREA	0.080
THAILAND	0.074
BRAZIL	0.035
CHINA	0.029
BANGLADESH	0.023
PAKISTAN	0.008
SRILANKA	0.007
ARGENTINA	0.000
PHILIPPINES	0.000
	0.000

Table 4: India's Bilateral IIT with Selected Countries (1992)

Source: Calculated from International trade statistics (Series D) (UN)

	VARIABLE	PROXY	DATA SOURCES
1.	The size of the	Index no. of manufacturing	Economic Survey (Govt.
	manufacturing sector	production in India (MANU)	of India)
2.	The capital intensity	Productive capital per worker	Calculated from the
	of industrial goods	per factory in Indian	Annual Survey of
		manufacturing (KL)	industries (Govt. of India)
3.	Average purchasing	Gross national product per capita	Economic Survey (Govt.
	power	in India (GNP)	of India)
4.	Tariffs	Ratio of total customs duty	Calculated from the
		earned by the Govt. of India to	Reserve Bank of India
		the import bill (TARF)	Bulletin

Table 5: Explanatory Variables and their Data Sources

Table 6: Correlation Matrix of Independent Variables at Level

Variables	IIT	MANU	GNP	TARF
MANU	.739**			
GNP	.748**	.998**		
TARF	-0.003	-0.325	-0.346	
K/L	.665**	.986**	.985**	435*

Notes: 1. Pearson correlation 2.** Correlation is significant at the 0.01 level (2-tailed). 2. * Correlation is significant at the 0.05 level (2-tailed). 3. No. of observations 30.

Table 7: Correlation Matrix of the adjusted series at Level

Variables	AIIT	AMANU	AGNP	ATARF
AMANU	.782**			
AGNP	.837**	.994**		
ATARF	0.26	-0.112	-0.075	
AKL	.689**	.982**	.965**	-0.258

Notes: 1. Pearson correlation 2.** Correlation is significant at the 0.01 level (2-tailed). 2. * Correlation is significant at the 0.05 level (2-tailed). 3. No. of observations 30.

Table 8: Unit Root Tests for IIT Series

α	β	γ	θ	LM_1^2	φ 1	\$ 2	ф 3
-0.11		-0.28	0.08				
(-1.4**)		(-1.7)	(0.73)	0.07	3.7		
-0.49	0.008	-0.83	0.36	0.41		7.5**	10.0
(-3.7**)	(3.1**)	(-4.0)	(1.9**)				

Variable	LM^2	Level	First diff.	Second diff.	Conclusion
IIT	.41*4	-2.16	-6.24	NA	I(1) ³
GNP	2.27	.96	-4.60	NA	I(1)
MANU	.95	2.21	-2.98	NA	I(1)
KL	.35	75	-3.66	NA	I(1)
TARF	1.35	-1.14	-2.83	-4.81	I(2)

 Table 9: Unit Root Test for the Dependent and the Independent Variables¹

Notes: 1. There is trend in the data generating process for GNP and KL and no-trend in IIT, MANU and TARF (Results not reported). Accordingly appropriate Dickey Fuller statistic is reported (i.e, 'Dickey Fuller Statistic with trend' or 'Dickey Fuller statistic without trend'). Also since serial correlation is present in the basic Dickey-Fuller equation in all cases we use the Augmented version of the test in all cases. 2. LM gives the Lagrange multiplier statistic of order 1 (F version) in the following augmented Dickey Fuller equation: $\Delta y_t = \alpha + \beta_t + \gamma Y_{t-1} + \lambda \Delta Y_{t-1} + \varepsilon_t$. It can be seen from the LM values that one period lag is enough to remove serial correlation in all situations. 3. NA= Not Applicable (as the variables have become stationary at the previous level of differencing) 4. Integrated of order one. 8. Critical values for ADF tests, for our case [see Hamilton (1994)], are around –2.96 for Dickey Fuller without trend and -3.57 for Dickey Fuller with trend.

Maximum ei	gen value	Cointegration vector(s)			
k = 0	k ≤ 1	AGNP	AMANU	ATARF	AKL
17.7^{*2}	6.8*	0.003^{3} 0.0001			
19.8*	4.6*		-0.02 ⁴ 0.01		
12.05 23.16*	.93 .70			None	0.524

Table 10: Test for Cointegration of AIIT Series¹

Notes: 1. Five lagged differences used. 2. '*' implies that null hypothesis is rejected at 95% level 3. Normalized coefficients. 4. There are two cointegration vectors for MANU and GNP, one for KL and none for TARF.

Table 11: Error	Correction	Coefficients	for Grange	: Causality
			0	

Variable	From y _t to x _t				From x _t to y _t	t
	λ_1^1	θ_1^2	η1 ³	λ_1^1	θ_1^2	η1 ³
$y_t = AGNP$.25	.22	.26	76	62	72
	(3.56*)	(2.31*)	(2.05*)	(-3.34*)	(-2.22*)	(-2.18*)
$y_t = AMANU$	0.10	0.08	0.09	66	-0.51	62
	(2.61*)	(1.73**)	(1.65**)	(-3.31*)	(-2.18*)	(-2.25*)
$y_t = AKL$	0.03	-0.03	-0.12	-0.43	-0.32	-0.27
	(.96)	(-1.13)	(-2.86*)	(-2.47*)	(-1.66**)	(-1.12)

Notes: 1. One period lag. 2. Two period lag. 3. Three period lag. See also notes at the end of table 11.

Appendix

Table A1: Country wise Breakup of Industries with High Bilateral IIT of India

COUNTRY	SITC	COMMODITY	GLU
USA	635	Wood manufactures, nes	0.998875
UK	665	Glassware	0.993662
THAILAND	681	Silver, platinum, etc.	0.986595
GERMANY	694	Nails, screws, nuts, etc.	0.985507
FINLAND	652	Cotton fabrics, woven	0.985281
KOREA REPUBLIC	699	Manufacts. base metal, nes	0.981935
ITALY	694	Nails, screws, nuts, etc.	0.9568
SINGAPORE	675	Flat-rolled, allov steel	0.954635
MALAYSIA	625	Rubber tyres, tubes, etc.	0.950495
GERMANY	676	Iron, steel bar, shapes etc.	0.949971
EGYPT	659	Floor coverings, etc.	0.948863
AUSTRIA	695	Tools	0.945205
JAPAN	699	Manufacts, base metal, nes	0.943404
AUSTRALIA	665	Glassware	0.931116
HONG KONG	699	Manufacts base metal nes	0.923908
SINGAPORE	629	Articles of rubber nes	0.918556
ITALY	695	Tools	0.914435
DENMARK	699	Manufacts base metal nes	0.906976
HUNGARY	695	Tools	0.906630
CANADA	676	Iron steel har shapes etc	0.900000
	663	Mineral manufactures nes	0.900422
GERMANV	621	Materials of rubber	0.884233
CANADA	670	Tubes pipes etc. iron steel	0.878201
CERMANY	681	Silver plotinum etc	0.878048
	670	Tubes mines ato increases	0.878048
AUSIKALIA SWITZEDI AND	604	Noile corour pute etc.	0.860015
SWITZERLAND	670	Mans, sciews, nuts, etc.	0.802015
	650	Cotton fabrica mour	0.801000
KUREA REPUBLIC	652	Cotton labrics, woven	0.859787
I HAILAND	652	Cotton labrics, woven	0.858840
SAUDI ARABIA	673	Flat-rolled, iron etc.	0.854838
QATAR	684	Aluminium	0.853717
SWITZERLAND	675	Flat-rolled, alloy steel	0.851851
NETHERLANDS	694	Nails, screws, nuts, etc.	0.848484
UK	678	Wire of iron or steel	0.846590
SINGAPORE	687	Tin	0.844230
HONG KONG	641	Paper & paperboard	0.841638
ITALY	693	Wire products excl. elect.	0.833957
THAILAND	611	Leather	0.831683
USA	684	Aluminium	0.830227
UK	684	Aluminium	0.823008
GERMANY	665	Glassware	0.816034
HUNGARY	611	Leather	0.801104
USA	611	Leather	0.790994
FRA M	625	Rubber tyres, tubes, etc.	0.789743

COUNTRY	SITC		COMMODITY	GLU
KOREA REPUBLIC	695	Tools		0.787906

SITC COUNTRY COMMODITY GLU USA 695 Tools 0.784693 JAPAN 651 Textile varn 0.783114 Flat-rolled, allov steel FINLAND 675 0.781799 KOREA REPUBLIC 651 Textile varn 0.775761 Rubber tyres, tubes, etc. ITALY 625 0.766423 SINGAPORE 692 Containers, storage, transp. 0.765613 ISRAEL 695 Tools 0.763948 UK 693 Wire products excl. elect. 0.761187 ITALY 699 Manufacts. base metal, nes 0.751586 Cotton fabrics, woven CYPRUS 652 0.740331 Containers, storage, transp. ITALY 692 0.738738 NETHERLANDS 699 Manufacts. base metal, nes 0.730098 Flat-rolled, iron etc. SINGAPORE 673 0.726495 Rubber tyres, tubes, etc. SPAIN 625 0.725440 Clay, refect. constr. matrl. AUSTRALIA 662 0.720779 0.712933 676 Iron, steel bar, shapes etc. INDONESIA ICELAND 652 Cotton fabrics, woven 0.696542 JAPAN 676 Iron, steel bar, shapes etc. 0.691146 Flat-rolled, alloy steel ITALY 675 0.679197 ZAMBIA 699 Manufacts. base metal, nes 0.664190 Manufacts. base metal, nes 699 FRA M 0.659016 THAILAND 658 Textile articles nes 0.657754 SWEDEN 693 Wire products excl. elect. 0.657575 USA Mineral manufactures, nes 663 0.652889 SWITZERLAND Mineral manufactures, nes 663 0.649563 611 Leather BRAZIL 0.645082 Tools UK 695 0.641984 ITALY 662 Clay, refect. constr. matrl. 0.640483 MALAYSIA 629 Articles of rubber, nes 0.638509 ITALY 665 Glassware 0.637826 HONG KONG 612 Manufact. leather etc. nes 0.618226 Glassware AUSTRIA 665 0.611012 SINGAPORE 695 Tools 0.607632 NETHERLANDS 665 Glassware 0.604060 629 USA Articles of rubber, nes 0.594485 Cotton fabrics, woven **INDONESIA** 652 0.592592 MALAYSIA 663 Mineral manufactures, nes 0.586440 AUSTRALIA 641 Paper & paperboard 0.574394 GERMANY 693 Wire products excl. elect. 0.566113 CHINA 678 Wire of iron or steel 0.549177 SRILANKA 692 Containers, storage, transp. 0.541322 Containers, storage, transp. JAPAN 692 0.535211 **NETHERLANDS** 679 Tubes, pipes, etc. iron, steel 0.531450 DENMARK 695 Tools 0.522151 MALAYSIA 681 Silver, platinum, etc. 0.513350

Table A1: Country wise Breakup of Industries with High Bilateral IIT of India

REFERENCES

Aturupane, C, (1999) "Horizontal and Vertical Intra-industry Trade between Eastern Europe and the European Union" Weltwirtschaftliches Archiv, Vol 135 no. 1, pp 62-81.

Bergstrand, J.H (1983) "Measurement and Determinants of Intra-Industry Trade" in PKM Tharakan (Ed) *Intra-Industry Trade: Empirical and Methodological Aspects*. Amsterdam. pp 281-300.

Bhattacharyya, R, (1994) "India's Intra Industry Trade: An Empirical Analysis". *Indian Economic Journal*. Vol. 42 No.2 p 54-74.

— (2001) "Bilateral Intra-industry Trade in a Developing Country", *Journal of Quantitative Economics*, 17, January 2001.

— (2002) "Vertical and Hoizontal Intra-industry Trade in some Asian and Latin American Less Developed Countries", *Journal of Economic Integration* Vol. 17, No. 2.

Clark, Don P., and Stanley, Denise L (1999). "Determinants of Intra-industry Trade between Developing Countries and the United States" *Journal of Economic Development*, Vol. 24 No. 2, pp 79-94.

Dickey, D.A., Jansen, D.W. and Thornton, D.L. (1994) "A Premier on Cointegration with an Application to Money and Income". in *Cointegration for the Applied Economist* (Ed.) B.Bhaskara Rao. St. Martin's Press. New York.

Ekanayake M (2001). "Determinants of Intra-industry Trade: The case of Mexico" *International Trade Journal*, Vol. 15 No.1, pp 89-112.

Engle, R.F and Yoo, B.S. (1987) "Forecasting and Testing in Cointegrated Systems". *Journal of Econometrics*. Vol. 35, p 143-159

Fuller, W.A. (1976) Introduction to Statistical Time Series, New York, Wiley

Globerman, S. and Deane, J.W. (1990) "Recent Trends in Intra Industry Trade and Their Implications for Future Trade Liberalization". *Weltwirtschaftliches Archiv*. Vol.126, pp25-49.

Grubel, H. and Lloyd, P.J. (1975) Intra Industry Trade: The Theory and Measurement of International trade in differentiated Products. Macmillan. London.

Hamilton, J.D.(1994) Time Series Analysis. Princeton University Press. Princeton. New Jersey.

Havrylyschyn, O. and Civan, E. (1983) "Intra Industry trade and The Stages of Development: A Regression Analysis of Industrial And Developing countries." in P.K. Tharakan (Ed) *Intra Industry Trade: Empirical and Methodological Aspects* Amsterdam pp 111-140.

Helpman, E. (1987) "Imperfect Competition and International Trade: Evidence From Fourteen Industrialized Countries", *Journal of Japanese and International Economics*, vol.1.

Holden, D. and Perman, R. (1994) "Unit Roots and Cointegration for the Economist" in B. Bhaskara Rao (ed) *Cointegration for the Applied Economist*, St. Martin's Press, Nw York.

Internatinal Trade Statistics Yearbook, Volumes 1 and 2, 1989 to 1995. UN.

Johansen, S. and Juselius, K.(1990) "Maximum Likelihood Estimation and Inference on Cointegration with Applications to the demand for money". *Oxford Bulletin of Economics and Statistics*. Vol. 52 pp 169-210.

Joshi, V. and Little, I.M.D. (1994) India, Macroeconomics and Political Economy, 1964-1991. Oxford University Press. Delhi.

Kandogan, Y. (2003). "Intra Industry Trade of Transition Countries: Trends and Determinants", William Davidson Working Paper Number 566, University of Michigan-Flint.

Katrak, H.(1985) "Imported Technology, Enterprise Size and R&D in a Newly Industrializing Country: The Indian Experience" *Oxford Bulletin of Economics and Statistics*. Vol. 47, No. 3.

Kathuria, S. (1995) "Competitiveness of Indian Industry" In D.Mookherjee (Ed) *Indian Industries: Policy and Perpective*". Oxford University Press. New Delhi.

Krugman, P.R. (1979) "Increasing Returns, Monopolistic Competition and International Trade". *Journal of International Economics*. Vol.9, pp 469-479.

— (1981) "Intra Industry Specialization and Gains from Trade". *Journal of Political Economy*. Vol. 89, pp 959-973.

Lee, Y.S (1990) "A Study of the Determinants of Intra Industry Trade Among the Pacific Basin Countries" *Weltwirtschaftliches Archiv. Vol.126. No. 1. pp 347-358.*

Mathur, A. (1992) "Understanding India's Policy Towards Foreign Direct Investment". in *Foreign Direct Investment and Technology Transfer in India*. U.N.. New York.

Mehra, Y.P. (1994) "Wage Growth and the Inflation Process: An Empirical Approach" in B. Bhaskara Rao (ed) *Cointegration for the Applied Economist*, St. Martin's Press, Nw York.

Panchamukhi, V.R. (1997) "Quantitative Methods and their Applications in International Economics", in K.L. Krishna (Ed) *Econometric Applications in India*, Oxford University Press, Delhi

Patibandla, M.(1992) "Scale Economies and Imports in an Export Substituting Regime: Some observations for the Indian Economy". *Economic and Political Weekly*.

Rodrik, D. (1988) "Imperfect competition, Scale Economies and Trade Policy in Developing Countries" in.

R.E.Baldwin(Ed.) Trade Policy Issues and Empirical Analysis. University of Chicago. London.

Shaked, A. and Sutton, J. (1989) "Natural Ologopolies and International trade". in H.Kierzkowski (Ed.) *Monopolistic Competition and International Trade*. Clarendon Press. Oxford.

Thrakan, P.K.M (1986) "Intra Industry Trade of Benelux With The Developing World" *Weltwirtschaftliches Archiv.* Vol. 122.pp 131-149.

Vona, S. (1991) "On The Measurement of Intra Industry Trade: some Future Thoughts" *Weltwirtschaftiches Archiv*. pp 1182-92.