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Abstract

Traditional panel stochastic frontier models do not distinguish between unobserved individual

heterogeneity and inefficiency. They thus force all time-invariant individual heterogeneity into

the estimated inefficiency. Greene (2005) proposes a true fixed-effect stochastic frontier model

which, in theory, may be biased by the incidental parameters problem. The problem usually

cannot be dealt with by model transformations owing to the nonlinearity of the stochastic

frontier model. In this paper, we propose a class of panel stochastic frontier models which

create an exception. We show that first-difference and within-transformation can be analytically

performed on this model to remove the fixed individual effects, and thus the estimator is immune

to the incidental parameters problem. Consistency of the estimator is obtained by either N → ∞

or T → ∞, which is an attractive property for empirical researchers.
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1 Introduction

An important advantage of using panel data in an empirical study is that effects of differences

across individuals (individual effects) can be distinguished from effects changing over time within

individuals. Although time-invariant and individual-specific effects are often unobservable, they

frequently account for an important share of the heterogeneity in data. In the study of wage rates,

for example, a worker’s innate ability is an important determinant of his wage. Such ability is

both time invariant and not directly observable to econometricians. For household consumption

behaviors, time-constant personal/household tastes are important in explaining data variations.

Regardless of the source of heterogeneity, failure to control for individual effects is likely to bias

estimation results, especially when there is correlation between the effect and other explanatory

variables in the model.

Unobservable individual effects also play an important role in the estimation of panel sto-

chastic frontier models. In contrast to the conventional panel data literature, however, studies

using stochastic frontier models often interpret individual effects as inefficiency (e.x., Schmidt and

Sickle 1984), such as technical inefficiency in a stochastic production frontier model. In this ap-

proach, the model is estimated using traditional panel data methods which transform models to

eliminate individual effects before estimation. After the model parameters are estimated, individual

effects are recovered and then adjusted to conform to an inefficiency interpretation. This modeling

and estimation strategy is easy to use, but at the cost of not allowing for individual effects (in the

traditional sense) to exist alongside inefficiency effects. In other words, all the individual effects are

attributed to inefficiency, and inefficiency accounts for all the time-invariant and individual-specific

effects in the data. Another feature of this approach is that inefficiency is necessarily time-invariant

which may be problematic when operating under the competitive market assumption.

This time-invariant inefficiency assumption has been relaxed in a number of subsequent studies

including Kumbhakar (1990) and Battese and Coelli (1992). These studies specify inefficiency (uit)

as a product of two components. One of the components is a function of time and the other is

an individual specific effect so that uit = G(t) · ui. In these models, however, the time-varying

pattern of inefficiency is the same for all individuals, so the problem of inseparable inefficiency and

individual heterogeneity remains.
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In all these models, the inability to separate inefficiency and individual heterogeneity is likely to

limit their applicability in empirical studies. This point is lucidly made in Greene (2005) which con-

ducts a cross-country comparison of health care service efficiency and argues that the (in)efficiency

effect and the time-invariant country-specific effect are different and should be accounted for sep-

arately in the estimation. If, for example, the country-specific heterogeneity is not adequately

controlled for, then the estimated inefficiency may be picking up country-specific heterogeneity in

addition to or even instead of inefficiency. In this way, the inability of a model to estimate indi-

vidual effects in addition to the inefficiency effect poses a problem for empirical research. Greene

then proposes the “true fixed-effect” model which is essentially a standard fixed-effect panel data

model augmented by the inefficiency effect (uit). The latter effect is allowed to change over time

and across individuals in the model.

However, including both the inefficiency effect and fixed individual effects in the model signif-

icantly complicates its estimation. For a fixed-effect model, the number of fixed-effect parameters

(also called incidental parameters since their values are usually not of direct interest) increases with

the number of individuals (N). In this situation, the conventional asymptotic result, which relies

on N → ∞, cannot be applied and estimates of the incidental parameters are necessarily inconsis-

tent for a fixed T . For many estimators, inconsistency may also contaminate the estimates of the

model’s other parameters; the issue is referred to as the incidental parameters problem (Neyman

and Scott 1948). For instance, for linear models with normal errors, the maximum likelihood esti-

mator (MLE) of the slope coefficients is still consistent, but that of the variance-covariance matrix

is inconsistent (Kendall and Stuart 1973, Mak 1982). For nonlinear models, such as the binomial

logit, the MLE of all of the model parameters is inconsistent in general. Incidental parameters

would not be an issue and MLE would be consistent if T → ∞, but this condition is seldom met in

empirical applications.

Aside from the statistical issue, there is also a related computational problem. It arises because

the number of parameters to be estimated is at least N , and so maximizing the model’s log-likelihood

function may be difficult when N is large.1

The literature proposes some solutions to the incidental parameters problem for some of the

1Recent developments in computer algorithms have relaxed this constraint to some extent. For instance, the
algorithm adopted by Greene (2005) is able to handle large problems and is available in the LimDep package.
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models. The key to these solutions usually lies in removing the incidental parameters before esti-

mation. One popular approach, which is widely used in linear models, is to transform the model by

first-differencing or by within-transformation and then obtaining the marginal MLE (MMLE). Al-

ternatively, a conditional likelihood may be formed if a sufficient statistic exists for the fixed effects,

yielding a conditional MLE (CMLE). The likelihood functions of MMLE and CMLE do not contain

incidental parameters, and the estimators are thus consistent (e.g., Cornwell and Schmidt 1992).

These methods, however, are not readily applicable to stochastic frontier models. For the

MMLE, the transformation is usually intractable because of the nonlinearity of the model. For

the CMLE, the sufficient statistic is yet to be found. On the other hand, Greene (2005) suggested

that the model may be estimated by MLE where individual dummies are included for the fixed

effects. The numerical issue of estimating a large number of parameters is then handled by an

advanced numerical maximization algorithm. Using a Monte Carlo experiment on a cross-country

health-care data set, Greene (2005) found that the incidental parameters problem does not affect

the slope coefficients of a stochastic frontier model, while there is also evidence suggesting that the

variance parameters are more likely to be affected when T is not large.

In this paper, we propose a different panel stochastic frontier model that has the true fixed-effect

model specification and yet allows model transformations to be done while keeping the likelihood

function tractable. After transforming the model by either first-difference or within-transformation,

the fixed effects are removed before estimation based on which we obtain consistent MMLE for the

panel stochastic frontier model. Our model differs from Greene’s in three aspects. (1) Removing

the fixed-effect parameters avoids the incidental parameters problem entirely, and consistency can

be obtained by N → ∞. (2) The model we consider is flexible in the sense that it allows the

pre-truncation mean of the inefficiency variable to be non-zero (e.g., truncated-normal) and it

accommodates exogenous determinants of inefficiency in the model. (3) No special maximization

routine is required.

The proposed model shares important characteristics of the scaling-property model proposed

by Wang and Schmidt (2002). The authors discussed in the paper the theoretical appeals of

the scaling property in the context of cross-sectional data. Alvarez et al. (2006) discuss the use

of scaling-property model in the panel data context. Here, we show that the property can be
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manipulated such that model transformations of either first-difference or within-transformation

can be performed analytically. We conduct a Monte Carlo experiment to evaluate the performance

of the estimator, paying particular attention to the effects from different values of N and T . We

also compare the results to those of the dummy-variable based approach. Finally, we illustrate

the use of the estimator in a capital investment model with a financing constraint using data from

Taiwan.

The rest of the paper is organized as the follows. Section 2 presents the model and shows how

the first-difference and within-transformation of the model can be performed. This section also

provides marginal likelihood functions and the formula for estimating the inefficiency index for

both of the transformed models. Section 3 provides Monte Carlo results on the models, which is

followed by an empirical example in section 4. Conclusions of the paper are given in section 5.

2 The Model

Consider a stochastic frontier model with the following specifications:

yit = αi + xitβ + εit, (1)

εit = vit − uit, (2)

vit ∼ N(0, σ2
v), (3)

uit = hit · u∗
i , (4)

hit = f(zitδ), (5)

u∗
i ∼ N+(µ, σ2

u), i = 1, . . . , N, t = 1, . . . , T. (6)

In this setup, αi is individual i’s fixed unobservable effect, xit is a 1 × K vector of explanatory

variables, vit is a zero-mean random error, uit is a stochastic variable measuring inefficiency, and

hit is a positive function of a 1×L vector of non-stochastic inefficiency determinants (zit). Neither

of the vectors of xit and zit contain constants (intercepts) because they are not identified. The

notation “+” indicates that the underlying distribution is truncated from below at zero so that

realized values of the random variable u∗
i are positive. If we set µ equal to 0, then u∗

i follows a
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half-normal distribution. The random variable u∗
i is independent of all T observations on vit, and

both u∗
i and vit are independent of all T observations on {xit,zit}. For example, in a study of

technical inefficiency of production, yit is the log of output, xit is a vector of log inputs and other

factors affecting production, uit is the technical inefficiency which measures the percentage (when

multiplied by 100) of output loss due to inefficiency, and zit is a vector of variables explaining the

inefficiency.

The above model can be seen as a panel extension of the cross-sectional model of Wang and

Schmidt (2002) (which attributed the idea to Simar et al. 1994). The extension shows up in

the inclusion of the individual effects (αi) and in the specification of the time invariant “basic”

distribution u∗
i . As will be shown later, the time invariant assumption of u∗

i holds the key to a

tractable model transformation.2

The above model exhibits the “scaling property” that, conditional on zit, the one-sided error

term equals a scaling function hit multiplied by a one-sided error distributed independently of

zit. With this property, the shape of the underlying distribution of inefficiency is the same for all

individuals, but the scale of the distribution is stretched or shrunk by observation-specific factors

zit. The time invariant specification of u∗
i allows the inefficiency uit to be correlated over time

for a given individual. Compared to the independence assumption of uit used in some other panel

models, the correlated inefficiency is another appealing property of the current model. Wang and

Schmidt (2002) and Alvarez et al. (2006) discussed other advantages of the scaling property.

Whether the scaling property holds in the data is ultimately an empirical question. Nevertheless,

note that the specification nests some of the models in the literature as special cases. By setting

µ = 0, the model is the same as that in Reifschneider and Stevenson (1991), Caudill and Ford (1993)

and Caudill, Ford, and Gropper (1995). Using a time trend variable in the place of zit, i.e.,

f(zitδ) = f(ztδ), the model essentially mimics the one proposed by Kumbhakar (1990) and Battese

and Coelli (1992).

In the next two sections, we show that the fixed individual effect αi can be removed from the

model by either first-differencing or within-transforming the model.

2Alvarez et al. (2006) assumed that the basic distribution is u∗
it, although they briefly mentioned u∗

i as another
possible modeling strategy for panel data (p.205).

6



2.1 First-Difference

We first define the following notation: ∆wit = wit − wit−1, and the stacked vector of ∆wit for a

given i and t = 2, . . . , T is denoted as ∆w̃i = (∆wi2,∆wi3, . . . ,∆wiT )′. Provided that the scaling

function hit is not constant,3 the model after the first-difference is

∆ỹi = ∆x̃iβ + ∆ε̃i, (7)

∆ε̃i = ∆ṽi − ∆ũi, (8)

∆ṽi ∼ MN(0,Σ), (9)

∆ũi = ∆h̃iu
∗
i , (10)

u∗
i ∼ N+(µ, σ2

u), i = 1, . . . , N. (11)

The first-difference introduces correlations of ∆vit within the ith panel, and the (T −1)×(T −1)

variance-covariance matrix of the multivariate normal distribution of ∆ṽi = (∆vi2, ∆vi3, . . . ,∆viT )′

is

Σ =

























2σ2
v −σ2

v 0 . . . 0

−σ2
v 2σ2

v −σ2
v . . . 0

0
. . .

. . .
. . .

...

...
. . .

. . .
. . . −σ2

v

0 0 . . . −σ2
v 2σ2

v

























. (12)

The matrix has 2σ2
v on the diagonal and −σ2

v on the off-diagonals.

It is noteworthy that the model in (7) to (11) looks similar to the cross-sectional model of Wang

and Schmidt (2002) except for the multivariate normal distribution and the obvious transformation

of variables. More importantly, the truncated normal distribution of u∗
i is not affected by the

transformation. This key aspect of the model leads to a tractable likelihood function. Alternatively,

consider a typical and simple model specification in which (4) to (6) are replaced by uit ∼ N+(0, σ̌2
u).

Even in its simplest form, first-differencing uit will not result in a known distribution, and the joint

distribution involving the ∆vit terms would be intractable.

3The condition requires that zit contains at least one variable which changes values over time.
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After tedious but straightforward derivation, the marginal log-likelihood function of panel i in

the model is

lnLD
i = − 1

2
(T − 1) ln(2π) − 1

2
ln(T ) − 1

2
(T − 1) ln(σ2

v) −
1

2
∆ε̃′iΣ

−1∆ε̃i

+
1

2

(

µ2
∗

σ2
∗

− µ2

σ2
u

)

+ ln

(

σ∗Φ

(

µ∗

σ∗

))

− ln

(

σuΦ

(

µ

σu

))

, (13)

where

µ∗ =
µ/σ2

u − ∆ε̃′iΣ
−1∆h̃i

∆h̃′
iΣ

−1∆h̃i + 1/σ2
u

, (14)

σ2
∗ =

1

∆h̃′
iΣ

−1∆h̃i + 1/σ2
u

, (15)

∆ε̃i = ∆ỹi − ∆x̃iβ. (16)

In the expressions, Φ is the cumulative density function of a standard normal distribution. The

marginal log-likelihood function of the model is obtained by summing the above function over

i = 1, . . . , N . The model parameters are estimated by numerically maximizing the marginal log-

likelihood function of the model.

The Inefficiency Index

For many empirical applications of stochastic frontier models, it is of great importance to com-

pute observation-specific technical inefficiency. The conditional expectation estimator suggested in

Jondrow et al. (1982), E(ui|εi) evaluated at εi = ε̂i, is often adopted for this purpose (for simplicity

we use notation implying a cross-sectional model here). For the model presented above, the similar

E(uit|εit) evaluated at εit = ε̂it can be used, noting that ε̂it = yit − α̂i −xitβ̂ where the value of α̂i

is discussed later in (31).

Instead of conditioning on the level of εit, an alternative (modified) way to estimate the inef-

ficiency index is to perform the conditional expectation of uit on the vector of differenced εit, i.e.,

∆ε̃i = ∆ỹi − ∆x̃iβ. Note that ∆ε̃i does not contain αi. The advantages of using the modified

estimator is that (1) the vector ∆ε̃i contains all the information of individual i in the sample, and

that (2) the estimator depends on β̂ (for which the variance is of order 1/((N − 1)T )) but not α̂i
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(for which the variance order is 1/T ). The second property is particular appealing when T of the

sample is not large. The derivation of the equation is again tedious but straightforward:

E(uit|∆ε̃i) = hit

[

µ∗ +
φ(µ∗

σ∗
)σ∗

Φ(µ∗

σ∗
)

]

, (17)

which is evaluated at ∆ε̃i = ∆ˆ̃εi.

2.2 Within-Transformation

By within-transformation, the sample mean of each panel is subtracted from every observation in

the panel. The transformation thus removes the time-invariant individual effect from the model.

The following notation is helpful in discussing the model: wi� = (1/T )
∑T

t=1 wit, wit� = wit − wi�,

and that the stacked vector of wit� for a given i is w̃i� = (wi1�
, wi2�

, . . . , wiT �
)′. The model after the

transformation is

ỹi� = x̃i�β + ε̃i�, (18)

ε̃i� = ṽi� − ũi�, (19)

ṽi� ∼ MN(0,Π), (20)

ũi� = h̃i�u
∗
i , (21)

u∗
i ∼ N+(µ, σ2

u), i = 1, . . . , N. (22)

The variance-covariance matrix of ṽi� is

Π =



















σ2
v(1 − 1/T ) σ2

v(−1/T ) . . . σ2
v(−1/T )

σ2
v(−1/T ) σ2

v(1 − 1/T ) . . . σ2
v(−1/T )

...
...

. . .
...

σ2
v(−1/T ) σ2

v(−1/T ) . . . σ2
v(1 − 1/T )



















= σ2
v

[

IT − ι′ι

T

]

= σ2
vM, (23)
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where ι is a T × 1 vector of 1’s. For (21), note that

uit� = uit − ui� = hitu
∗
i − u∗

i

(

1

T

T
∑

t=1

hit

)

= (hit − hi�)u
∗
i = hit�u

∗
i . (24)

Equation (21) is the stacked vector of uit�.

The above model is complicated by the fact that M is a singular idempotent matrix and is not

invertible. Here we use the singular multivariate normal distribution of Khatri (1968) to solve the

problem. The density function of the vector ṽi� which is defined on a (T − 1) dimensional subspace

is

g(ṽi�) =
1

(
√

2π)(T−1)

√

σ
2(T−1)
v

exp

{

−1

2
ṽ′i�Π

−ṽi�

}

, (25)

where Π− indicates the generalized inverse of Π, and (T −1)σ2
v is the product of nonzero eigenvalues

of Π.4 The model’s marginal likelihood function is then derived based on the joint distribution of

ṽi� and ũi�. The marginal log-likelihood function of the ith panel is

lnLW
i = − 1

2
(T − 1) ln(2π) − 1

2
(T − 1) ln(σ2

v) −
1

2
ε̃′i�Π

−ε̃i�

+
1

2

(

µ2
∗∗

σ2
∗∗

− µ2

σ2
u

)

+ ln

(

σ∗∗Φ

(

µ∗∗

σ∗∗

))

− ln

(

σuΦ

(

µ

σu

))

, (26)

where

µ∗∗ =
µ/σ2

u − ε̃′i�Π
−h̃i�

h̃′
i�Π

−h̃i� + 1/σ2
u

, (27)

σ2
∗∗ =

1

h̃′
i�Π

−h̃i� + 1/σ2
u

, (28)

ε̃i� = ỹi� − x̃i�β. (29)

The marginal log-likelihood function of the model is obtained by summing the above function over

i = 1, . . . , N .

4Eigenvalues of an idempotent matrix are either 0 or 1, with the number of eigenvalues that are 1 equal to the
rank of the matrix. The rank of the matrix M is T − 1, so there is a total of T − 1 eigenvalues equal to σ2

v for the
matrix Π = σ2

vM .
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The Inefficiency Index

As we discussed in the case of the first-differenced model, the formula of Jondrow et al. (1982)

can be applied here after α̂i is recovered to obtain an observation-specific inefficiency index. The

estimator may not work very well for small samples because of the large sample assumption used

in recovering α̂i. Again, we propose a modified estimator which does not require α̂i and thus does

not suffer from the approximation problem. The estimator is based on the conditional expectation

of uit on ε̃i� = ỹi� − x̃i�β:

E(uit|ε̃i�) = hit

[

µ∗∗ +
φ(µ∗∗

σ∗∗
)σ∗∗

Φ(µ∗∗

σ∗∗
)

]

, (30)

which is evaluated at ε̃i� = ˆ̃εi�

Recovering Values of Individual Fixed Effects

Although the individual effects αi’s are not estimated in the model, their values can be recovered

after the model’s other parameters are estimated by either of the transformed models proposed

above. A T -consistent estimator of αi may be obtained by solving the first order condition for αi

from the un-transformed log-likelihood function of the model assuming all other parameters are

known. Doing so we have:

α̂i = yi� − xi�β̂ + µ̂∗∗∗ĥi� + σ̂∗∗∗ĥi�

φ
(

µ̂∗∗∗

σ̂∗∗∗

)

Φ
(

µ̂∗∗∗

σ̂∗∗∗

) , (31)

where

µ̂∗∗∗ =
µ̂σ̂−2

u − σ̂−2T
v

∑

t ε̂itĥit

σ̂−2T
v

∑

t ĥ2
it + σ̂−2

u

, (32)

σ̂2
∗∗∗ =

σ̂2T
v

∑

t ĥ2
it + σ̂2T

v σ̂−2
u

. (33)

The hat symbol indicates the values estimated from either the first-difference model or the within-

transformation model.
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2.3 Equivalence of the Two Models

Although the two models proposed above may seem different, the likelihood functions are actually

the same (LD
i ∝ LW

i ). To prove the equivalence of the estimates, we first observe that the models’

likelihood functions, as stated in (13) to (16) and (26) to (29), differ only in terms involving

the inverse of the variance-covariance matrices. In particular, if the following equations can be

established, then the equivalence of the likelihood functions is obtained (for generality, Π−1 is used

in lieu of Π− in this section):

ε̃′iΠ
−1ε̃i = ∆ε̃′iΣ

−1∆ε̃i, (34)

h̃′
iΠ

−1h̃i = ∆h̃′
iΣ

−1∆h̃i, (35)

ε̃′iΠ
−1h̃i = ∆ε̃′iΣ

−1∆h̃i. (36)

A proof is sketched as follows.

Let D be a T − 1 × T matrix of the first-difference projection matrix,

D =

























−1 1 0 . . . 0

0 −1 1 . . . 0

0
. . .

. . .
. . .

...

...
. . .

. . .
. . . 0

0 0 . . . −1 1

























. (37)

The first-difference model is obtained by projecting the original model onto D. Specifically,

∆ε̃i = Dεi, (38)

and Σ = σ2
vDD′. (39)

The within-transformation projection matrix can also be constructed from D (see also (23)):

D′(DD′)−1D = IT − ι′ι

T
. (40)
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Using the projection matrix, we have

ε̃i = D′(DD′)−1Dεi, (41)

and Π = σ2
vD

′(DD′)−1D. (42)

Using the results, it is easy to show that (34) is true.

ε̃′iΠ
−1ε̃i = (D′(DD′)−1Dεi)

′(D′(DD′)−1D)(D′(DD′)−1Dεi)σ
−2
v

= (Dεi)
′((DD′)−1)′(Dεi)σ

−2
v

= (Dεi)
′(DD′)−1(Dεi)σ

−2
v

= ∆ε̃′iΣ
−1∆ε̃i.

(43)

Similarly, it is easy to show that (35) and (36) are also true. Therefore, the log-likelihood functions

are the same for the first-difference and the within-transformation models.

Remarks

We end this section with two remarks. First, although the models are derived assuming balanced

panels, the results can be easily modified for unbalanced panel models. The only required modi-

fication is changing T to Ti (≥ 2) where Ti is individual i’s number of observations in the data.

Secondly, the lost degrees of freedom from the removal of individual effects in the model trans-

formations are accounted for in the MLE. No additional adjustment needs to be taken. For the

first-differenced model, the (automatic) adjustment is obvious since only T − 1 observations are

used in the estimation from each panel. For the within-transformed model, (25) is derived based

on a (T −1) dimensional subspace. Therefore, the marginal log-likelihood function loses one degree

of freedom for each panel.

For the Monte Carlo analysis in the following section, both the first-difference and the within-

transformation models were programmed using Stata 10 software. The programs are available from

the authors upon request.
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3 A Monte Carlo Study

In this section, we conduct Monte Carlo experiments on fixed-effect panel stochastic frontier models.

We first conduct a small-scale experiment on a simple and untransformed model for which the fixed

effects are estimated by dummy variables. The results are complements to Greene’s (2005) study,

and show bias from the incidental parameters problem. We then carry out a more extensive Monte

Carlo study on models for which the individual effects are removed before estimation by first-

difference and within model transformation.

3.1 First-Difference and Within-Transformation

We consider a panel stochastic frontier model with the following specification:

yit = αi + βxit + εit, (44)

εit = vit − uit, (45)

vit ∼ N(0, σ2
v), (46)

uit = exp(δzit) · u∗
i , (47)

u∗
i ∼ N+(µ, σ2

u), i = 1, . . . , N, t = 1, . . . , T. (48)

To generate data for simulation, we first draw fixed-effect parameters (αi’s) from a uniform

distribution in [0, 1]. The xit is then drawn from a N(αi, 1) normal distribution for the ith panel,

i = 1, . . . , N . This data generation method induces correlations between αi and xit, and the

correlation coefficient is around 0.27 in our samples.5 The zit is generated from N(0, 1). For the

base case, the selected parameter values are {β = 0.5, δ = 0.5, σ2
v = 0.1, µ = 0.5, σ2

u = 0.2, N =

100, T = 5}. The simulation is conducted with 1,000 replications.

The relatively small values chosen for N and T are not uncommon in empirical applications.

Since we are interested in observing the effects of changes in N and T on parameter estimation,

we also considered alternative values for N and T . Specifically, we also included N = 200, 300,

5The correlation is created to simulate scenarios in which the fixed effect specification is often called upon. We
also experimented with cases where there is no correlation between αi and xit. The estimator still applies and the
results (not shown) are similar to what we reported in the paper. Results are available from the authors upon request.
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and T = 10, 15. The variance ratio σ2
u/σ2

v may also affect model estimation. Therefore, we hold

σ2
v fixed at 0.1 and consider an alternative value of σ2

u equal to 0.15. All possible combinations

of the alternative values of N , T , and σ2
u are included in the study. Simulation results of the

various cases are sorted by values of T and are presented in Table 1 (T = 5), Table 2 (T = 10),

and Table 3 (T = 15).

Table 1 presents cases with small T (T = 5). Notice that estimation results are similar for

the first-difference and the within-transformation models, which confirms the equivalence of the

models. When both T and N are small (N = 100), results show that β, δ, and σ2
v are estimated

well, although the MSEs of µ̂ and σ̂2
u are somewhat larger. Large variances contribute to the large

MSEs in both cases, although noticeable bias is also observed for σ̂2
u. The correlation coefficients

between the estimated inefficiency index and the true index are around 0.86 to 0.875, which is quite

high given the small sample size.

Increases in N quickly reduce the MSEs of µ̂ and σ̂2
u. For σ̂2

u, the MSE of the first-difference

model with σ2
u = 0.2 falls from 0.027 to 0.011 when N increases from 100 to 200, and the figure

continues to fall to 0.006 when N is 300. The improvement is significant, and stems from smaller

variance and the smaller bias of the estimate. The reduction in bias from larger N is an important

properly of the estimators. As we will show in the next subsection, the bias reduction does not

take place in the dummy-variable model. The correlation coefficient between the estimated and the

true inefficiency index also improves when N increases as expected.

It is well known that stochastic frontier models are difficult to estimate when σ2
u is small. The

panel on the right of Table 1 shows the results with a small σ2
u (σ2

u/σ2
v = 1.5). Compared to the

models with σ2
u/σ2

v = 2, the correlation coefficient between the estimated and the true inefficiency

index is smaller in all cases. Otherwise, the parameter estimates are qualitatively similar.

Table 2 presents results with a larger T (T = 10). Because the first-difference and the within-

transformed models are shown to be identical, we only report results from the first-difference model.

As expected, when the parameter configuration is held unchanged, estimation results improve with

a larger T . For instance, the MSE of σ̂2
u from the first-difference model with N = 100 falls from

0.027 to 0.009 when T increases from 5 to 10. As with the results of an increase in N , the reduction

in MSE stems from both a smaller bias and smaller variances in the estimate. The rest of the
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table shows cases with larger values of N , and the results are as expected: smaller MSEs for all

the parameters and larger correlation coefficients between the estimated and the true values of

inefficiency index. Table 3 presents results of models with a T = 15. Regardless of the size of N ,

all parameters are estimated very well.

Finally, we add Table 4 which reports results from models with larger values of σ2
u. It is obvious

from the table that larger σ2
u makes µ and σ2

u, both of which parameters of u∗
i , to be estimated

less precisely. On the other hand, the expected inefficiency index (E(uit)) is computed conditional

on the composed error of εit = vit − uit, and so the conditional information is more useful if uit

accounts for a larger share of εit’s variance. The result is a higher correlation between the true and

the estimated inefficiency index when σ2
u increases. The above observations are also found in the

preceding tables.

3.2 Dummy Variable Models: A Comparison

As shown in the previous subsection, parameters are estimated very well in transformed models,

and the estimation consistency improves with increases in either N or T . To further understand

the performance of the estimators, in this subsection we provide simulation results of the model

in which the fixed individual effects are estimated by dummy variables.6 The model suffers from

the incidental parameters problem, and simulation results show the consequences of not removing

incidental parameters prior to estimation.

Since we wish to observe how values of N and T affect estimation, we simulate models with

different configurations of N = 100, 200, 300 and T = 5, 10, 15. We choose σ2
u = 0.2 for all the

models and keep other parameters the same as those used in the previous section. Results are

presented in Table 5 (for selected models) and in Figure 1. For comparison, we also reproduce

results of the corresponding first-difference models in the table and the figure.

For Model 1 (N = 100 and T = 5), the β is estimated very well and the estimate of σ2
v is

also reasonably sound. The rest of the parameters, however, are very poorly estimated: δ̂ = 0.810

(δ = 0.5), µ̂ = 0.232 (µ = 0.5), and σ̂2
u = 0.056 (σ2

u = 0.20). Note that these are all parameters

6This is similar to the “true fixed effect” model of Greene (2005) in that the fixed effects are estimated by dummy
variables. The only difference is in the specification of uit which has a truncated-normal distribution with exogenous
determinants in the current model. Greene assumes an i.i.d. half-normal distribution. Further investigation is needed
to determine to what extent the results observed here pertain to Greene’s model.
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of uit. The biases are large and significant. The correlation coefficient between the estimated

inefficiency (E(uit|εit) evaluated at εit = ε̂it) and the true inefficiency is 0.711, clearly smaller than

the value of 0.871 obtained from the first-difference model.

The above finding is consistent with Greene (2005) in which the author showed that the inci-

dental parameters problem does not cause bias to the slope coefficients. The estimation problem

arises mainly in the error variances estimation. However, since estimated inefficiency of a stochastic

frontier model is based on the error variance, the empirical consequence of the incidental parameters

problem cannot be ignored.

Model 2 keeps N the same and increases T to 15. As discussed earlier, larger T helps the

dummy-variable model gain consistency. Table shows that the estimation indeed improves with T

equal to 15, but the overall result is still unsatisfactory. For example, while δ̂ falls from 0.810 in

Model 1 to 0.627 in Model 2, it still overestimates the true value by 25%. Given that effects of

the inefficiency determinants often play an important role in empirical stochastic frontier analysis,

this result should be alarming to empirical researchers. σ̂2
u also suffers from a large bias of about

−47%. The correlation coefficient between the true and the estimated index is 0.726, which is only

a slight increase from the value of 0.711 obtained from Model 1. The first-difference model, on the

other hand, reaps substantial gains from a larger T as shown in the table.

Model 3 increases N to 300 and keeps T at 5. As expected, the dummy variable model does

not benefit from an increase in N . There is no appreciable change in the parameter estimation

compared with Model 1. The first-difference model, on the contrary, improves substantially from

an increase in N . Model 4 increases both N and T . Results of the dummy-variable model show

improvements when compared to Model 1, which is likely due to the effect of the large T .

It is worthwhile to note that, for all the cases presented in Table 5, the dummy variable model

tends to overestimate the importance of exogenous determinant of inefficiency (δ too large) while

underestimate σ2
u. Because the inefficiency index is fundamentally affected by the variance para-

meters, large biases in δ, µ, and σ2
u have negative consequences on the estimated inefficiency. Using

the figures in Table 5, it can be shown that the sample mean of the inefficiency index from the

dummy variable model is about 18% to 40% smaller than that of the first-difference model. The

correlation coefficient between the true and the estimated inefficiency index is also much smaller
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with the dummy variable model.

Figure 1 plots the point estimates of δ̂, µ̂, and σ̂2
u from all possible combinations of N and T

in the simulation. Graphs in the left column have N fixed at 100 while T changes from 5 to 10 to

15. Graphs in the right column have T fixed at 5 as N changes from 100 to 200 to 300. The figure

clearly shows that the estimates of the dummy-variable model do not benefit from increases in N

(because of the incidental parameters problem). While the point estimates improve with larger T ,

with T = 15 the performance is still inferior to that of the first-difference model.

4 Empirical Example

We apply the estimator to a capital investment model of Taiwan for the period of 1999-2005.

Wang (2003) solved a profit maximization problem for the firm’s investment decision and showed

that the solution has a frontier-type interpretation. The frontier in the model represents the fric-

tionless level of investment and the one-sided deviation captures the financing constraint effects.

Wang (2003) estimates the model using Taiwanese data from the period between 1989-1996, a pe-

riod in which the economy underwent a series of reforms aimed at financial liberations. Results

show that effects of financing constraints on investment reduced gradually along with the progress

of financial reforms, and that both cash flow and asset size are helpful in explaining individual

firms’ financing constraints.

Here we estimate the model using data from 1999-2005, a period in which Taiwan’s economic

growth rate slowed down substantially. The slow down began with the Asian financial crisis in late

1997 and continued with a recession in 2002 which was one of the worst in Taiwan’s recent history.

Chen and Wang (2007) shows that Taiwan’s credit market shrunk dramatically following the Asian

financial crisis, and identifies an inward shift of supply (as opposed to demand) as the main cause

of the credit slow down. Against this background, it is interesting to determine whether the effects

of financing constraints on firms’ investment changed during this period.

The model specification is similar to Wang (2003). Referring to (1) – (6), the dependent vari-

able is ln(I/K)it which is the log of the investment to capital ratio. Capital Kit is measured at the

beginning of each period and is used to normalize most of the variables in the model in order to
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control for heteroscedasticity. The explanatory variables (xit) include the log of Tobin’s Q (lnQit)

and the current and lag sales to capital ratios (ln(S/K)it, ln(S/K)it−1). The investment literature

shows that Tobin’s Q is a sufficient statistic of investment in the absence of market imperfection

(e.g., Hayashi 1985, Osterberg 1989, Chirinko 1993, and Gilchrist and Himmelberg 1995), and sales

variables are added to further explain investment behavior. The Tobin’s Q variable is computed

based on the method of Lewellen and Badrinath (1997). Implementation of this method is de-

scribed in the appendix of Wang (2003). The firm fixed-effects (αi) are also included in the model

specification.

The h(·) function in (5) is specified as exp(zitδ), where the zit vector includes the cash flow ratio

variable ((CF/K)it) and the asset size variable (ln(asset)it). Wang (2003), following the literature,

hypothesized that the extent of a firm’s financing constraint on investment is inversely related to

both of the variables. The random variable vit is assumed to follow a zero-mean normal distribution

and u∗
i is assumed to follow a half-normal distribution. Both of the variances are parameterized as

follows in the estimation:

σ2
v = exp(cv), σ2

u = exp(cu),

where cv and cu are unconstrained constant parameters.

The empirical data is from the Taiwan Economic Journal Data Bank. The sample consists of

data of 206 Taiwanese manufacturing firms publicly traded on the Taiwan Stock Exchange. Because

a lag variable is used in the model specification, the actual estimation period is from the year 2000

to 2005 (T=6). There are a total of 1220 observations. Summary statistics are reported in Table 6.

Table 7 shows the estimation results from the dummy-variable model (Model 1) and the within-

transformation model (Model 2). As indicated by Model 2 (our preferred model; log-likelihood

value = −1363.732), the estimated coefficients on the Tobin’s Q and sales ratio variables are all

positive and significant at least at the 10% level. Regarding the effect of financing constraints

on investment, the asset variable’s coefficient is negative and significant, implying that the degree

of financing constraint is smaller for larger firms. This result is consistent with findings in the

literature (Gertler and Gilchrist 1994, Carpenter et al. 1994, and Gilchrist and Himmelberg 1995).
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One reason for this is that larger firms are likely better equipped in providing collateral to mitigate

the information problem in the capital market. Larger firms also tend to be older and more mature,

so that the market has better access to and assessment of the firm’s information.

On the other hand, the coefficient of the cash flow variable is estimated rather imprecisely. A

possible explanation for our data is that Taiwanese firms in the sample period were cash-strapped

in general due to recessions, and therefore there was not enough variation in cash flow across firms

to show significant covariance with the extent of financing constraints. In any case, the validity

of using cash flow to gauge financing constraints is controversial in the literature (e.x., Fazzari et

al. 2000, Kaplan and Zingales 2000) and empirical results are mixed.

As for the dummy-variable model (Model 1; log-likelihood value = −1512.152), the coefficients

of the Q and sales variables are quite close to those of Model 2. On the other hand, the coefficient

of the log of asset is much larger in size compared to Model 2 while the estimate of σ2
u is much

smaller. The mean of the conditional expectation of exp(−uit) also shows that the dummy-variable

model implies a higher investment efficiency (lower financing constraints).

These observations are consistent with the simulation results (see, in particular, Model 3 in

Table 5 for similar N and T ), which show that the β coefficients are always similar in both models

while the dummy-variable model tends to overestimate the impact of the inefficiency determinants

(e.g., lnAssetsit) and underestimate the size of σ2
u.

We end this section by discussing the model’s time-varying characteristic of the inefficiency

index. As mentioned earlier, the model’s inefficiency is a product of a time-varying function f(zitδ)

and a time-invariant random variable u∗
i . This combination yields a specification that is in between

the time-constant assumption of inefficiency (uit = ui, i.e., Schmidt and Sickles 1984) and the

observation-independent assumption (e.g., Greene 2005). In a related context, Greene (2002, 2005)

found that the difference between the predictions of model with time varying vs. time invariant

inefficiency is vast and unsettling.

To see if the time-varying or the time-constant properties of the model dominates in the esti-

mated efficiency, we compute, as an approximation, the mean and the standard deviation of the

efficiency index within each firm. In particular, we assess the cross-time variation of the efficiency

index by calculating the standard deviation of the index for each firm (separately) and then aver-
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age the figures across firms. This yields a mean standard deviation of 0.020 (which would be 0 if

the model has a time constant specification of inefficiency). On the other hand, the mean of the

efficiency index across firms is 0.571. A one standard-deviation above and below the mean puts

the efficiency index between 0.551 to 0.591 for this sample. Although not a precise measure, these

numbers suggest that the time variation of inefficiency is on the lower side. However, the numbers

are not totally unreasonable given that they are from firms in a six-year span. Whether the low

time variation is due to data or is a property intrinsic to the proposed model specification remains

an issue for further investigation.

5 Conclusion

Recent literature has emphasized the importance of separating inefficiency and fixed individual

effects in a panel stochastic frontier model. In this paper, we propose a class of panel stochastic

frontier models that take account of both time-varying inefficiency and time-invariant individual

effects. An important feature of these models is that simple transformations can be performed to re-

move the fixed individual effects prior to estimation. The first-difference and within-transformation

methods, which cannot normally be used on stochastic frontier models due to their complicated

error structure, eliminate the problem of incidental parameters brought about by the inclusion of

fixed individual effects in the model.

The transformed models proposed in this paper in general performed quite well in our Monte

Carlo study. Most importantly, consistency of the parameter estimates can be improved by increas-

ing either T or N (or both). In addition, because the fixed individual effects are removed by model

transformations, the number of parameters to be estimated is no more than that of a cross-sectional

model. Our models’ desirable statistical properties and their ease of estimation should appeal to

empirical researchers.

Similar to Greene’s (2005) finding, our Monte Carlo results indicate that while the incidental

parameters problem does not affect the estimation of slope coefficients, it does introduce bias to

the estimated model residuals. The situation can not be remedied with a larger N , and can only

be improved by increasing T . Since the inefficiency estimation is based on model residuals and
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the estimation is often at the core of a stochastic frontier analysis study, the incidental parameters

problem should concern empirical researchers particularly when T is not large.
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Table 1: T=5

β = 0.5, δ = 0.5, µ = 0.5, σ2
v

= 0.1

σ2
u
/σ2

v
= 2 σ2

u
/σ2

v
= 1.5

N=100 N=100
first-difference within-transf. first-difference within-transf.

Mean MSE Mean MSE Mean MSE Mean MSE

β̂ 0.500 3.0 × 10−4 0.500 3.0 × 10−4 0.500 2.9 × 10−4 0.500 2.9 × 10−4

(0.017) (0.017) (0.017) (0.017)

δ̂ 0.502 0.007 0.502 0.007 0.502 0.008 0.502 0.008
(0.084) (0.084) (0.088) (0.087)

µ̂ 0.491 0.032 0.489 0.035 0.497 0.027 0.496 0.027
(0.180) (0.186) (0.164) (0.164)

σ̂2
u

0.232 0.027 0.233 0.029 0.177 0.019 0.176 0.018
(0.163) (0.167) (0.134) (0.133)

σ̂2
v

0.099 6.4 × 10−5 0.099 6.5 × 10−5 0.099 6.4 × 10−5 0.099 6.4 × 10−5

(0.008) (0.008) (0.008) (0.008)
E(uit|Θ)* 0.709 0.104 0.708 0.104 0.670 0.096 0.669 0.095

(0.137) (0.137) (0.137) (0.136)
corr* 0.871 0.871 0.860 0.860

N=200 N=200
first-difference within-transf. first-difference within-transf.

Mean MSE Mean MSE Mean MSE Mean MSE

β̂ 0.499 1.6 × 10−4 0.499 1.6 × 10−4 0.499 1.6 × 10−4 0.499 1.6 × 10−4

(0.013) (0.013) (0.013) (0.013)

δ̂ 0.497 0.003 0.497 0.003 0.497 0.004 0.498 0.004
(0.057) (0.057) (0.060) (0.060)

µ̂ 0.500 0.014 0.497 0.013 0.502 0.011 0.501 0.011
(0.117) (0.115) (0.105) (0.105)

σ̂2
u

0.218 0.011 0.219 0.011 0.165 0.007 0.165 0.007
(0.103) (0.103) (0.081) (0.082)

σ̂2
v

0.100 3.0 × 10−5 0.100 3.0 × 10−5 0.100 3.0 × 10−5 0.100 2.9 × 10−5

(0.006) (0.005) (0.005) (0.005)
E(uit|Θ)* 0.705 0.091 0.703 0.091 0.665 0.083 0.663 0.083

(0.093) (0.091) (0.091) (0.091)
corr* 0.874 0.875 0.864 0.864

N=300 N=300
first-difference within-transf. first-difference within-transf.

Mean MSE Mean MSE Mean MSE Mean MSE

β̂ 0.500 9.9 × 10−5 0.500 9.9 × 10−5 0.500 9.9 × 10−5 0.500 9.7 × 10−5

(0.010) (0.010) (0.010) (0.010)

δ̂ 0.499 0.002 0.500 0.002 0.499 0.002 0.501 0.002
(0.047) (0.048) (0.049) (0.050)

µ̂ 0.498 0.009 0.496 0.009 0.499 0.007 0.495 0.007
(0.097) (0.096) (0.085) (0.085)

σ̂2
u

0.211 0.006 0.210 0.006 0.159 0.004 0.159 0.004
(0.078) (0.078) (0.061) (0.062)

σ̂2
v

0.100 2.2 × 10−5 0.100 2.2 × 10−5 0.100 2.2 × 10−5 0.100 2.2 × 10−5

(0.005) (0.005) (0.005) (0.005)
E(uit|Θ)* 0.699 0.088 0.697 0.088 0.659 0.080 0.656 0.080

(0.073) (0.074) (0.071) (0.072)
corr* 0.875 0.875 0.865 0.865

* E(uit|Θ) = E(uit|∆ε̃i) evaluated at ∆ε̃i = ∆ˆ̃
εi for the first-difference model, E(uit|Θ) = E(uit|ε̃i�) evaluated at

ε̃i� = ˆ̃εi� for the within-transformation model. corr=corr(E(uit|Θ), uit). Standard deviations are in the parenthesis.
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Table 2: T=10

β = 0.5, δ = 0.5, µ = 0.5, σ2
v

= 0.1

σ2
u
/σ2

v
= 2 σ2

u
/σ2

v
= 1.5

N=100 N=200 N=100 N=200
Mean MSE Mean MSE Mean MSE Mean MSE

β̂ 0.499 1.2 × 10−4 0.500 6.5 × 10−5 0.499 1.2 × 10−4 0.500 6.4 × 10−5

(0.011) (0.008) (0.011) (0.008)

δ̂ 0.502 0.002 0.501 0.001 0.502 0.003 0.502 0.001
(0.049) (0.034) (0.052) (0.036)

µ̂ 0.490 0.019 0.496 0.007 0.494 0.013 0.497 0.005
(0.136) (0.081) (0.112) (0.071)

σ̂2
u

0.213 0.009 0.204 0.003 0.160 0.005 0.154 0.002
(0.096) (0.059) (0.072) (0.046)

σ̂2
v

0.099 2.5 × 10−5 0.100 1.2 × 10−5 0.099 2.5 × 10−5 0.100 1.2 × 10−5

(0.005) (0.003) (0.005) (0.003)
E(uit|Θ)* 0.697 0.053 0.693 0.049 0.657 0.050 0.653 0.046

(0.083) (0.058) (0.081) (0.056)
corr* 0.931 0.933 0.922 0.924

N=300 N=300
Mean MSE Mean MSE

β̂ 0.500 4.0 × 10−5 0.500 4.0 × 10−5

(0.006) (0.006)

δ̂ 0.502 0.001 0.502 0.001
(0.029) (0.031)

µ̂ 0.498 0.005 0.499 0.003
(0.068) (0.059)

σ̂2
u

0.202 0.002 0.151 0.001
(0.049) (0.037)

σ̂2
v

0.100 8.6 × 10−6 0.100 8.6 × 10−6

(0.003) (0.003)
E(uit|Θ)* 0.692 0.048 0.652 0.046

(0.049) (0.048)
corr* 0.933 0.924

* E(uit|Θ) = E(uit|∆ε̃i) evaluated at ∆ε̃i = ∆ˆ̃
εi for the first-difference model. corr=corr(E(uit|Θ), uit). Standard

deviations are in the parenthesis.
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Table 3: T=15

β = 0.5, δ = 0.5, µ = 0.5, σ2
v

= 0.1

σ2
u
/σ2

v
= 2 σ2

u
/σ2

v
= 1.5

N=100 N=200 N=100 N=200
Mean MSE Mean MSE Mean MSE Mean MSE

β̂ 0.500 7.6 × 10−5 0.500 3.5 × 10−5 0.500 7.6 × 10−5 0.500 3.5 × 10−5

(0.009) (0.006) (0.009) (0.006)

δ̂ 0.499 0.001 0.498 0.001 0.499 0.002 0.498 0.001
(0.037) (0.025) (0.040) (0.026)

µ̂ 0.500 0.011 0.497 0.005 0.502 0.008 0.498 0.004
(0.106) (0.073) (0.089) (0.061)

σ̂2
u

0.207 0.005 0.207 0.003 0.156 0.003 0.156 0.002
(0.073) (0.051) (0.055) (0.038)

σ̂2
v

0.100 1.4 × 10−5 0.100 7.9 × 10−6 0.100 1.4 × 10−5 0.100 7.8 × 10−6

(0.004) (0.003) (0.004) (0.003)
E(uit|Θ)* 0.700 0.035 0.695 0.033 0.660 0.034 0.654 0.032

(0.070) (0.048) (0.068) (0.046)
corr* 0.954 0.955 0.947 0.948

N=300 N=300
Mean MSE Mean MSE

β̂ 0.500 2.4 × 10−5 0.500 2.4 × 10−5

(0.005) (0.005)

δ̂ 0.500 4.6 × 10−4 0.500 0.001
(0.022) (0.023)

µ̂ 0.497 0.004 0.497 0.003
(0.060) (0.051)

σ̂2
u

0.203 0.002 0.152 0.001
(0.040) (0.029)

σ̂2
v

0.100 5.0 × 10−6 0.100 5.1 × 10−6

(0.002) (0.002)
E(uit|Θ)* 0.692 0.032 0.651 0.031

(0.041) (0.040)
corr* 0.955 0.948

* E(uit|Θ) = E(uit|∆ε̃i) evaluated at ∆ε̃i = ∆ˆ̃
εi for the first-difference model. corr=corr(E(uit|Θ), uit). Standard

deviations are in the parenthesis.
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Table 4: Larger σ2
u

β = 0.5, δ = 0.5, µ = 0.5, σ2
v

= 0.1

σ2
u
/σ2

v
= 3 σ2

u
/σ2

v
= 3

N=100, T=5 N=100, T=15 N=300, T=5 N=300, T=15
Mean MSE Mean MSE Mean MSE Mean MSE

β̂ 0.500 3.0 × 10−4 0.500 7.7 × 10−5 0.500 1.0 × 10−4 0.500 2.4 × 10−5

(0.017) (0.009) (0.010) (0.005)

δ̂ 0.501 0.006 0.499 0.001 0.499 0.002 0.500 3.7 × 10−4

(0.077) (0.033) (0.043) (0.019)
µ̂ 0.480 0.049 0.499 0.020 0.496 0.014 0.494 0.007

(0.221) (0.141) (0.117) (0.081)
σ̂2

u
0.343 0.051 0.308 0.012 0.312 0.012 0.304 0.004

(0.221) (0.109) (0.107) (0.061)
σ̂2

v
0.099 6.6 × 10−5 0.100 1.4 × 10−5 0.100 2.2 × 10−5 0.100 5.0 × 10−6

(0.008) (0.004) (0.005) (0.002)
E(uit|Θ)* 0.783 0.116 0.775 0.037 0.773 0.100 0.766 0.034

(0.139) (0.073) (0.075) (0.045)
corr* 0.888 0.964 0.892 0.964

σ2
u
/σ2

v
= 4 σ2

u
/σ2

v
= 4

N=100, T=5 N=100, T=15 N=300, T=5 N=300, T=15
Mean MSE Mean MSE Mean MSE Mean MSE

β̂ 0.500 3.0 × 10−4 0.500 7.7 × 10−5 0.500 1.0 × 10−4 0.500 2.5 × 10−5

(0.017) (0.009) (0.010) (0.005)

δ̂ 0.501 0.005 0.499 0.001 0.500 0.002 0.500 3.1 × 10−4

(0.072) (0.030) (0.040) (0.018)
µ̂ 0.469 0.075 0.495 0.030 0.494 0.019 0.493 0.010

(0.272) (0.172) (0.139) (0.098)
σ̂2

u
0.453 0.082 0.411 0.020 0.413 0.018 0.406 0.007

(0.282) (0.143) (0.134) (0.080)
σ̂2

v
0.099 6.6 × 10−5 0.100 1.5 × 10−5 0.100 2.2 × 10−5 0.100 5.0 × 10−6

(0.008) (0.004) (0.005) (0.002)
E(uit|Θ)* 0.849 0.125 0.842 0.038 0.839 0.109 0.834 0.035

(0.141) (0.076) (0.077) (0.046)
corr* 0.901 0.970 0.904 0.970

* E(uit|Θ) = E(uit|∆ε̃i) evaluated at ∆ε̃i = ∆ˆ̃
εi for the first-difference model. corr=corr(E(uit|Θ), uit). Standard

deviations are in the parenthesis.
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Table 5: Dummy Variable Model: A Comparison

Model 1: N=100,T=5 Model 2: N=100,T=15
Dummy first-difference Dummy first-difference

Mean MSE Mean MSE Mean MSE Mean MSE
(std.) (std.) (std.) (std.)

β̂ 0.498 0.001 0.500 3.0 × 10−4 0.500 9.2 × 10−5 0.500 7.6 × 10−5

(0.027) (0.017) (0.010) (0.009)

δ̂ 0.810 0.115 0.502 0.007 0.627 0.018 0.499 0.001
(0.140) (0.084) (0.043) (0.037)

µ̂ 0.232 0.218 0.491 0.032 0.371 0.031 0.500 0.011
(0.383) (0.180) (0.120) (0.106)

σ̂2
u

0.056 0.029 0.232 0.027 0.106 0.013 0.207 0.005
(0.092) (0.163) (0.066) (0.073)

σ̂2
v

0.090 2.3 × 10−4 0.099 6.4 × 10−5 0.095 5.2 × 10−5 0.100 1.4 × 10−5

(0.011) (0.008) (0.005) (0.004)
E(u|Θ)∗ 0.449 1.331 0.709 0.104 0.545 0.192 0.700 0.035

(0.502) (0.137) (0.062) (0.070)
corr* 0.711 0.871 0.726 0.954

Model 3: N=300,T=5 Model 4: N=300,T=15
Dummy first-difference Dummy first-difference

Mean MSE Mean MSE Mean MSE Mean MSE
(std.) (std.) (std.) (std.)

β̂ 0.498 1.6 × 10−4 0.500 9.9 × 10−5 0.499 3.2 × 10−5 0.500 2.4 × 10−5

(0.012) (0.010) (0.006) (0.005)

δ̂ 0.823 0.113 0.499 0.002 0.626 0.017 0.500 4.6 × 10−4

(0.091) (0.047) (0.033) (0.022)
µ̂ 0.255 0.085 0.498 0.009 0.371 0.028 0.497 0.004

(0.157) (0.097) (0.106) (0.060)
σ̂2

u
0.041 0.029 0.211 0.006 0.106 0.013 0.203 0.002

(0.068) (0.078) (0.062) (0.040)
σ̂2

v
0.090 1.7 × 10−4 0.100 2.2 × 10−5 0.095 4.0 × 10−5 0.100 5.0 × 10−6

(0.008) (0.005) (0.003) (0.002)
E(u|Θ)∗ 0.422 0.251 0.699 0.088 0.542 0.194 0.692 0.032

(0.078) (0.073) (0.052) (0.041)
corr* 0.718 0.875 0.724 0.955

* E(uit|Θ) = E(uit|∆ε̃i) evaluated at ∆ε̃i = ∆ˆ̃
εi for the first-difference model, E(uit|Θ) = E(uit|εit) evaluated at

εit = ε̂it for the dummy model. corr=corr(E(uit|Θ), uit). Standard deviations are in the parenthesis.
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Table 6: Summary Statistics

mean median std dev

ln(I/K)it -3.260 -3.057 1.548
lnQit 0.797 0.642 0.799
ln(S/K)it 0.561 0.471 1.105
(CF/K)it 0.294 0.136 1.578
lnAssetsit 0.620 6.658 1.154

Note: Source: Taiwan Economic Journal
Data Bank. The sample consists of
data of 206 Taiwanese manufacturing
firms from the year 2000 to the year
2005.

Table 7: Empirical Results

Model 1 (dummy) Model 2 (within)
coeff. std. err. coeff. std. err.

frontier
lnQit 0.684*** 0.093 0.655*** 0.108

ln(S/K)it 0.142* 0.079 0.150* 0.090
ln(S/K)it−1 0.346*** 0.078 0.340*** 0.089

constraints
ln(CF/K)it -0.042 0.297 0.018 0.030
lnAssetsit -1.845*** 0.441 -0.652*** 0.180

cv -0.674*** 0.094 -0.158*** 0.045
cu 5.231*** 1.196 8.523*** 1.686

mean efficiency
E(exp(−uit)|Θ) 0.639 0.573

Note 1: Model 1 includes firm dummies in the estimation (i.e., the dummy variable
model), and Model 2 is the within-transformation model. Estimates of dummy-
variable coefficients of Model 1 are not reported to save space. Θ = εit for Model 1,
and Θ = ε̃i� for Model 2. cv = ln(σ2

v), cu = ln(σ2
u).

Note 2: Significance: ***: 1% level, **: 5% level; *: 10% level.
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Figure 1: Model Comparisons
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