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Bugs in the proofs of revelation principle

Haoyang Wu ∗

Wan-Dou-Miao Research Lab, Suite 1002, 790 WuYi Road,

Shanghai, 200051, China.

Abstract

In the field of mechanism design, the revelation principle has been known for
decades. Myerson, Mas-Colell, Whinston and Green gave formal proofs of the rev-
elation principle respectively. However, in this paper, I argue that there are bugs
hidden in their proofs.
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The revelation principle is well-known in the economics literature. See Page
884, Line 24 [1]: “The implication of the revelation principle is ... to identify

the set of implementable social choice functions, we need only identify those

that are truthfully implementable.” But, in this paper I will argue that there
are bugs in the proofs given by Mas-Colell, Whinston and Green [1] and My-
erson [2] respectively. Coincidentally, the bugs are relevant to the same word
“imply”. Related definitions and proofs are given in Appendices, which are
cited from Section 8.E, 23.B and 23.D [1] and Ref. [2]. Two remarks are added
in Appendix 1 and 3 respectively.

1 The bug in the proof by Mas-Colell, Whinston and Green

Here, the notation is referred to Ref. [1]. See the proof of Proposition 23.D.1:“...
Condition (23.D.2) implies that for all i and all θi ∈ Θi,...”. To derive formula
(23.D.3), the term “ŝi” (∀ŝi ∈ Si, i = 1, · · · , I) in formula (23.D.2) is replaced
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by “s∗i (θ̂i)” (∀θ̂i ∈ Θi, i = 1, · · · , I). Since formula (23.D.2) holds for all
ŝi ∈ Si, it looks reasonable to do so at first sight.

However, as formula (23.D.2) specifies, the expectation is taken over realiza-
tions of the other players’ random types conditional on player i’s realized type
θi (also see Proposition 8.E.1). Note that the input of the function s∗i (·) should
be a realized type of player i (see Remark 1), but none of θ̂i (∀θ̂i ∈ Θi, θ̂i 6= θi)
can be such realized type since agent i’s type has been realized as θi. There-
fore, in formula (23.D.3), the term “s∗i (θ̂i)” (∀θ̂i ∈ Θi, θ̂i 6= θi) is actually
illegal. Put differently, formula (23.D.3) is illegal. That is the bug.

2 The bug in the proof by Myerson

Here, the notation is referred to Ref. [2]. See the proof of Theorem 2: “...
Furthermore, the equilibrium inequalities (14) for π imply the incentive com-
patible inequalities (6) for π′...”. Let us consider the right part of the incentive
compatible inequalities (6) for π′. For all i, ai ∈ Ai, bi ∈ Ai,

Zi(π
′, bi|ai) =

∑

α∈A1×···×An

∑

c∈C

Pi(α|ai)π
′(c|α−i, bi)Ui(c, α)

=
∑

α∈A1×···×An

∑

s∈S1×···×Sn

∑

c∈C

Pi(α|ai) · π(c|s)

· [
n∏

j=1,j 6=i

σj(sj|αj) × σi(si|bi)] · Ui(c, α)

As specified in the left term “Zi(π
′, bi|ai)”, agent i’s type is realized as ai.

Therefore, according to Remark 2, the term “σi(si|bi)” (for all bi ∈ Ai, bi 6= ai)
is actually illegal. Put differently, the incentive compatible inequalities (6) for
π′ is illegal. That is the bug.

Appendix 1: Definitions and proof in Section 8.E [1]

According to page 255 [1], formally, in a Bayesian game, each player i has a
payoff function ui(si, s−i, θi), where θi ∈ Θi is a random variable chosen by
nature that is observed only by player i. The joint probability distribution of
the θi’s is given by F (θ1, · · · , θI), which is assumed to be common knowledge
among the players. Letting Θ = Θ1×· · ·×ΘI , a Bayesian game is summarized
by [I, {Si}, {ui(·)}, Θ, F (·)].

A pure strategy for player i in a Bayesian game is a function si(θi), or decision

rule, that gives the player’s strategy choice for each realization of his type
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θi. Player i’s pure strategy set Si is therefore the set of all such functions.
Player i’s expected payoff given a profile of pure strategies for the I players
(s1(·), · · · , sI(·)) is then given by:

ũi(s1(·), · · · , sI(·)) = Eθ[ui(s1(θ1), · · · , sI(θI), θi)], (8.E.1)

********************************************************************
Remark 1: Following page 148 [3], the timing of a static Bayesian game is as
follows:
Step 1: Nature chooses a type vector θ = (θ̄1, · · · , θ̄I), where θ̄i is the realized

type of agent i;
Step 2: Nature reveals θ̄i to player i but not to any other player;
Step 3: The players simultaneously output (s1(θ̄1), · · · , sI(θ̄I));
Step 4: Each player i receives the payoff ui(s1(θ̄1), · · · , sI(θ̄I), θ̄i).

For each player i = 1, · · · , I, consider his strategy function si(·), then:
1) si(·) is chosen (or controlled) by player i, and is his private information;
2) In a static Bayesian game, player i’s type can be realized as any element of
Θi. The realized type of player i is his private information;
3) The input of si(·) must be a realized type θ̄i in Θi, and the output of si(·) is
si(θ̄i) which is observable to the outside agent (either principal or mediator).
4) Suppose player i’s type has been realized as θ̄i in Step 1, then in Step 3, it
is illegal to let player i output si(θi) for any θi ∈ Θi, θi 6= θ̄i.
********************************************************************

Definition 8.E.1: A (pure strategy) Bayesian Nash equilibrium for the Bayesian
game [I, {Si}, {ui(·)}, Θ, F (·)] is a profile of decision rules (s1(·), · · · , sI(·))
that constitutes a Nash equilibrium of game ΓN = [I, {S }, {ũi(·)}]. That is,
for every i = 1, · · · , I,

ũi(si(·), s−i(·)) ≥ ũi(s
′
i(·), s−i(·))

for all s′i(·) ∈ Si, where ũi(si(·), s−i(·)) is defined as in Eq(8.E.1).

A very useful point to note is that in a (pure strategy) Bayesian Nash equi-
librium each player must be playing a best response to the conditional distri-
bution of his opponents’ strategies for each type that he might end up having.
Proposition 8.E.1 provides a more formal statement of this point.

Proposition 8.E.1: A profile of decision rules (s1(·), · · · , sI(·)) is a Bayesian
Nash equilibrium in Bayesian game [I, {Si}, {ui(·)}, Θ, F (·)] if and only if, for
all i and all θ̄i ∈ Θi occurring with positive probability,

Eθ−i
[ui(si(θ̄i), s−i(θ−i), θ̄i)|θ̄i)] ≥ Eθ−i

[ui(s
′
i, s−i(θ−i), θ̄i)|θ̄i)], (8.E.2)

for all s′i ∈ Si, where the expectation is taken over realizations of the other
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players’ random variables conditional on player i’s realization of his signal θ̄i.

Proof : For necessity, note that if Eq(8.E.2) did not hold for some player i

for some θ̄i ∈ Θi that occurs with positive probability, then player i could
do better by changing his strategy choice in the event he gets realization θ̄i,
contradicting (s1(·), · · · , sI(·)) being a Bayesian Nash equilibrium. In the other
direction, if condition Eq(8.E.2) holds for all θ̄i ∈ Θi occurring with positive
probability, then player i cannot improve on the payoff he receives by playing
strategy si(·). ¤

Appendix 2: Definitions and proof in Section 23.B and 23.D [1]

(P858) Consider a setting with I agents, indexed by i = 1, · · · , I. These
agents make a collective choice from some set X of possible alternatives. Prior
to the choice, each agent i privately observes his type θi that determines his
preferences. The set of possible types for agent i is denoted as Θi. The vector
of agents’ types θ = (θ1, · · · , θI) is drawn from set Θ = Θ1×· · ·×ΘI according
to probability density φ(·). Each agent i’s Bernoulli utility function when he
is of type θi is ui(x, θi).

Definition 23.B.1: A social choice function is a function f : Θ1×· · ·×ΘI →
X that, for each possible profile of the agents’ types (θ1, · · · , θI), assigns a
collective choice f(θ1, · · · , θI) ∈ X.

Definition 23.B.3: A mechanism Γ = (S1, · · · , SI , g(·)) is a collection of I

strategy sets S1, · · · , SI and an outcome function g : S1 × · · · × SI → X.

Definition 23.B.4: The mechanism Γ = (S1, · · · , SI , g(·)) implements social
choice function f(·) if there is an equilibrium strategy profile (s∗1(·), · · · , s∗I(·))
of the game induced by Γ such that g(s∗1(θ1), · · · , s∗I(θI)) = f(θ1, · · · , θI) for
all (θ1, · · · , θI) ∈ Θ1, · · · , ΘI .

Definition 23.B.5: A direct revelation mechanism is a mechanism in which
Si = Θi for all i and g(θ) = f(θ) for all θ ∈ Θ1 × · · · × ΘI .

Definition 23.B.6: The social choice function f(·) is truthfully implementable
(or incentive compatible) if the direct revelation mechanism Γ = (S1, · · · , SI , f(·))
has an equilibrium (s∗1(·), · · · , s∗I(·)) in which s∗i (θi) = θi for all θi ∈ Θi and all
i = 1, · · · , I; that is, if truth telling by each agent i constitutes an equilibrium
of Γ = (S1, · · · , SI , f(·)).

Definition 23.D.1: The strategy profile s∗(·) = (s∗1(·), · · · , s∗I(·)) is a Bayesian

Nash equilibrium of mechanism Γ = (S1, · · · , SI , g(·)) if, for all i and all
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θi ∈ Θi,

Eθ−i
[ui(g(s∗i (θi), s

∗
−i(θ−i)), θi)|θi] ≥ Eθ−i

[ui(g(ŝi, s
∗
−i(θ−i)), θi)|θi]

for all ŝi ∈ Si.

Definition 23.D.2: The mechanism Γ = (S1, · · · , SI , g(·)) implements the
social choice function f(·) in Bayesian Nash equilibrium if there is a Bayesian
Nash equilibrium of Γ, s∗(·) = (s∗1(·), · · · , s∗I(·)), such that g(s∗(θ)) = f(θ) for
all θ ∈ Θ.

Definition 23.D.3: The social choice function f(·) is truthfully implementable
in Bayesian Nash equilibrium if s∗i (θi) = θi (for all θi ∈ Θi and i = 1, · · · , I) is a
Bayesian Nash equilibrium of the direct revelation mechanism Γ = (Θ1, · · · , ΘI , f(·)).
That is, if for all i = 1, · · · , I and all θi ∈ Θi,

Eθ−i
[ui(f(θi, θ−i)), θi)|θi] ≥ Eθ−i

[ui(f(θ̂i, θ−i), θi)|θi], (23.D.1)

for all θ̂i ∈ Θi.

Proposition 23.D.1 (The Revelation Principle for Bayesian Nash Equilib-

rium) Suppose that there exists a mechanism Γ = (S1, · · · , SI , g(·)) that im-
plements the social choice function f(·) in Bayesian Nash equilibrium. Then
f(·) is truthfully implementable in Bayesian Nash equilibrium.

Proof : Since Γ = (S1, · · · , SI , g(·)) implements f(·) in Bayesian Nash equi-
librium, then there exists a profile of strategies s∗(·) = (s∗1(·), · · · , s∗I(·)) such
that g(s∗(θ)) = f(θ) for all θ, and for all i and all θi ∈ Θi,

Eθ−i
[ui(g(s∗i (θi), s

∗
−i(θ−i)), θi)|θi] ≥ Eθ−i

[ui(g(ŝi, s
∗
−i(θ−i)), θi)|θi], (23.D.2)

for all ŝi ∈ Si. Condition (23.D.2) implies that for all i and all θi ∈ Θi,

Eθ−i
[ui(g(s∗i (θi), s

∗
−i(θ−i)), θi)|θi] ≥ Eθ−i

[ui(g(s∗i (θ̂i), s
∗
−i(θ−i)), θi)|θi], (23.D.3)

for all θ̂i ∈ Θi. Since g(s∗(θ)) = f(θ) for all θ, (23.D.3) means that, for all i

and all θi ∈ Θi,

Eθ−i
[ui(f(θi, θ−i), θi)|θi] ≥ Eθ−i

[ui(f(θ̂i, θ−i), θi)|θi], (23.D.4)

for all θ̂i ∈ Θi. But, this is precisely condition (23.D.1), the condition for f(·)
to be truthfully implementable in Bayesian Nash equilibrium. Q.E.D.
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Appendix 3: Definitions and proof in Ref. [2]

The arbitrator’s problem is described by a Bayesian collective choice problem,
an object of the form:

(C, A1, A2, · · · , An, U1, U2, · · · , Un, P ), (1)

The individual members of the group, or players, are numbered 1, 2, · · · , n.
C is the set of choices available to the group. For each player i, Ai is the set
of possible types for player i. Each Ui : C × A1 × · · · × An 7→ R is a utility
function such that each Ui(c, a1, · · · , an) is the payoff which player i would get
if c ∈ C were chosen and if (a1, · · · , an) were the true vector of player types.
P is a probability distribution on A1 ×· · ·×An such that P (a1, · · · , an) is the
probability, as judged by the arbitrator, that (a1, · · · , an) is the true vector of
types for the n players.

For some collection of response sets S1, · · · , Sn, a choice mechanism is defined
as a real-valued function π with a domain of the form C× (S1×· · ·×Sn) such
that:

∑

c′∈C

π(c′|s1, · · · , sn) = 1, and π(c|s1, · · · , sn) ≥ 0 for all c, (2)

for every (s1, · · · , sn) ∈ S1 × · · · × Sn.

Given a choice mechanism π, for any player i and for any ai ∈ Ai and bi ∈ Ai,
let:

Zi(π, bi|ai) =
∑

α∈A1×···×An

∑

c∈C

Pi(α|ai)π(c|α−i, bi)Ui(c, α), (5)

where (α−i, bi) = (α1, · · · , αi−1, bi, αi+1, · · · , αn), Pi(α|ai) = 0 if αi 6= ai.
Zi(π, bi|ai) is the conditionally-expected utility payoff for player i, given that
his type is ai, if he says that his type is bi when π is the choice mechanism
and when all other players are expected to tell the truth.

A choice mechanism π using the standard response sets is said to be Bayesian

incentive compatible if

Zi(π, ai|ai) ≥ Zi(π, bi|ai), for all i, ai ∈ Ai, bi ∈ Ai, (6)

If choice mechanism π is used and if everyone is honest, then player i’s
conditionally-expected payoff when he knows ai is:

Vi(π|ai) = Zi(π, ai|ai), (7)

The allocation of conditionally-expected payoffs associated with mechanism π
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is the vector:

V(π) = (((Vi(π|ai))ai∈Ai
)n
i=1). (8)

This is a vector of
∑n

i=1 |Ai| real numbers, indexed on the disjoint union of the
Ai sets. If the arbitrator could use any choice mechanism and expect honest
responses, then we would define the feasible set of expected allocation vectors
to be:

F = {V(π) : π is a choice mechanism}.

The set of incentive-feasible expected allocation vectors is defined to be:

F ∗ = {V(π) : π is Bayesian incentive compatible}.

A response plan for player i is a function σi mapping each type ai ∈ Ai onto
a probability distribution over his response set Si. That is, if σi is player
i’s response plan, then σi(si|ai) is the probability that player i will tell the
arbitrator si if his true type is ai.

********************************************************************
Remark 2: Like Remark 1, I list the timing of a static Bayesian game as fol-
lows:
Step 1: Nature chooses a type vector (ā1, · · · , ān), where āi is the realized type
of agent i;
Step 2: Nature reveals āi to player i but not to any other player;
Step 3: Player i tells his response si to the arbitrator according to the proba-
bility σi(si|āi). All players tell the arbitrator simultaneously.
Step 4: The arbitrator assigns choice c to all players according to the proba-
bility π(c|s1, · · · , sn).
Step 5: Each player i receives the payoff Ui(c, ā1, · · · , ān).

For each player i = 1, · · · , n, consider his response plan σi(si|·), then:
1) σi(si|·) is chosen (or controlled) by player i, and is his private information;
2) In a static Bayesian game, player i’s type can be realized as any element of
Ai. The realized type of player i is his private information;
3) The input of σi(si|·) must be a realized type āi in Ai, and the output of
σi(si|·) is the probability that player i will tell the arbitrator si if his true type
is āi.
4) Suppose player i’s type has been realized as āi in Step 1, then in Step 3, it is
illegal to let player i act using another response plan σi(si|bi) for any bi ∈ Ai,
bi 6= āi.
********************************************************************

If (σ1, · · · , σn) lists the players’ response plans for the choice mechanism π,
and if player i knows that ai is his true type, then player i’s expected utility

7



payoff is:

Wi(π, σ1, · · · , σn|ai) =
∑

α∈A1×···×An

∑

s∈S1×···×Sn

∑

c∈C

Pi(α|ai)

· (
n∏

j=1

σj(sj|aj)) · π(c|s) · Ui(c, α). (12)

The vector of conditionally-expected payoffs generated by (σ1, · · · , σn) is:

W(π, σ1, · · · , σn) = (((Wi(π, σ1, · · · , σn|ai))ai∈Ai
)n
i=1). (13)

This is a vector with
∑n

i=1 |Ai| components, indexed on the disjoint union of the
Ai sets, like the V(π). We say that (σ1, · · · , σn) is a response-plan equilibrium

for the choice mechanism π if, for any player i and type ai ∈ Ai, for every
possible alternative response plan σ′

i for player i:

Wi(π, σ1, · · · , σn|ai) ≥ Wi(π, σ1, · · · , σi−1, σ
′
i, σi+1, · · · , σn|ai). (14)

The set of equilibrium-feasible expected allocation vectors is defined to be:

F ∗∗ = {W(π, σ1, · · · , σn) : π is a choice mechanism, and

(σ1, · · · , σn) is a response-plan equilibrium for π}. (15)

Theorem 2: F ∗∗ = F ∗.
Proof : If (σ1, · · · , σn) is a response-plan equilibrium for a mechanism π on
S1, · · · , Sn, then we can define an equivalent choice mechanism π′ on A1, · · · , An

by:

π′(c|α) =
∑

s∈S1×···×Sn

π(c|s) · (
n∏

i=1

σi(si|αi)).

It is easy to check that V(π′) = W(π, σ1, · · · , σn), so that the allocations gen-
erated are the same. Furthermore, the equilibrium inequalities (14) for π imply
the incentive compatible inequalities (6) for π′. Thus x = W(π, σ1, · · · , σn) ∈
F ∗∗ implies x = V(π′) ∈ F ∗. So F ∗∗ ⊆ F ∗. I omit the rest of proof.
Q.E.D.
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