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 1. INTRODUCTION 

 In this paper we are concerned with estimating the effects of exogenous variables 

on firms' levels of technical efficiency.  To analyze this problem, we assume a standard 

stochastic frontier model in which the distribution of technical inefficiency may depend 

on exogenous variables.  To be more specific, let y equal output (say, in logarithms); let 

x be a set of inputs; and let z be a set of exogenous variables that affect technical 

efficiency.  The production frontier specifies maximal output as a function of x, plus a 

random (normal) error, and then actual output equals maximal output minus a 

one-sided error term whose distribution depends on z. 

 Many empirical analyses have proceeded in two steps.  In the first step, one 

estimates the stochastic frontier model and the firms' efficiency levels, ignoring z.  In 

the second step, one tries to see how efficiency levels vary with z, perhaps by regressing 

a measure of efficiency on z.  It has long been recognized that such a two-step 

procedure will give biased results, because the model estimated at the first step is 

misspecified.  The solution to this bias problem is a one-step procedure based on the 

correctly specified model for the distribution of y given x and z.  In the one-step 

procedure the assumed relationship between z and technical efficiency is imposed in 

estimating the technology and the firms' efficiency levels, not just at the last stage of the 

exercise. 

 Although it is widely recognized that two-step procedures are biased, there 

seems to be little evidence on the severity of this bias.  For example, Caudill and Ford 

(1993) provide evidence on the bias of the estimated technological parameters, but not 

on the efficiency levels themselves or their relationship to the explanatory variables z.  

The main contribution of this paper is to provide extensive Monte Carlo evidence of the 

bias of the two-step procedure.  We find serious bias at all stages of this procedure.  

The size of the bias is very substantial and should argue strongly against two-step 

procedures. 



 
 

 2

 We also provide some new theoretical insights into the bias problem.  It is 

widely appreciated that the severity of the bias in estimation of the technological 

parameters (coefficients of x) depends on the magnitude of the correlation between x 

and z.  However, we also explain why, if the dependence of inefficiency on z is 

ignored, the estimated firm-level efficiencies are spuriously underdispersed.  As a 

result the second-step regression understates the effect of z on efficiency levels.  

Importantly, this is true whether or not x and z are correlated.  Our simulations 

strongly confirm the relevance of this observation, since the two-step estimates of the 

effect of z on efficiency levels are seriously biased downward in all cases. 

 The paper also provides some arguments in favor of models that have the 

"scaling property" that, conditional on z, the one-sided (technical inefficiency) error 

term equals some function of z times a one-sided error distributed independently of z.  

Some but not all of the models in the literature have this property.  We explain why 

this is a convenient and (to us) intuitively plausible property for a one-step model to 

have.  

 2. THEORETICAL DISCUSSION 

2a. Basic Framework 

 As above, let y be log output.  (We will not specify observational subscripts, for 

simplicity, but the discussion applies to either cross-sectional or panel data.)  We let x 

be a vector of variables that affect the frontier (maximal) level of output, and z be a set 

of variables that affect the deviation of output from the frontier (technical inefficiency).  

We note that x and z may overlap.  For example, the position of the frontier may 

depend on things other than those typically thought of as inputs, and the inputs may be 

among the factors that also affect technical efficiency.  Our statistical model will 

specify a distribution for y conditional on x and z.  Thus we treat x and z as "given" or 
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"fixed," and as always this corresponds to an assertion of exogeneity (lack of feedback 

from y to x and z).  One important implication of this viewpoint, which is sometimes 

missed, is that the variables z that determine inefficiency must not be functions of y.  

For example, if one variable in z is a measure of firm size, the size of the firm should be 

defined in terms of levels of inputs, not output. 

 Let y* ≥ y be the unobserved "frontier".  Then the linear stochastic frontier 

model asserts that, conditional on x and z, y* is distributed as N(x'β, σ2).  (The word 

"linear" refers to the fact that E(y*│x,z) = x'β, which is linear in x.)  This is consistent 

with the usual regression representation with an explicit error term v: 

(1)   y* = x'β + v 

where v is N(0,σv
2) and is independent of x and z.  The stochastic frontier model is 

completed by the assertion that, conditional on x, z and y*, the actual output level y 

equals y* minus a one-sided error whose distribution depends on z and perhaps some 

additional parameters δ.  This is consistent with the composed-error representation: 

(2)  y = x'β + v - u(z,δ)   ,   u(z,δ) ≥ 0   , 

where v is N(0,σv
2) and is independent of x, z and u. 

2b. Alternative Models and the Scaling Property 

 In the framework given above, different models correspond to different 

specifications for u(z,δ); that is, for the distribution of the technical inefficiency error 

term and the way that it depends on z.  A common way to specify a model is to specify 

a distribution for u and then to allow the parameter(s) of that distribution to depend on 

z (and possibly other parameters δ).  For example, suppose that u has a half-normal 

distribution, which we will denote by N(0,σu
2)+, where here and elsewhere in this paper 

the superscript "+" refers to truncation on the left at zero.  Then we can assume that the 

parameter σu (or σu
2) is a specified function of z, say σu(z,δ), so that u is distributed as 
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N(0,σu(z,δ)2)+.  This model has been considered by Reifschneider and Stevenson (1991), 

Caudill and Ford (1993) and Caudill, Ford and Gropper (1995).  They consider 

different functional forms for σu(z,δ).  For example, Claudill, Ford and Gropper specify 

that σu(z,δ) = σ exp(z'δ).1   

 Alternatively, we can model the dependence of u(z,δ) on z by writing it as  

(3)  u(z,δ) = h(z,δ)u*  , 

where h(z,δ) ≥ 0 and where u* has a distribution that does not depend on z.  We will 

refer to the condition given in (3) as the scaling property.  Then h(z,δ) will be called the 

scaling function and the distribution of u* will be called the basic distribution.  For 

example, this paper's simulations will be based on the model in which the scaling 

function is h(z,δ) = exp(z'δ) and the basic distribution is N(µ,σ2)+. 

 The half-normal models described in the previous paragraphs have the scaling 

property.  (It is equivalent to say that u is distributed as N(0,σu(z,δ)2)+ or that u is 

distributed as σu(z,δ) times N(0,1)+.)  Models based on some other simple distributions, 

such as exponential, would also have the scaling property.  (It is equivalent to say that 

u is distributed as exponential with parameter λ(z,δ), or that u is distributed as λ(z,δ) 

times an exponential variable with parameter equal to one.)  However, not all 

commonly used models have this property.  For example, Kumbhakar, Ghosh and 

McGuckin (1991), Huang and Liu (1994) and Battese and Coelli (1995) have considered 

the model in which u is distributed as N(z'δ,σ2)+.  (We will call this the KGMHLBC 

model.)  This model does not have the scaling property because the variance of the 

pre-truncation normal is assumed to be constant (not dependent on z).  Their model 

                         

    
1

  This functional form assumes that there is no intercept in z'δ, so that overall scale is set by the 

constant σ.  Equivalently, we could eliminate the overall constant σ if we add an intercept to z'δ.  Here, 

and elsewhere in this paper, we will omit intercept from z'δ, and include a parameter that determines 

overall scale explicitly. 
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can be modified easily to have the scaling property, by letting the pre-truncation 

variance be proportional to the square of the pre-truncation mean.  That is, the 

assumption that u is distributed as h(z,δ) times N(µ,σ2)+ is equivalent to the assumption 

that u is distributed as N[µh(z,δ),σ2h(z,δ)2]+, so the latter model has the scaling 

property. 

 The use of the scaling property to generate models was suggested by Simar, 

Lovell and Vanden Eeckaut (1994).  There is nothing sacred about this property, and it 

is ultimately an empirical matter whether models generated using it fit the data.  

However, it has some attractive features.  The first of these is that it captures the idea, 

which we find intuitively reasonable and appealing, that the shape of the distribution of 

u is the same for all firms.  The scaling factor h(z,δ) essentially just stretches or shrinks 

the horizontal axis, so that the scale of the distribution of u changes but its underlying 

shape does not.  By way of contrast, consider the KGMHLBC model, which does not 

have the scaling property.  Suppose for simplicity that σ2 = 1.  If the pre-truncation 

mean (z'δ) equals three, say, the distribution of u is essentially normal, whereas if the 

pre-truncation mean equals minus three, the distribution of u is the extreme right tail of 

a normal, with a mode of zero and extremely fast decay of the density as u increases.  

On the other hand, in the truncated normal model with the scaling property (where u is 

distributed as h(z,δ) times N(µ,σ2)+), the mean and standard deviation change with z, 

but the truncation point is always the same number of standard deviations from zero, 

so the shape does not change. 

 A second attractive feature of the scaling property is that it can generate very 

simple expressions for the effect of z on firm level efficiency or inefficiency, and these 

expressions do not require an assumption about the basic distribution (the distribution 

of u*).  For example, suppose that we pick as our scaling factor h(z,δ) = exp(z'δ).  
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Then δ = ∂ln[u(z,δ)]/ ∂z, and this is so regardless of the basic distribution.  The 

simplicity of the interpretation of δ is of course nice, but the fact that this interpretation 

does not depend on the basic distribution is perhaps more fundamentally important.  

No similarly simple expression would exist for the KGMHLBC model, and the 

expression for the KGMHLBC model would rely on the truncated normal assumption.  

This feature of the scaling property is potentially important in empirical work, and it is 

also very important in our simulations, where we want to evaluate the bias in a 

two-step estimator.  To do so we need to know what the second-step regression should 

be.  With scaling factor exp(z'δ), the second-step regression is a regression of ln(u) on z. 

 This is so regardless of the basic distribution (the distribution of u*). 

 A third argument for the scaling property is that it makes possible estimation of 

β and δ, without having to specify the basic distribution.  Let u(z,δ) = h(z,δ)u*, as 

above, and let µ* ≡ E(u*), the mean of the basic distribution.  Then we have 

(4)  E(y│x,z) = x'β - h(z,δ)µ*  , 

and we can estimate β, δ and µ* by nonlinear least squares.  This possibility was noted 

by Simar, Lovell and Vanden Eeckaut (1994) and is discussed in Kumbhakar and Lovell 

(2000, section 7.3).  This is potentially very useful because we can test important 

hypotheses, such as whether inefficiency depends on z, without having to make an 

assumption about the basic distribution. 

2c. Why Is the Two-Step Estimator Biased? 

 In this section we will discuss the bias of the two-step estimator.  Our 

discussion will be simpler if we assume that the scaling property holds, but the sense of 

the discussion does not depend on this. 

 It is widely agreed that the first step of the two-step procedure is biased if x and 

z are correlated.  For example, see the discussion in Kumbhakar and Lovell (2000, p. 
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264).  Some Monte Carlo evidence on the size of the bias, and also some explanation of 

its direction, are given by Caudill and Ford (1993).  Basically, the first-step regression 

that ignores z suffers from an omitted variables problem, since E(y│x,z) depends on z 

(see equation (4)) but the first-step regression does not allow for this.  Standard 

econometric theory for least squares regression says that the estimate of β will be biased 

by the omission of z, if z affects y and if z and x are correlated.  We are typically 

dealing, in the first step of the two-step procedure, with a maximum likelihood 

procedure, not with least squares, but this difference is unlikely to change the 

correctness of this conclusion, since empirically least squares and maximum likelihood 

are invariably very similar for coefficients other than the intercept.  Also, the issue 

really is whether h(z,δ) is correlated with x, not whether z is correlated with x, but again 

as a practical matter this is not an important distinction.  As pointed out by Caudill 

and Ford, the direction of the bias depends on the direction of the effect of z on u, and 

on the sign of the correlation between h(z,δ) and x.  For example, if z is positively 

related to u (inefficiency), and if h(z,δ) is positively correlated with x, then neglecting z 

will cause the coefficient of x to be biased downward.  Larger z will, other things equal, 

be associated with lower y and higher x, and thus the effect of x on y, not controlling for 

z, will appear smaller (less positive, or more negative) than it would if we controlled for 

z. 

 A second and less widely recognized problem is that the first-step technical 

efficiency measures are likely to be seriously underdispersed, so that the results of the 

second-step regression are likely to be biased downward.  This is true regardless of 

whether x and z are correlated.  To explore this point more precisely, suppose that x 

and z are independent, so that the first-step regression is unbiased.  Thus, loosely 

speaking, the residual e is an unbiased estimate of the error ε = v-u.  Also, suppose for 
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simplicity that the scaling property holds.  We now proceed to calculate the usual 

estimate of u, namely u* = E(u│ε = e), as in Jondrow et al. (1982) or Battese and Coelli 

(1988).  This is a "shrinkage" estimator, where shrinkage is toward the mean, and this is 

intuitively reasonable because large positive ε will on average contain positive noise v, 

and should be shrunk downward toward the mean, while large (in absolute value) 

negative ε on average contain negative noise v, and should be shrunk upward toward 

the mean.  The precise nature of the shrinkage depends on the distribution of u, and 

more importantly on the relative variances of v and u.  For example, in the half normal 

case the value of u* (Jondrow et al., equation (2)) is a monotonic function of µ* = 

-ε[σu
2/ (σu

2+σv
2)] and the way in which the shrinkage depends on the relative sizes of 

σu
2 and σv

2 is evident; but the same principle applies for other distributions.  Larger 

variance of v (relative to u) means more noise in ε and calls for more shrinkage, and 

conversely. 

 Now, given the scaling property, it is evident that both the mean and the 

variance of u depend on z, and in the same direction.  For example, if h(z,δ) = exp(z'δ) 

and δ > 0, then large z will on average be associated with large u and also with large σu
2. 

 So, compared to the case that σu
2 is constant, we should shrink (toward the mean) 

observations with large u less, and those with small u more.  Saying the same thing, if 

we ignore the dependence of σu
2 on z, we will shrink the observations with large u too 

much, and the observations with small u too little, and our estimates of u will be 

underdispersed.  That is, if the estimates of u are constructed ignoring the effect of z on 

σu
2, they will show less dependence on z than they should, and we should expect the 

second-step regressions to give downward biased estimates of the effect of z on u.  

From an econometric point of view, the problem is that u is measured with an error that 

is correlated with z, the regressor in the second-step regression. 
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 Similar comments apply if we focus on the technical efficiencies r ≡ e-u rather 

than on u itself.  Now the usual estimate is r* = E(r│ε = e), as given by Battese and 

Coelli (1988, equation (12), p. 391).  Once again this is a shrinkage estimator, and 

ignoring the dependence of σu
2 on z leads to estimates that are underdispersed.  So a 

second-step regression of some function of r* on z will suffer from the same downward 

bias as was discussed in the previous paragraph. 

 This bias in the second-step regression, due to underdispersion in the estimates 

of u that do not take into account the effect of z on u, does not seem to be systematically 

discussed in the literature.  There is a brief discussion in Kumbhakar and Lovell (2000, 

p. 119), for a different measure of u (conditional mode rather than conditional mean), 

that clearly captures the essence of the above discussion.  Our simulations will show 

that this bias is a serious (and perhaps surprisingly serious) problem. 

 3. SIMULATIONS 

 In this section we will conduct simulations to investigate the performance of the 

one-step and two-step estimators, in a model where inefficiency depends on some 

variables z.  The one-step MLE will be based on the correctly specified model, and will 

therefore be consistent and asymptotically efficient.  Thus the only interesting question 

for the one-step MLE is whether it performs well in finite samples of reasonable size.  

For the two-step estimator, we expect to find biased results, regardless of sample size, 

and the interesting questions are the severity of the bias and the way in which it 

depends on the various parameters of the model. 

3a. Design of the Experiment 

 Our data follow the simple stochastic frontier model: 

(5) yi = βxi + vi - ui  ,  i = 1,...,N . 

All symbols are scalars.  The vi are i.i.d. N(0,σv
2).  The ui are truncated normals scaled 



 
 

 10

by an exponential function of a variable zi; specifically, 

(6) ui = γ exp(δzi) ui* 

where the ui* are i.i.d. N(µ,1)+.  The vectors (xi,zi)′ are i.i.d. standard bivariate normal 

with correlation ρ.  That is, there is only one input (x) and one variable that affects the 

distribution of inefficiency (z), and the parameter ρ controls their correlation.  Finally, 

(xi,zi), vi and ui* are mutually independent.  Data were generated using the Stata 

random number generator.  The number of replications of the experiment (for each 

case considered) was 2000. 

 From the point of view of experimental design, the parameters to be picked are β, 

δ, ρ, γ, σv, µ and N.  Our strategy will be to pick a "Base Case" set of parameters, listed 

below. We will then vary each of the parameters, one at a time, holding the other 

parameters equal to their Base Case values. 

 Base Case Parameter Values:  β = 0, δ = 1, ρ = 0.5, γ = 1, σv = 1, µ = 0, N = 200.  

For this set of parameters, average technical efficiency is E(e-u) = 0.5165. 

 From the point of view of estimation, the parameters are β, δ, µ, γ and σv
2.  In 

our Tables we report the mean, standard deviation and mean square error (MSE) for the 

estimates of these parameters.  We also estimate each of the individual technical 

efficiencies, ri = exp(-ui), and we report the mean, standard deviation and MSE 

averaged over observations as well as replications.  In addition, we report the 

correlation between the true and estimated ri.  Finally, for the two-step estimators of δ, 

we report (in addition to mean, standard deviation and MSE) the R2 of the second-stage 

regression. 

 For the one-step estimates, we simply calculate the MLE based on the correctly 

specified model, and the estimates of the ri that follow from this model.  For the 

two-step estimates, we calculate the MLE with δ set equal to zero.  That is, we estimate 
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the truncated normal model in which the distribution of u is assumed not to depend on 

z.  Then we calculate the estimates of the ui and the ri that follow from this model, and 

we calculate the second-step estimate of δ by regressing the logarithm of estimated ui 

on zi.  

 As a matter of curiosity, we also calculate a second-step estimate of δ based on 

the estimates of the ui from the one-step model.  That is, we regress the logarithm of 

the estimated ui from the one-step model on zi.  In any actual application, this would 

be a silly thing to do because we would already have the one-step estimate of δ.  In the 

present simulation, we do this because we want to see how much of the bias in the 

usual two-step estimator of δ is due to having estimated the ui from an incorrectly 

specified model.  Thus, in the tables, for the one-step model we have both the one-step 

estimate δ̂ and a second-step estimator δ̂-2S, whereas for the two-step model we have 

only δ̂-2S. 

 Our calculations were carried out in Stata and used the Stata numerical 

maximization routine to maximize the likelihood functions.  As is often the case in 

simulations that involve numerical maximization, there were some problems with 

outliers, especially in estimation of γ and µ (the parameters of the truncated normal 

distribution).  Our summary statistics are averages and are very sensitive to extreme 

outliers.  In the end we simply truncated our results by discarding the replications 

with the 0.3% most extreme upper tail and lower tail estimates of µ and of γ.  This 

would be a maximum of 24 replications (of 2000), but was usually only about half that 

amount, since replications with extreme estimates of µ also tended to have extreme 

estimates of γ, and vice-versa.  This truncation of the results made very little difference 

for the parameters other than µ and γ. 

3b. Results for the Base Case Parameter Values 
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 Case 1 in Table 1 corresponds to our base case parameter values:  β = 0, δ = 1, ρ 

= 0.5, γ = 1, σv = 1, µ = 0, N = 200.  We first note that the one-step estimates look pretty 

good.  In particular, there is no evidence of significant bias.  The parameters of the 

truncated normal base distribution (µ and γ) have rather large variances (their standard 

deviations are definitely not small relative to the parameter values themselves), 

reflecting the commonly cited view (e.g., Ritter and Simar (1997, p. 181)) that these are 

hard parameters to estimate.  But this does not seem to cause any problems for the 

parameters of main interest (β, δ and the individual ri). 

 Now consider the two-step estimates.  The estimates of µ and γ are obviously 

very strange, with very large biases and variances.  More importantly, we find exactly 

the types of bias that we expect in the parameters of main interest.  First, the estimate 

of β is biased downward (mean = -0.31, compared to the true value = 0).  This direction 

of bias is as expected given the positive correlation between x and z, and the positive 

relationship between z and the average level of u.  Second, the estimates of the ri (the 

technical efficiencies) are biased downward (mean = 0.45, compared to the mean of the 

actual ri of 0.52).  They are less strongly correlated with the true ri and they are 

underdispersed, compared to the estimates from the one-step model.  Third, the 

second-step estimator of δ is very significantly biased downward (mean = 0.35, 

compared to the true value = 1).  All of these biases are in the expected direction, and 

the size of the biases is definitely not small.  We would characterize the biases in the 

two-step estimates as serious.  This is essentially the case against using two-step 

estimates.2 
                         

    
2

 An interesting curiosity is the bias in the two-step estimator of δ based on the estimates of ui from 

the one-step model (mean estimate = 0.92, compared to the true value of δ = 1).  This is not just 

finite-sample bias (it persists with larger sample sizes).  It reflects the fact that ln[E(u│z)] = z'δ, whereas 

the condition for unbiasedness of the second-step regression would be E[ln(u)│z] = z'δ, which does not 

hold. 
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 We also consider the same parametric configuration as in the Base Case (Case 1), 

but where we set µ ≡ 0 in estimation, instead of estimating µ.  That is, we estimate the 

scaled half-normal model, which in this case is the correctly specified model.  We call 

this Case 1A.  For the one-step estimates, imposing µ = 0 makes very little difference, 

except that the variance of the estimate of γ is substantially reduced.  For the two-step 

estimates, surprisingly, imposing µ = 0 makes things worse (even though µ = 0 is a 

correct restriction).  The bias of the estimate of β and of the two-step estimate of δ 

increases, and the estimates of the ri are also more biased, and less correlated with the 

true ri, compared to Case 1.  We do not understand this result, but it does make clear 

that the problems with the two-step estimator in Case 1 do not primarily arise from the 

fact that we are poorly estimating the parameters of the truncated normal base 

distribution. 

3c. Effects of Changing β 

 Changing β has no substantive effects on our results.  The mean of the estimate 

(both one-step and two-step) of β changes by the same amount that β is changed, so 

that the bias, standard deviation and MSE of the estimates of β are unchanged.  For all 

of the other parameters the estimates are identical before and after the change in β.  

Therefore, there is no need to tabulate these results. 

3d. Effects of Changing δ 

 We now keep all other parameters at their Base Case values, but consider δ = 0.5 

(Case 2) and δ = 0 (Case 3) in addition to δ = 1 (Base Case).  The results for these cases 

are given in Table 1. 

 For the one-step estimator, the true value of δ is not terribly important.  

Changing δ makes very little difference to the properties of the estimates of β, δ or σv.  

As δ → 0, our ability to estimate µ (and γ, to a lesser extent) deteriorates seriously.  
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The estimates of the individual ri become slightly more biased, and noticeably less 

strongly correlated with the true ri, when δ is small.  Presumably this is so because 

when δ is large, z correlates with u and is useful to help estimate u.  Still, except for µ 

and γ, the one-step estimators do fine even when δ = 0. 

 For the two-step estimator, δ is a very important parameter because it dictates 

the degree of misspecification of the first step of the two-step procedure.  As expected, 

the bias of the first-step estimate of β is effectively zero when δ = 0, and it grows with δ. 

 The individual ri are seriously biased for δ = 1 but not for the smaller values of δ.  The 

two-step estimator of δ is biased for both δ = 1 and δ = 0.5, but the bias disappears as δ 

→ 0.  That is, the second-step estimator of δ may be able to tell us whether or not z 

affects u (whether or not δ = 0)3 but it cannot accurately estimate the effect of z on u 

when this effect exists.  An interesting result is that the estimates of the ri are better for 

the two-step procedure than for the one-step procedure, when δ = 0.  In this case the 

first-step estimator of β is unbiased, and we then estimate the ri under the correct 

assumption that they do not depend on the zi, so we ought to do well in this case.  All 

in all, the two-step estimator performs well when the second step is not needed (δ = 0) 

but is otherwise unreliable. 

3e. Effects of Changing ρ 

 In Table 2 we report the results of our experiments in which we change the value 

of ρ, holding the other parameters constant at their Base Case values.  Cases 4, 5, 6, 7 

and 8 are defined by  ρ = -0.5, 0, 0.25, 0.75 and 0.9.  We also report again the results 

for the Base Case with ρ = 0.5. 

 For the one-step estimators, the value of ρ is not important.  The results are 
                         

    
3

 We did not consider formal tests of the hypothesis that δ = 0.  Therefore we do not know whether 

a formal test based on the two-step estimator of δ would in fact be valid.  However, at least the point 

estimate appears to be unbiased when δ = 0. 
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essentially identical across all these cases. 

 For the two-step estimator, the value of ρ is important because it determines the 

sign and the size of the bias of the first-step estimate of β (which in turn influences the 

performance of the subsequent steps).  First, we note that the results for ρ = -0.5 (Case 

4) are essentially identical to those for ρ = 0.5 (Case 1).  The bias of the estimate of β 

reverses sign and nothing else changes.  Therefore we can effectively restrict our 

attention to positive values of ρ.  Second, we note that the bias of the estimate of β 

grows as ρ grows, as expected.  Third, it is interesting that the mean and the dispersion 

of the estimates of the individual ri do not depend noticeably on ρ.  They are biased 

and underdispersed even when ρ = 0, as was argued in Section 2.  Finally, the 

second-step estimate of δ is seriously biased even when ρ = 0, though its bias does grow 

with ρ. 

3.f Effects of Changing µ 

  In Table 3 we report the results of our experiments in which we change the 

value of µ,  holding the other parameters constant at their Base Case values.  Cases 9, 

10, 11 and 12 are defined by µ = 1, 0.5, -0.5 and -1.  We also report again the results for 

the Base Case with µ = 0.  We note that changing µ changes the shape of the truncated 

normal distribution of u (inefficiency).  We might anticipate, following the arguments 

of Ritter and Simar (1997), that estimation of this model will be harder when µ is 

positive and large.  As µ → ∞, the distribution of u becomes normal and presumably 

becomes confounded with the normal distribution of v (statistical noise).  However, as 

long as δ is non-zero, this argument may be less than compelling, because the 

distribution of u depends on z whereas the distribution of v does not, and this is 

another way to distinguish u from v.  Furthermore, the degree of truncation is also 

relevant, and this decreases as µ increases.  For example, when µ is large and positive, 
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the degree of truncation is very small, and the shape of the distribution (if it can be 

separated from that of v) contains a lot of information about the parameters µ and σ2.  

When µ is large (in absolute value) but negative, on the other hand, we observe only the 

extreme right tail of the distribution, whose shape may not be very informative about µ 

and σ2, and the estimation problem may be harder just on that basis. 

 Our results indicate that, for the one-step estimator, the value of µ is not terribly 

important.  It is true that, as µ moves from plus one to negative one, the estimates of µ 

and γ deteriorate considerably, which is consistent with the argument presented at the 

end of the preceding paragraph.  But for the other parameters this does not make 

much difference. 

 For the two-step estimators, we see more differences as µ changes, but they are 

still not really important or striking.  The estimates of µ and γ are very bad no matter 

what the true value of µ is.  As µ moves from plus one to negative one, the estimates of 

β improve a little, and the estimates of the individual ri perhaps improve a little.  But 

these are not major changes. 

3g. Effects of Changing γ 

 In Table 4 we report the results of our experiments in which we change the value 

of γ,  holding the other parameters constant at their Base Case values.  We consider γ 

= 3 (Case 13) and γ = 5 (Case 14) in addition to the Base Case value of γ = 1.  The 

parameter γ represents pure scale in the distribution of u.  Increasing γ while holding 

σv constant has the effect of increasing the size of inefficiency relative to noise, and 

should tend to make it easier to estimate technical inefficiency precisely. 

 For the one-step estimators, changing the value of γ makes relatively little 

difference.  For larger γ, we estimate β a little worse, but we estimate δ and the 

individual ri a little better.  For the two-step estimators, γ makes more of a difference.  
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As γ increases, the bias of the estimate of β increases, but the bias of the second-step 

estimate of δ decreases quite noticeably. 

3.h Effects of Changing σv 

 In Table 4 we also report the results of our experiments in which we change the 

value of σv, holding the other parameters constant at their Base Case values.  We 

consider σv = 3 and 5 in addition to the Base Case value of σv = 1.  Increasing σv 

increases the amount of statistical noise in the model, and should increase the bias 

and/ or variance for each of the estimated parameters.  This turns out to be true.  The 

differences are bigger for the two-step estimators than for the one-step estimators.  The 

bias of the two-step estimator of β and especially of the two-step estimator of δ 

increases markedly with σv.  For example, the mean of the two-step estimator of δ is 

0.35 for σv = 1, 0.12 for σv = 3, and 0.05 for σv = 5.  The true value of δ is one, so these 

are large biases indeed.  No such bias problem exists for the one-step estimator, even 

for the largest value of σv. 

3.i Effects of Changing N 

 In Table 5 we report the results of our experiments in which we change the 

sample size, N.  We consider N = 500 and N = 1000 in addition to the Base Case value 

of N = 200.  Naturally we can hope to estimate more precisely when the sample size is 

larger.  However, we do not expect to see much else in these experiments, because the 

biases we have identified above are expected to persist asymptotically.  The results are 

quite consistent with these expectations.  The standard deviations of the estimators fall 

as N increases, but nothing else changes much.   

 4. CONCLUDING REMARKS 

 In this paper we have discussed models that allow one to estimate each firm's 

level of technical inefficiency and the way in which inefficiency depends on observable 
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variables "z" (typically firm characteristics).  Several such models have been previously 

suggested in the literature.  They are typically estimated by maximum likelihood, in a 

single "step", and hence reference is made to "one-step" estimation or "one-step" models. 

 This is in contrast to "two-step" methods, in which the first step is the estimation of a 

standard model that ignores the effect of z on inefficiency, and the second step is a 

regression of some measure of inefficiency on z. 

 The paper makes two contributions.  First, we make some arguments in favor of 

the "scaling property" that the one-sided inefficiency error can be written as a function 

of z times a one-sided error independent of z.  Second, we analyze the properties of the 

two-step estimator.  We identify two sources of bias.  The first step of the two-step 

procedure is biased for the regression parameters if z and the inputs "x" are correlated, 

as is well known.  A less well known fact is that, even if z and x are independent, the 

estimated inefficiencies are underdispersed when we ignore the effect of z on 

inefficiency.  This causes the second- step estimate of the effect of z on inefficiency to 

be biased downward (toward zero). 

 We perform Monte Carlo simulations to investigate the performance of the 

one-step and two-step estimators of a simple model that has the scaling property.  The 

one-step estimators are based on a correctly specified model and are asymptotically 

optimal.  We find that the one-step estimators also generally perform quite well in 

finite samples.  The two-step estimators do not perform well.  We find very 

significant bias in the first step, so long as x and z are correlated.  We also find very 

significant bias in the second step, whether or not x and z are correlated, so long as 

inefficiency actually depends on z.  These biases are substantial enough that we would 

recommend against using two-step procedures in any circumstances that we can 

envision. 



Table 1: Base Case plus Changes in δ

Base Case: β = 0, ρ = 0.5, δ = 1, µ = 0, γ = 1, σv = 1; E(e
−u) = 0.516

change ONE-STEP TWO-STEP
from

CASE base param. mean s.d. MSE corr* mean s.d. MSE corr*

1 None β̂ -0.0010 0.0903 0.0082 -0.3064 0.1037 0.1046

(i.e., δ̂ 1.0010 0.1189 0.0141 – – –
δ = 1) µ̂ 0.0564 0.8150 0.6670 -37.2947 0.3833 1391.0389

γ̂ 1.0153 0.4089 0.1674 53.4673 7.0771 2802.8732
σ̂v 0.9910 0.0773 0.0061 1.0096 0.0922 0.0086

E( ˆe−u) 0.5141 0.0340 0.0348 0.8113 0.4482 0.0234 0.0617 0.6564

δ̂–2S 0.9180 0.1212 0.0214 0.7917 0.3539 0.0543 0.4204 0.2371

1A µ set to 0 β̂ -0.0033 0.0900 0.0081 -0.4595 0.1360 0.2296

δ̂ 0.9963 0.1150 0.0132 – – –
µ̂ – – – – – –
γ̂ 1.0007 0.1202 0.0144 2.3584 0.6666 2.2894
σ̂v 0.9864 0.0736 0.0056 1.3374 0.1629 0.1404

E( ˆe−u) 0.5169 0.0302 0.0344 0.8128 0.3692 0.0303 0.0856 0.6218

δ̂–2S 0.9133 0.1155 0.0209 0.7838 0.2380 0.0454 0.5827 0.2030

2 δ = 0.5 β̂ 0.0002 0.0905 0.0082 -0.1748 0.0895 0.0386

δ̂ 0.5069 0.1121 0.0126 – – –
E(e−u) µ̂ 0.4229 4.6666 21.9452 -17.4599 17.0405 595.0805
=0.520 γ̂ 1.0700 0.8234 0.6825 16.3313 15.3375 470.1703

σ̂v 0.9974 0.0882 0.0078 0.9823 0.0892 0.0083

E( ˆe−u) 0.5162 0.0374 0.0445 0.6493 0.5160 0.0300 0.0523 0.5633

δ̂–2S 0.4614 0.1117 0.0140 0.5759 0.1469 0.0463 0.1268 0.0733

3 δ = 0 β̂ -0.0013 0.0935 0.0087 -0.0015 0.0821 0.0067

δ̂ 0.0014 0.1171 0.0137 – – –
E(e−u) µ̂ 5.1757 14.6694 241.8693 0.1210 4.1249 17.0209
=0.523 γ̂ 1.1652 2.0469 4.2150 1.3278 2.4939 6.3239

σ̂v 1.0159 0.1049 0.0113 1.0120 0.1022 0.0106

E( ˆe−u) 0.5093 0.0468 0.0538 0.3976 0.5107 0.0451 0.0521 0.4891

δ̂–2S 0.0012 0.1096 0.0120 0.2480 -0.0001 0.0224 0.0005 -0.0013
∗

corr is the correlation coefficient between the true and the estimated E(e−u), and is the R̄
2 of the 2nd-step regression of ln E(û)

on z.

1



Table 2: Changes in ρ

Base Case: β = 0, ρ = 0.5, δ = 1, µ = 0, γ = 1, σv = 1; E(e
−u) = 0.516

change ONE-STEP TWO-STEP
from

CASE base param. mean s.d. MSE corr* mean s.d. MSE corr*

4 ρ = −0.5 β̂ -0.0025 0.0892 0.0080 0.3042 0.1006 0.1027

δ̂ 0.9996 0.1167 0.0136 – – –
µ̂ 0.0593 0.8246 0.6831 -37.2760 0.8928 1390.2968
γ̂ 1.0161 0.4109 0.1690 53.4787 7.0192 2803.2616
σ̂v 0.9928 0.0773 0.0060 1.0102 0.0916 0.0085

E( ˆe−u) 0.5132 0.0350 0.0347 0.8120 0.4479 0.0233 0.0617 0.6565

δ̂–2S 0.9168 0.1189 0.0211 0.7916 0.3531 0.0542 0.4214 0.2362

5 ρ = 0 β̂ -0.0016 0.0861 0.0074 -0.0006 0.0992 0.0098

δ̂ 1.0008 0.1167 0.0136 – – –
µ̂ 0.0643 0.8327 0.6971 -37.3025 0.1570 1391.4985
γ̂ 1.0144 0.4238 0.1797 54.2774 7.2110 2890.4516
σ̂v 0.9923 0.0781 0.0061 1.0217 0.0918 0.0089

E( ˆe−u) 0.5135 0.0348 0.0348 0.8116 0.4484 0.0234 0.0559 0.7013

δ̂–2S 0.9181 0.1195 0.0210 0.7927 0.4069 0.0548 0.3547 0.3079

6 ρ = 0.25 β̂ -0.0016 0.0876 0.0077 -0.1494 0.1007 0.0324

δ̂ 1.0008 0.1174 0.0138 – – –
µ̂ 0.0616 0.8187 0.6737 -37.2979 0.2917 1391.2210
γ̂ 1.0134 0.4083 0.1668 54.0751 7.2026 2868.8151
σ̂v 0.9916 0.0778 0.0061 1.0187 0.0919 0.0088

E( ˆe−u) 0.5137 0.0343 0.0348 0.8116 0.4484 0.0234 0.0573 0.6907

δ̂–2S 0.9181 0.1202 0.0211 0.7924 0.3943 0.0550 0.3699 0.2903

1 None β̂ -0.0010 0.0903 0.0082 -0.3064 0.1037 0.1046

(i.e., δ̂ 1.0010 0.1189 0.0141 – – –
ρ = 0.5) µ̂ 0.0564 0.8150 0.6670 -37.2947 0.3833 1391.0389

γ̂ 1.0153 0.4089 0.1674 53.4673 7.0771 2802.8732
σ̂v 0.9910 0.0773 0.0061 1.0096 0.0922 0.0086

E( ˆe−u) 0.5141 0.0340 0.0348 0.8113 0.4482 0.0234 0.0617 0.6564

δ̂–2S 0.9180 0.1212 0.0214 0.7917 0.3539 0.0543 0.4204 0.2371

7 ρ = 0.75 β̂ -0.0012 0.0947 0.0090 -0.4828 0.1097 0.2451

δ̂ 1.0010 0.1210 0.0146 – – –
µ̂ 0.0459 0.8273 0.6862 -37.2003 1.6154 1386.4707
γ̂ 1.0203 0.4196 0.1764 52.3762 7.1109 2690.0566
σ̂v 0.9905 0.0767 0.0060 0.9934 0.0926 0.0086

E( ˆe−u) 0.5142 0.0341 0.0348 0.8111 0.4474 0.0233 0.0700 0.5922

δ̂–2S 0.9176 0.1223 0.0217 0.7905 0.2785 0.0502 0.5231 0.1500

8 ρ = 0.9 β̂ -0.0016 0.0998 0.0100 -0.6053 0.1159 0.3798

δ̂ 1.0003 0.1254 0.0157 – – –
µ̂ 0.0168 0.9107 0.8293 -36.8158 3.8123 1369.9273
γ̂ 1.0388 0.4837 0.2354 51.0769 8.3744 2577.7868
σ̂v 0.9898 0.0763 0.0059 0.9788 0.0926 0.0090

E( ˆe−u) 0.5144 0.0342 0.0349 0.8106 0.4467 0.0233 0.0777 0.5322

δ̂–2S 0.9165 0.1264 0.0229 0.7884 0.2094 0.0449 0.6270 0.0858
∗

corr is the correlation coefficient between the true and the estimated E(e−u), and is the R̄
2 of the 2nd-step regression of

ln E(û) on z.
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Table 3: Changes in µ

Base Case: β = 0, ρ = 0.5, δ = 1, µ = 0, γ = 1, σv = 1; E(e
−u) = 0.516

change ONE-STEP TWO-STEP
from

CASE base param. mean s.d. MSE corr* mean s.d. MSE corr*

9 µ = 1 β̂ -0.0013 0.0963 0.0093 -0.3914 0.1191 0.1674

δ̂ 1.0002 0.0850 0.0072 – – –
E(e−u) µ̂ 1.0591 0.3951 0.1595 -37.2499 1.1759 1464.4405
=0.386 γ̂ 0.9902 0.1994 0.0399 82.0758 9.9469 6672.1806

σ̂v 0.9883 0.0864 0.0076 0.9683 0.1053 0.0121

E( ˆe−u) 0.3850 0.0294 0.0285 0.8387 0.3499 0.0197 0.0513 0.6891

δ̂–2S 0.9317 0.0888 0.0125 0.8025 0.4986 0.0566 0.2546 0.3469

10 µ = 0.5 β̂ -0.0011 0.0932 0.0087 -0.3458 0.1103 0.1317

δ̂ 1.0006 0.1013 0.0103 – – –
E(e−u) µ̂ 0.5680 0.5235 0.2785 -37.2813 0.7274 1427.9555
=0.454 γ̂ 0.9932 0.2639 0.0697 65.8462 8.2339 4272.7900

σ̂v 0.9897 0.0814 0.0067 0.9934 0.0980 0.0096

E( ˆe−u) 0.4525 0.0319 0.0326 0.8242 0.4006 0.0213 0.0574 0.6752

δ̂–2S 0.9225 0.1044 0.0169 0.7905 0.4215 0.0557 0.3378 0.2868

1 None β̂ -0.0010 0.0903 0.0082 -0.3064 0.1037 0.1046

(i.e., δ̂ 1.0010 0.1189 0.0141 – – –
µ = 0) µ̂ 0.0564 0.8150 0.6670 -37.2947 0.3833 1391.0389

γ̂ 1.0153 0.4089 0.1674 53.4673 7.0771 2802.8732
σ̂v 0.9910 0.0773 0.0061 1.0096 0.0922 0.0086

E( ˆe−u) 0.5141 0.0340 0.0348 0.8113 0.4482 0.0234 0.0617 0.6564

δ̂–2S 0.9180 0.1212 0.0214 0.7917 0.3539 0.0543 0.4204 0.2371

11 µ = −0.5 β̂ -0.0006 0.0876 0.0077 -0.2739 0.0986 0.0847

δ̂ 1.0020 0.1371 0.0188 – – –
E(e−u) µ̂ -0.7891 3.3635 11.3913 -37.2763 0.8090 1353.1526
=0.571 γ̂ 1.2321 1.9140 3.7154 44.1503 6.3150 1901.8065

σ̂v 0.9924 0.0740 0.0055 1.0190 0.0877 0.0080

E( ˆe−u) 0.5676 0.0358 0.0354 0.7998 0.4914 0.0258 0.0640 0.6347

δ̂–2S 0.9188 0.1385 0.0258 0.8025 0.2975 0.0525 0.4963 0.1970

12 µ = −1 β̂ -0.0009 0.0863 0.0074 -0.2469 0.0945 0.0699

δ̂ 1.0038 0.1564 0.0245 – – –
E(e−u) µ̂ -2.3774 7.0546 51.6401 -37.2169 1.6121 1314.2578
=0.617 γ̂ 1.7497 3.4231 12.2739 37.0215 5.8916 1332.2415

σ̂v 0.9935 0.0713 0.0051 1.0252 0.0843 0.0077

E( ˆe−u) 0.6129 0.0373 0.0350 0.7893 0.5306 0.0287 0.0645 0.6111

δ̂–2S 0.9235 0.1573 0.0306 0.8186 0.2505 0.0509 0.5644 0.1645
∗

corr is the correlation coefficient between the true and the estimated E(e−u), and is the R̄
2 of the 2nd-step regression of

ln E(û) on z.

3



Table 4: Changes in γ and σv

Base Case: β = 0, ρ = 0.5, δ = 1, µ = 0, γ = 1, σv = 1; E(e
−u) = 0.516

change ONE-STEP TWO-STEP
from

CASE base param. mean s.d. MSE corr* mean s.d. MSE corr*

1 None β̂ -0.0010 0.0903 0.0082 -0.3064 0.1037 0.1046

(i.e., δ̂ 1.0010 0.1189 0.0141 – – –
γ = 1, µ̂ 0.0564 0.8150 0.6670 -37.2947 0.3833 1391.0389
σv = 1) γ̂ 1.0153 0.4089 0.1674 53.4673 7.0771 2802.8732

σ̂v 0.9910 0.0773 0.0061 1.0096 0.0922 0.0086

E( ˆe−u) 0.5141 0.0340 0.0348 0.8113 0.4482 0.0234 0.0617 0.6564

δ̂–2S 0.9180 0.1212 0.0214 0.7917 0.3539 0.0543 0.4204 0.2371

13 γ = 3 β̂ -0.0006 0.1193 0.0142 -0.4270 0.1486 0.2044

δ̂ 1.0008 0.0784 0.0061 – – –
E(e−u) µ̂ 0.0429 0.4471 0.2016 -37.2787 0.1688 1389.7299
=0.287 γ̂ 2.9739 0.6010 0.3617 150.8042 18.2079 22177.4423

σ̂v 0.9827 0.1088 0.0121 0.9857 0.1306 0.0173

E( ˆe−u) 0.2859 0.0246 0.0294 0.8281 0.2505 0.0171 0.0420 0.7510

δ̂–2S 0.8998 0.0795 0.0163 0.6227 0.6172 0.0626 0.1505 0.3698

14 γ = 5 β̂ -0.0022 0.1452 0.0211 -0.4714 0.1850 0.2565

δ̂ 1.0002 0.0693 0.0048 – – –
E(e−u) µ̂ 0.0359 0.3889 0.1525 -37.2733 0.1703 1389.3243
=0.201 γ̂ 4.9578 0.8545 0.7316 248.1483 29.9097 60015.2145

σ̂v 0.9740 0.1383 0.0198 0.9679 0.1607 0.0268

E( ˆe−u) 0.2006 0.0202 0.0232 0.8329 0.1773 0.0150 0.0308 0.7750

δ̂–2S 0.9098 0.0718 0.0133 0.5657 0.7200 0.0658 0.0827 0.4058

15 σv = 3 β̂ -0.0060 0.2395 0.0574 -0.5306 0.2490 0.3436

δ̂ 1.0126 0.2260 0.0512 – – –
E(e−u) µ̂ 3.9736 25.4427 662.7908 -33.7819 10.4015 1249.3507
=0.516 γ̂ 2.1501 5.4410 30.9122 53.3825 19.8900 3139.3434

σ̂v 2.9888 0.1892 0.0359 3.0798 0.2223 0.0557

E( ˆe−u) 0.5057 0.0729 0.0541 0.7189 0.4047 0.0501 0.1026 0.3484

δ̂–2S 0.9787 0.2293 0.0530 0.9306 0.1203 0.0464 0.7761 0.0852

16 σv = 5 β̂ -0.0127 0.3923 0.1539 -0.6125 0.3905 0.5276

δ̂ 1.0335 0.3555 0.1274 – – –
E(e−u) µ̂ 14.3686 38.2494 1668.7325 -24.2941 16.7575 870.8771
=0.516 γ̂ 3.1626 8.3682 74.6688 40.1590 30.4246 2458.6210

σ̂v 4.9773 0.2880 0.0834 5.1313 0.3230 0.1215

E( ˆe−u) 0.4992 0.1132 0.0667 0.6915 0.3990 0.0954 0.1178 0.2299

δ̂–2S 1.0160 0.3576 0.1281 0.9594 0.0485 0.0355 0.9066 0.0384
∗

corr is the correlation coefficient between the true and the estimated E(e−u), and is the R̄
2 of the 2nd-step regression of ln E(û)

on z.
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Table 5: Changes in N

Base Case: β = 0, ρ = 0.5, δ = 1, µ = 0, γ = 1, σv = 1; E(e
−u) = 0.516

change ONE-STEP TWO-STEP
from

CASE base param. mean s.d. MSE corr* mean s.d. MSE corr*

1 None β̂ -0.0010 0.0903 0.0082 -0.3064 0.1037 0.1046

(i.e., δ̂ 1.0010 0.1189 0.0141 – – –
N=200) µ̂ 0.0564 0.8150 0.6670 -37.2947 0.3833 1391.0389

γ̂ 1.0153 0.4089 0.1674 53.4673 7.0771 2802.8732
σ̂v 0.9910 0.0773 0.0061 1.0096 0.0922 0.0086

E( ˆe−u) 0.5141 0.0340 0.0348 0.8113 0.4482 0.0234 0.0617 0.6564

δ̂–2S 0.9180 0.1212 0.0214 0.7917 0.3539 0.0543 0.4204 0.2371

17 N=500 β̂ -0.0005 0.0572 0.0033 -0.3062 0.0661 0.0981

δ̂ 0.9995 0.0724 0.0052 – – –
µ̂ -0.0123 0.5056 0.2557 -37.1869 0.2026 1382.9029
γ̂ 1.0208 0.2393 0.0577 53.4005 4.3493 2764.7151
σ̂v 0.9973 0.0454 0.0021 1.0161 0.0553 0.0033

E( ˆe−u) 0.5160 0.0220 0.0338 0.8145 0.4470 0.0146 0.0615 0.6591

δ̂–2S 0.9134 0.0736 0.0129 0.7911 0.3520 0.0336 0.4210 0.2375

18 N=1000 β̂ -0.0004 0.0416 0.0017 -0.3070 0.0471 0.0965

δ̂ 0.9977 0.0522 0.0027 – – –
µ̂ 0.0041 0.3295 0.1085 -37.0701 0.2502 1374.2512
γ̂ 1.0056 0.1549 0.0240 53.3050 3.0675 2745.2215
σ̂v 0.9983 0.0315 0.0010 1.0168 0.0386 0.0018

E( ˆe−u) 0.5156 0.0154 0.0337 0.8149 0.4463 0.0104 0.0616 0.6581

δ̂–2S 0.9114 0.0528 0.0106 0.7923 0.3513 0.0241 0.4214 0.2381
∗

corr is the correlation coefficient between the true and the estimated E(e−u), and is the R̄
2 of the 2nd-step regression

of ln E(û) on z.
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