MPRA

Munich Personal RePEc Archive

Completing correlation matrices of
arbitrary order by differential evolution
method of global optimization: A
Fortran program

Mishra, SK

North-Eastern Hill University, Shillong (India)

5 March 2007

Online at https://mpra.ub.uni-muenchen.de/31282/
MPRA Paper No. 31282, posted 06 Jun 2011 07:45 UTC

Completing Correlation Matrices of Arbitrary Order by
Differential Evolution Method of Global Optimization: A Fortran Program

SK Mishra

Dept. of Economics
North-Eastern Hill University
Shillong (India)

Introduction: A product moment correlation matrix R of order n is a (square)

symmetric positive semi-definite matrix such that 7, =r, € Rlies between —1 and 1.

Moreover, r, =1. Each 7, is the cosine of angle 6 between two variates, say x, and
X5 i,je {1,2,...,n}. Such matrices have many applications, particularly in marketing and

financial economics as reflected in the works of Chesney and Scott (1989), Heston
(1993), Schobel and Zhu (1999), Tyagi and Das (1999), Xu and Evers (2003), etc. The
need to forecast demand for a group of products in order to realize savings by properly
managing inventories requires the use of correlation matrices (Budden et al. 2007).

In some cases, the matrix available to the analyst/decision-maker is complete, but
it is an invalid (not positive semi-definite) correlation matrix. There could be many
reasons that give rise to such invalid matrices (Mishra, 2004). In such cases, the problem
is to obtain an approximate semi-definite correlation matrix, which, in some sense, is
closest to the given invalid matrix. A number of methods have been developed to obtain
such nearest correlation matrices. The works of Rebonato and Jickel (1999), Higham
(2002), Anjos et al. (2003), Pietersz and Groenen (2004), Grubisic and Pietersz (2004)
and Mishra (2004) are some of them.

In many cases, however, due to paucity of data/information or dynamic nature of
the problem at hand, it is not possible to obtain a complete correlation matrix. Some
elements of R are unknown. In such cases, the question of validity (semi-definiteness) or
otherwise (of an incomplete correlation matrix) does not arise. Instead, the problem is to
obtain a valid complete correlation matrix. In absence of sufficient side conditions that
are often impracticable to specify, this problem cannot be solved uniquely.

Several methods have been suggested to complete a correlation matrix - that is to
obtain a valid complete correlation matrix from an incomplete correlation matrix (some
of whose elements are unknown). Works of Johnson (1980), Barett et al. (1989), Helton
et al. (1989), Grone et al. (1984), Barett et al. (1998), Laurent (2001), Kahl and Jickel
(2005), Kahl and Giinther (2005), etc are notable.

In view of non-unique solutions admissible to the problem of completing the
correlation matrix, some authors have suggested numerical methods that provide ranges
to different unknown elements. Stanley and Wang (1969), Glass and Collins (1970) and
Olkin (1981) have suggested very efficient methods to find such ranges for the unknown
elements of very small correlation matrices (of order n <4). Budden (2007) suggests a
method to obtain the ranges of missing values of elements of a 4x4 incomplete
correlation matrix whose first row elements are known. With the known elements in the

first row, the method sets the range for r,, and one has to specify its value in that range.
Once the value of r,; is chosen (within the specified range set for it), the method yields
the range in which r,, would lie. One has to specify the value of r,, within the given
range, which yields the range for r,,. Thus the matrix is completed. In this procedure it is

obvious that the ranges on latter elements are contingent upon the choice of values of
former elements. Further, Budden’s method is limited to a 4 x4 correlation matrix.

Objective of the Present Paper: Our objective in this paper is to suggest a method (and
provide a Fortran program) that completes a given incomplete correlation matrix of an
arbitrary order. The resulting complete matrices are many in number, but all of them are
valid (positive semi-definite — with all non-negative eigenvalues). Additionally, the
suggested method does not require any pre-assigned pattern as in case of Budden’s
method. It allows for holes (unknown elements) in any row and any column. The
program that works out such complete matrices does not require any interaction with the
user either.

The Method: The method proposed here is based on the Differential Evolution (DE)
procedure of global optimization (Storn and Price, 1995). It generates a random
population of elements that fit the holes (min number) in the given incomplete
correlation matrix, yielding valid correlation matrices whose eigenvalues are all non-
negative summing up to the order of the matrix, which is also the trace of the matrix.

The differential Evolution method is perhaps the fastest evolutionary
computational procedure yielding most accurate solutions to continuous global
optimization problems. It consists of three basic steps: (i) generation of (large enough)
population with individuals in the m-dimensional space, randomly distributed over the
entire domain of the function in question and evaluation of the individuals of the so
generated by finding f(x), where x is the decision variable; (ii) replacement of this current
population by a better fit new population, and (iii) repetition of this replacement until
satisfactory results are obtained or certain criteria of termination are met.

The strength of DE lays on replacement of the current population by a new
population that is better fit. Here the meaning of ‘better’ is in the Pareto improvement
sense. A set S, is better than another set Sy iff : (i) no x; €S, is inferior to the
corresponding member of Xje Sy ; and (ii) at least one member xi € S, is better than the
corresponding member xyxe Sy. Thus, every new population is an improvement over the
earlier one. To accomplish this, the DE method generates a candidate individual to
replace each current individual in the population. A crossover of the current individual
and three other randomly selected individuals obtains the candidate individual from the
current population. The crossover itself is probabilistic in nature. Further, if the candidate
individual is better fit than the current individual, it takes the place of the current
individual else the current individual passes into the next iteration (Mishra, 2006).

In the present application of DE, the ‘complete correlation problem’ is cast into a
minimization problem. It may be noted that the problem has innumerably many minima

and we need multiple solutions. Such problems cannot be solved satisfactorily by
conventional optimization procedures. A stochastic population method such as DE or
PSO (Particle Swarm Optimization) may, therefore, be a suitable choice. In the scheme of
DE, a population of N individuals (each represented by a m —dimensional vector, of
which each element lies between —1 and 1) is generated by using uniformly distributed
random numbers whose each vector provides the candidate values filling in the
m number of holes (unknown elements) of the given incomplete matrix. The eigenvalues
of the resulting matrices are computed and positive penalties are set if any of them is
negative. Minimization of this formulation results into zero penalty, and the solution so
obtained yields a valid correlation matrix. Since each individual in the population has
gravitational pull to the global optimum, it corresponds to a valid correlation matrix.
Thus, we obtain N number of valid correlation matrices.

The Structure of Computer Program and Hints on its Use: The main program (in
Fortran) to complete a correlation matrix has eight subroutines. The main program reads
the input matrix from a file specified by the user. This file stores the main diagonal and
upper diagonal elements of the given matrix. Thus the first row has n elements
beginning with 1.0; the second row has n—1 elements beginning with 1.0 and so on such

that the last (n”) row has only one element (=1.0). In making the input matrix file one
has to indicate the known and the unknown elements differently. While the known
elements naturally lie between —1 and 1 they are put as they really are. However, a
number lying beyond the range [—1, 1] represents an unknown element. The value could
be any number such as 2, -3, 1.5, etc that cannot be a correlation coefficient. For
example, if r is known to be 0.73, say, it will be put as 0.73, but if r is unknown it may

be represented by a number, say 2.0 or —1.9 and so on. A number outside the range [-1,1]
indicates that it is a hole or an unknown correlation coefficient. When the program runs,
it asks for the order of input matrix (morder) and the name of input data file in which the
input matrix is already stored. The user has to specify them. The program also asks to
name the output file in which the final results (valid correlation matrices) would be
stored. The user should specify it. Then the program asks for a random number seed. Any
4-digit odd number (say 1271) can be fed as a seed. Subsequently, the program asks for
the number of unknown elements (m) in the input matrix. This also has to be given by the
user. The main program calls subroutine DE (differential Evolution optimizer). It asks for
inputs from the user; the population size (N) and the number of iteration to be performed.
The population size determines the number of valid matrices to be obtained as output. It
should be normally 100 or so, but for larger problems, this number should be larger. The
number of iterations should be specified at 1000 or larger. Then the program needs
another random number seed that could be any 4-digit odd number. Once these inputs are
given, DE starts running.

Other subroutines in the program are: Normal (generates normally distributed
random numbers), Random (generates uniformly distributed random numbers between 0
and 1), Fselect (chooses a function), Func (organizes function calls), Eigen (computes
eigenvalues and vectors), Concor (constructs correlation matrices for optimization) and
Ncorx (constructs valid correlation matrices and stores them in the output file specified
by the user). The output file may be opened in notepad or by any editor program (edit or

Microsoft Word of Microsoft Windows) to obtain the results. The source codes (Fortran
programs) are appended here. Directly usable source codes that may be cut and pasted in
an editor may be downloaded from http://wwwl.webng.com/economics/complete-
cormat.txt or http://www.freewebs.com/nehu_economics/complete-cormat.txt. A Fortran
compiler may be obtained from http://www.thefreecountry.com/compilers/fortran.shtml
or http://www.download.com/Force/3000-2069_4-10233344.html freely. The source
codes may be pasted in the Force editor directly. Presently, the dimensions in the
program are set to deal with the matrices of order 10 or less. If needed, they may be
increased suitably for larger matrices.

An Example: An incomplete matrix of order 7 (=morder =n) given in table-1 is used as
an example to illustrate an application of the method and program given in this paper. It
has 12 (=m) holes or unknown elements (colored red). They have been assigned an
invalid number (5), outside the permissible rang [-1, 1]. Other numbers in the range [-1,
1] are known elements of the matrix. The program is run for population size N=100 and it
gives N valid correlation matrices. Two sample matrices from the output are given in
table-2 and table-3. The program also gives the eigenvectors for each valid correlation
matrix, but they are not presented here.

Table-1. Input Correlation Matrix with Some Unknown Elements

1.00 -0.50 0.50 -0.50 0.56 0.21 0.34

1.00 5.00 5.00 5.00 0.30 0.16

1.00 5.00 5.00 5.00 0.89

1.00 5.00 5.00 5.00

1.00 5.00 5.00

1.00 5.00

1.00

Table-2. Sample Output Correlation Matrix and its Eigenvalues

.0000000-0.
.5000000 1.
.5000000-0.
.5000000 O.
.5600000-0.
.2100000 O.
.3400000 0.

EIGENVALUES,

2.
7.

6161856 1.
0000000 O.

5000000 O.
0000000-0.
0285722 1.
1840863-0.
0967958 0.
3000000 O.
1600000 O.

0134378

5000000-0.
0285722 0.
0000000-0.
0249011 1.
3674891 0.
1476330-0.
8900000-0.
SUM AND PRODUCT OF
5874846 1.1577154 1.

5000000 O.
1840863-0.
0249011 O
0000000
0894851
0430459
0959958 0.

o~ O

5600000 O.
0967958 0.

.3674891 0.
.0894851-0.
.0000000 O.
.2641564 1.

2404028 0.

EIGENVALUES

0120181 O.

4686504 0.

2100000 O.
3000000 0.
1476330 O.
0430459-0.
2641564 0.
0000000 O.
0415002 1.

0975220 0.

3400000
1600000
8900000
0959958
2404028
0415002
0000000

0604239

Table-3

Sample Output Correlation Matrix and its Eigenvalues

.0000000-0.
.5000000 1.
.5000000 0.
.5000000-0.
.5600000-0.
.2100000 O.
.3400000 0.

EIGENVALUES,

2.4707041 1.6609468 1.1648713 1.

5000000 O.
0000000 O.
0784965 1.
0162682-0.
3235212 0.
3000000 O.
1600000 O.

5000000-0.
0784965-0.
0000000-0.
1237942 1.
1573758-0.
0478572 0.
8900000-0.

SUM AND PRODUCT OF

7.0000000 0.0037623

5000000 O.
0162682-0.
1237942 0.
0000000-0.
0030405 1.
0628510 0.
0986661 O.

5600000
3235212
1573758
0030405
0000000
0528261
0727079-0.

P O O OO Oo

EIGENVALUES

0422329 0.

5538390 0.

.2100000 O.
.3000000 0.
.0478572 0.
.0628510-0.
.0528261 0.
.0000000-0.

0683791 1.

0926969 0.

3400000
1600000
8900000
0986661
0727079
0683791
0000000

0147091

Conclusion: The method (and the program) given here has an advantage over other
algorithms due to its ability to present a scenario of valid correlation matrices that might
be obtained from a given incomplete matrix of an arbitrary order. The analyst may
choose some particular matrices, most suitable to his purpose, from among those output
matrices. Further, unlike other methods, it has no restriction on the distribution of holes
over the entire matrix, nor the analyst has to interactively feed elements of the matrix
sequentially (as in Budden’s scheme) which might be quite inconvenient for larger
matrices. It is flexible and by merely choosing larger population size (N) one might
obtain a more exhaustive scenario of valid matrices. As the number of holes increases,
the program takes longer time no doubt, but for smaller number of holes it takes a small
time even if the input matrix is quite large. This is a special advantage of this method.

References

e Anjos, MF, NJ Higham, PL Takouda and H Wolkowicz (2003) “A Semidefinite
Programming Approach for the Nearest Correlation Matrix Problem”, Preliminary
Research Report, Dept. of Combinatorics & Optimization, Waterloo, Ontario.

e Barett, WW, Johnson, CR and Lundquist, M (1989). “Determinantal Formulae for Matrix
Completions Associated with Chordal Graphs”. Linear Algebra and its Applications,
121:265-289.

e Barrett, WW, Johnson, CR and Loewy, R (1998). “Critical Graphs for the Positive
Definite Completion Problem”. SIAM Journal of Matrix Analysis and Applications,
20:117-130.

e Budden, M, Hadavas, P, Hoffman, L and Pretz, C (2007) “Generating Valid 4 x 4
Correlation Matrices”, Applied Mathematics E-Notes, 7:53-59.

e Chesney, M and Scott, L (1989). “Pricing European Currency Options: A Comparison of
the Modified Black-Scholes Model and a Random Variance Model”. Journal of
Financial and Quantitative Analysis, 24:267-284.

e (lass, G and Collins, J (1970) “Geometric Proof of the Restriction on the Possible Values
of rxy when rxz and ryx are Fixed”, Educational and Psychological Measurement,
30:37-39.

e Grone, R, Johnson, CR, Sa, EM and Wolkowicz, H (1984).” Positive Definite
Completions of Partial Hermitian Matrices”. Linear Algebra and its Applications,
58:109-124.

e QGrubisic, I and R Pietersz (2004) “Efficient Rank Reduction of Correlation Matrices”,
Working Paper Series, SSRN, http://ssrn.com/abstract=518563

e Helton, JW, Pierce, S and Rodman, L (1989). “The Ranks of Extremal Positive
Semidefinite Matrices with given Sparsity Pattern”. SIAM Journal on Matrix Analysis
and its Applications, 10:407-423.

e Heston, SL (1993). “A Closed-form Solution for Options with stochastic Volatility with
Applications to Bond and Currency Options”. The Review of Financial Studies, 6:327—
343,

e Higham, NJ (2002). “Computing the Nearest Correlation Matrix — A Problem from
Finance”, IMA Journal of Numerical Analysis, 22, pp. 329-343.

e Johnson, C (1990). “Matrix Completion Problems: A Survey”. Matrix Theory and
Applications, 40:171-198.

e Kabhl, C and Giinther, M (2005). “Complete the Correlation Matrix”. http://www.math.uni-
wuppertal.de/~kahl/publications/Complete TheCorrelationMatrix.pdf

Kahl, C and Jickel, P (2005). “Fast Strong Approximation Monte-Carlo Schemes for
Stochastic Volatility Models”. Working paper, http://www.math.uni-
wuppertal.de/_kahl/publications.html.

Laurent, M (2001). “Matrix Completion Problems”. The Encyclopedia of Optimization,
3:221-229.

Marsaglia, G. and Olkin, I (1984). “Generating Correlation Matrices”. SIAM Journal on Scientific
and Statistical Computing, 5(2):470-475.

Mishra, SK (2004) “Optimal Solution of the Nearest Correlation Matrix Problem by
Minimization of the Maximum Norm". http://ssrn.com/abstract=573241

Mishra, SK (2006) “Global Optimization by Differential Evolution and Particle Swarm
Methods: Evaluation on Some Benchmark Functions”. http://ssrn.com/abstract=933827
Olkin, I (1981) “Range Restrictions for Product-Moment Correlation Matrices”,
Psychometrika, 46:469-472.

Pietersz, R and PJF Groenen (2004) “Rank Reduction of Correlation Matrices by
Majorization”, Econometric Institute Report EI 2004-11, Erasmus Univ. Rotterdam.
Rebonato, R and P Jickel (1999) “The Most General Methodology to Create a Valid
Correlation Matrix for Risk Management and Option Pricing Purposes”, Quantitative
Research Centre, NatWest Group, http://www.rebonato.com/CorrelationMatrix.pdf

Schobel, R and Zhu, J (1999). “Stochastic Volatility With an Ornstein Uhlenbeck
Process: An Extension”. European Finance Review, 3:23—46, ssrn.com/abstract=100831.
Stanley, J and Wang, M (1969) “Restrictions on the Possible Values of r12, given r13
and r23” , Educational and Psychological Measurement, 29, pp.579-581.

Storn, R and Price, K (1995) "Differential Evolution - A Simple and Efficient Adaptive
Scheme for Global Optimization over Continuous Spaces": Technical Report,
International Computer Science Institute, Berkley.

Tyagi, R and Das, C (1999) “Grouping Customers for Better Allocation of Resources to
Serve Correlated Demands”, Computers and Operations Research, 26:1041-1058.

Xu, K and Evers, P (2003) “Managing Single Echelon Inventories through Demand
Aggregation and the Feasibility of a Correlation Matrix”, Computers and Operations
Research, 30:297-308.

NnOonNnNnNNnNnN

NN NNnnNnnN [aXeXe!

Nn NN N

complete-cormat
MAIN PROGRAM : GENERATE A SEMIPOSITIVE CORRELATION MATRIX FROM
A GIVEN CORRELATION MATRIX WITH SOME KNOWN ELEMENTS

ADJUST THE PARAMETERS SUITABLY IN SUBROUTINES DE
WHEN THE PROGRAM ASKS FOR PARAMETERS, FEED THEM SUITABLY
MAIN PROGRAM

IMPLICIT DOUBLE PRECISION (A-H, 0-2)
CHARACTER *70 INFILE,OUTFIL
COMMON /XBASE/XBAS
COMMON /RNDM/IU,IV ! RANDOM NUMBER GENERATION (IU = 4-DIGIT SEED)
COMMON /NEAREST/Z,MORDER
DIMENSION z(10,10) ! THE INPUT CORRELATION MATRIX
INTEGER IU,IV
DIMENSION XBAS(500,50)
DIMENSION X(50)! X IS THE DECISION VARIABLE X IN F(X) TO MINIMIZE
M IS THE DIMENSION OF THE PROBLEM, KF IS TEST FUNCTION CODE AND
FMIN IS THE MIN VALUE OF F(X) OBTAINED FROM DE
————— = CONSTRUCTION OF VALID CORRELATION MATRIX ======'
====== OPTIMIZATION BY DIFFERENTIAL EVOLUTION ========'
WRITE(*,*) 'ORDER OF INPUT MATRIX (MORDER)& NAME OF INPUT FILE ?'
READ(*,*) MORDER,INFILE
WRITE(*,*)'SPECIFY THE OUTPUT FILE TO STORE VALID OUTPUT MATRICES'
READ(*,*) OUTFIL
READ THE GIVEN CORRELATION MATRIX (UPPER DIAGONAL ONLY)
OPEN(7,FILE=INFILE) ! OPEN INPUT FILE AND READ THE MATRIX
DO I=1,MORDER
READ(7,*)(z(x,3),3=I,MORDER)
write(*,*)(z(1,3),J=I,MORDER)

ENDDO

CLOSE(7)

WRITE(*,*)"' WARNING !
WRITE(*,*)'ADJUST PARAMETERS IN SUBROUTINES DE SUBROUTINE'
WRITE(*,*)"' WARNING !

INITIALIZATION. THIS XBAS WILL BE USED IN PROGRAMS TO
INITIALIZE THE POPULATION.

WRITE(*,*)" '

WRITE(*,*)'FEED RANDOM NUMBER SEED [4-DIGIT ODD INTEGER] TO BEGIN'
READ(*,*) IU

THIS XBAS WILL BE USED IN ALL THE THREE METHODS AS INITIAL X
DO I=1,500

DO J=1,50

CALL RANDOM(RAND)

XBAS(I,J)=(RAND-0.5D00)*2 ! RANDOM NUMBER BETWEEN (-1, 1)
ENDDO

ENDDO

WRITE(* *)' T e e e e e e e e e NN
’

WRITE(*,*)'TO PROCEED TYPE ANY CHARACTER AND STRIKE ENTER'
READ(*,*) PROCEED
CALL DE(M,X,FMINDE) ! CALLS DE AND RETURNS OPTIMAL X AND FMIN
CALL NCORX(X,M,OQUTFIL)
WRITE(*,*)'PROGRAM ENDED, FOR RESULTS OPEN OUTPUT FILE ',OUTFIL

WRITE(* *)'**'
’

END

Page 1

nOoNnnNnNOnNNNN NN 0nnnnNnnN nOonNnnNnnnNnnNn N

NN

[aXeXe!

complete-cormat
SUBROUTINE DE(M,A,FBEST)
PROGRAM: "DIFFERENTIAL EVOLUTION ALGORITHM" OF GLOBAL OPTIMIZATION
THIS METHOD WAS PROPOSED BY R. STORN AND K. PRICE IN 1995. REF --
"DIFFERENTIAL EVOLUTION - A SIMPLE AND EFFICIENT ADAPTIVE SCHEME
FOR GLOBAL OPTIMIZATION OVER CONTINUOUS SPACES" : TECHNICAL REPORT
INTERNATIONAL COMPUTER SCIENCE INSTITUTE, BERKLEY, 1995.
PROGRAM BY SK MISHRA, DEPT. OF ECONOMICS, NEHU, SHILLONG (INDIA)
PROGRAM DE
IMPLICIT DOUBLE PRECISION (A-H, 0-Z) ! TYPE DECLARATION
PARAMETER (NMAX=500,MMAX=50) ! MAXIMUM DIMENSION PARAMETERS
PARAMETER (RX1=1.d0, RX2=0.d0) ! TO BE ADJUSTED SUITABLY, IF NEEDED
RX1 AND RX2 CONTROL THE SCHEME OF CROSSOVER. (0 <= RX1l <= RX2) <=1
RX1 DETERMINES THE UPPER LIMIT OF SCHEME 1 (AND LOWER LIMIT OF
SCHEME 2; RX2 IS THE UPPER LIMIT OF SCHEME 2 AND LOWER LIMIT OF
SCHEME 3. THUS RX1 = .2 AND RX2 = .8 MEANS 0-20% SCHEME1l, 20 TO 80
PERCENT SCHEME 2 AND THE REST (80 TO 100 %) SCHEME 3.
PARAMETER(NCROSS=2) ! CROSS-OVER SCHEME (NCROSS <=0 OR =1 OR =>2)
PARAMETER (IPRINT=500,EPS=1.D-08) | FOR WATCHING INTERMEDIATE RESULTS
IT PRINTS THE INTERMEDIATE RESULTS AFTER EACH IPRINT ITERATION AND
EPS DETERMINES ACCURACY FOR TERMINATION. IF EPS= 0, ALL ITERATIONS
WOULD BE UNDERGONE EVEN IF NO IMPROVEMENT IN RESULTS IS THERE.
ULTIMATELY "DID NOT CONVERGE" IS REOPORTED.
COMMON /RNDM/IU,IV ! RANDOM NUMBER GENERATION (IU = 4-DIGIT SEED)
INTEGER IU,IV ! FOR RANDOM NUMBER GENERATION
COMMON /XBASE/XBAS
common /nfcal/nfcall
CHARACTER *70 FTIT ! TITLE OF THE FUNCTION
CHARACTER *15 CFIL !OUTPUT FILE
THE PROGRAM REQUIRES INPUTS FROM THE USER ON THE FOLLOWING ------
(1) FUNCTION CODE (KF), (2) NO. OF VARIABLES IN THE FUNCTION (M);
(3) N=POPULATION SIZE (SUGGESTED 10 TIMES OF NO. OF VARIABLES, M,
FOR SMALLER PROBLEMS N=100 WORKS VERY WELL);
(4) PCROS = PROB. OF CROSS-OVER (SUGGESTED : ABOUT 0.85 TO .99);
(5) FACT = SCALE (SUGGESTED 0.5 TO .95 OR 1, ETC);
(6) ITER = MAXIMUM NUMBER OF ITERATIONS PERMITTED (5000 OR MORE)
(7) RANDOM NUMBER SEED (4 DIGITS INTEGER)
DIMENSION X(NMAX,MMAX),Y (NMAX,MMAX) ,A(MMAX) , FV(NMAX)
DIMENSION IR(3),XBAS(500,50)
——————— SELECT THE FUNCTION TO MINIMIZE AND ITS DIMENSION -------
CALL FSELECT(KF,M,FTIT)
CFIL='"CORRESULTS'! IT IS AN INTERMEDIATE FILE
SPECIFY OTHER PARAMETERS === === == oo e e
WRITE(*,*) 'POPULATION SIZE [N] AND NO. OF ITERATIONS [ITER] ?'
WRITE(*,*) 'SUGGESTED: N=>100 OR =>10.M; ITERATION 500 OR LARGER'
READ(*,*) N,ITER
WRITE(*,*)'CROSSOVER PROBABILITY [PCROS] AND SCALE [FACT] ?'
WRITE(*,*)'SUGGESTED : PCROS ABOUT 0.9; FACT=.5 OR LARGER BUT <=1’
READ(*,*) PCROS, FACT
PCROS=0.9d0
FACT=0.5d0
WRITE(*,*) 'RANDOM NUMBER SEED ?'
WRITE(*,*)'A FOUR-DIGIT POSITIVE ODD INTEGER, SAY, 1171'
READ(*,*) IU

NFCALL=0 ! INITIALIZE COUNTER FOR FUNCTION CALLS
GBEST=1.D30 ! TO BE USED FOR TERMINATION CRITERION
INITIALIZATION : GENERATE X(N,M) RANDOMLY

DO I=1,N

Page 2

complete-cormat
DO J=1,M
CALL RANDOM(RAND) ! GENERATES INITION X WITHIN
X(I,3)=(RAND-.5D00)*2000 ! GENERATES INITION X WITHIN
RANDOM NUMBERS BETWEEN -RRANGE AND +RRANGE (BOTH EXCLUSIVE)
X(I,3)=XBAS(I,J)! TAKES THESE NUMBERS FROM THE MAIN PROGRAM
ENDDO
ENDDO
WRITE(*,*) 'COMPUTING --- PLEASE WAIT '
IPCOUNT=0
DO 100 ITR=1,ITER ! ITERATION BEGINS
EVALUATE ALL X FOR THE GIVEN FUNCTION
DO I=1,N
DO J=1,M
A()=x(1,1)
ENDDO
CALL FUNC(A,M,F)
STORE FUNCTION VALUES IN FV VECTOR
FV(I)=F
ENDDO

[aXeXe!

NN

@]

FIND THE FITTEST (BEST) INDIVIDUAL AT THIS ITERATION
FBEST=FV(1)
KB=1
DO IB=2,N
IF(FV(IB).LT.FBEST) THEN
FBEST=FV(IB)
KB=IB
ENDIF
ENDDO
BEST FITNESS VALUE = FBEST : INDIVIDUAL X(KB)
GENERATE OFFSPRINGS
DO I=1,N | I LOOP BEGINS
INITIALIZE CHILDREN IDENTICAL TO PARENTS; THEY WILL CHANGE LATER
DO J=1,M
Y(I,3)=X(1,3)
ENDDO
C SELECT RANDOMLY THREE OTHER INDIVIDUALS
20 DO IRI=1,3 ! IRI LOOP BEGINS
IR(IRI)=0

NN

N NNnnN

CALL RANDOM(RAND)
IRJ=INT(RAND*N)+1
C CHECK THAT THESE THREE INDIVIDUALS ARE DISTICT AND OTHER THAN I
IF(IRI.EQ.1.AND.IRJ.NE.I) THEN
IR(IRI)=IR]
ENDIF
IF(IRI.EQ.2.AND.IRJ.NE.I.AND.IRJ.NE.IR(1)) THEN
IR(IRI)=IR]
ENDIF
IF(IRI.EQ.3.AND.IRJ.NE.I.AND.IRJ.NE.IR(1).AND.IRJ.NE.IR(2)) THEN
IR(IRI)=IR]

ENDIF
ENDDO ! IRI LOOP ENDS
C CHECK IF ALL THE THREE IR ARE POSITIVE (INTEGERS)
DO IX=1,3

IF(IR(IX).LE.O) THEN
GOTO 20 ! IF NOT THEN REGENERATE
ENDIF
ENDDO
C THREE RANDOMLY CHOSEN INDIVIDUALS DIFFERENT FROM I AND DIFFERENT

Page 3

[aXeXe!

NN

nNOnNN

nNONnN

complete-cormat
FROM EACH OTHER ARE IR(1),IR(2) AND IR(3)
RANDOMIZATION OF NCROSS

RANDOMIZES NCROSS

NCROSS=0

CALL RANDOM(RAND)

IF(RAND.GT.RX1) NCROSS=1 ! IF RX1=>1, SCHEME 2 NEVER IMPLEMENTED
IF(RAND.GT.RX2) NCROSS=2 ! IF RX2=>1, SCHEME 3 NEVER IMPLEMENTED

—————————————————————— SCHEME 1 --------—-—— e~
NO CROSS OVER, ONLY REPLACEMENT THAT IS PROBABILISTIC
IF(NCROSS.LE.Q) THEN
DO J=1,M ! J LOOP BEGINS
CALL RANDOM(RAND)
IF(RAND.LE.PCROS) THEN ! REPLACE IF RAND < PCROS
A(3)=X(IR(1),I)+(X(IR(2),I)-X(IR(3),I))*FACT ! CANDIDATE CHILD
ENDIF
ENDDO ! J LOOP ENDS
ENDIF

——————————————————————— SCHEME 2 —=-====———————— oo
THE STANDARD CROSSOVER SCHEME
CROSSOVER SCHEME (EXPONENTIAL) SUGGESTED BY KENNETH PRICE IN HIS
PERSONAL LETTER TO THE AUTHOR (DATED SEPTEMBER 29, 2006)
IF(NCROSS.EQ.1) THEN

CALL RANDOM(RAND)

JR=INT (RAND*M)+1

J=IJR
A(J)ix(IR(1),J)+FACT*(X(IR(2),J)—X(IR(3),J))
J=J+
IF(J.GT.M) J1=1
IF(J.EQ.JR) GOTO 10
CALL RANDOM(RAND)
IF(PCROS.LE.RAND) GOTO 2
A()=X(1,d)
J=J+1
IF(J.GT.M) J1=1
IF (J.EQ.JR) GOTO 10
GOTO 6
CONTINUE
ENDIF
———————————————————————— SCHEME 3 ———————————— e
ESPECIALLY SUITABLE TO NON-DECOMPOSABLE (NON-SEPERABLE) FUNCTIONS
CROSSOVER SCHEME (NEW) SUGGESTED BY KENNETH PRICE IN HIS
PERSONAL LETTER TO THE AUTHOR (DATED OCTOBER 18, 2006)
IF(NCROSS.GE.2) THEN
CALL RANDOM(RAND)
IF(RAND.LE.PCROS) THEN
CALL NORMAL (RN)
DO J=1,M
A(D)=X(T,D+XAR),1D+ X(IR(2),3)-2*X(T,I))*RN
ENDDO
ELSE
DO J=1,M
A()=X(T,)+X(IR(),3)- X(IR(2),3))! FACT ASSUMED TO BE 1
ENDDO
ENDIF
ENDIF
CALL FUNC(A,M,F) ! EVALUATE THE OFFSPRING
IF(F.LT.FV(I)) THEN ! IF BETTER, REPLACE PARENTS BY THE CHILD
FV(I)=F
DO J=1,M
Y(I,3)=AC3)

Page 4

nonNnnnnnnnOnNNn N

complete-cormat
ENDDO
ENDIF
ENDDO ! T LOOP ENDS
DO I=1,N
DO J=1,M
X(I,3)=Y(I,]) ! NEW GENERATION IS A MIX OF BETTER PARENTS AND
BETTER CHILDREN
ENDDO
ENDDO
IPCOUNT=IPCOUNT+1
IF(IPCOUNT.EQ.IPRINT) THEN
DO J=1,M
A(3)=X(KB,J)
ENDDO
WRITE(*,*) (X(KB,3),31=1,M)," FBEST UPTO NOW = ',FBEST
WRITE(*,*) '"TOTAL NUMBER OF FUNCTION CALLS =',6NFCALL
IF(DABS(FBEST-GBEST) .LT.EPS) THEN
WRITE(*,*) FTIT
WRITE(*,*) 'COMPUTATION OVER'
GOTO 999
ELSE
GBEST=FBEST
ENDIF
IPCOUNT=0
ENDIF

100 ENDDO ! ITERATION ENDS : GO FOR NEXT ITERATION, IF APPLICABLE
WRITE(*,*) 'DID NOT CONVERGE. REDUCE EPS OR RAISE ITER OR DO BOTH'
WRITE(*,*) "INCREASE N, PCROS, OR SCALE FACTOR (FACT)'

999 OPEN(7,FILE=CFIL)

WRITE(7,*) N

DO I=1,N

WRITE(7,*)(X(T,3),3=1,M),FV(I)

ENDDO

CLOSE(7)

RETURN

END

SUBROUTINE NORMAL (R)

PROGRAM TO GENERATE N(0,1) FROM RECTANGULAR RANDOM NUMBERS

IT USES BOX-MULLER VARIATE TRANSFORMATION FOR THIS PURPOSE.

————— BOX-MULLER METHOD BY GEP BOX AND ME MULLER (1958) ---------
BOX, G. E. P. AND MULLER, M. E. "A NOTE ON THE GENERATION OF
RANDOM NORMAL DEVIATES." ANN. MATH. STAT. 29, 610-611, 1958.

IF Ul AND U2 ARE UNIFORMLY DISTRIBUTED RANDOM NUMBERS (0,1),

THEN X=[(-2*LN(ul))**.5]*(cos(2*PI*uU2) IS N(0,1)

ALSO, X=[(-2*LNQUL))**.5]*(SIN(2*PI*U2) IS N(O0,1)

PI = 4*ARCTAN(1.0)= 3.1415926535897932384626433832795

2*PI = 6.283185307179586476925286766559

IMPLICIT DOUBLE PRECISION (A-H,0-Z2)

COMMON /RNDM/IU,IV

INTEGER IU,IV

CALL RANDOM(RAND) ! INVOKES RANDOM TO GENERATE UNIFORM RAND [0, 1]
Ul=RAND ! Ul IS UNIFORMLY DISTRIBUTED [0, 1]

CALL RANDOM(RAND) ! INVOKES RANDOM TO GENERATE UNIFORM RAND [0, 1]
U2=RAND ! Ul IS UNIFORMLY DISTRIBUTED [0, 1]
R=DSQRT(-2.D0*DLOG(UL))

R=R*DCOS (U2*6.283185307179586476925286766559D00)

R=R*DCOS (U2*6.28318530718D00)

Page 5

nOoNnNnnN

[aXeXe!

nonNnnonnnNn 0O N

complete-cormat
RETURN
END
RANDOM NUMBER GENERATOR (UNIFORM BETWEEN O AND 1 - BOTH EXCLUSIVE)
SUBROUTINE RANDOM(RAND1)
DOUBLE PRECISION RAND1
COMMON /RNDM/IU,IV
IV=IU*65539
IF(IV.LT.0) THEN
IV=IV+2147483647+1
ENDIF
RAND=IV
IUu=1V
RAND=RAND*0.4656613E-09
RAND1= db1e(RAND)
RETURN
END

SUBROUTINE FSELECT(KF,M,FTIT)

PARAMETER (NFUNCT=1) ! NO. OF FUNCTIONS IN THE LIST
THE PROGRAM REQUIRES INPUTS FROM THE USER ON THE FOLLOWING ------
(1) FUNCTION CODE (KF), (2) NO. OF VARIABLES IN THE FUNCTION (M);
CHARACTER *70 TIT(100),FTIT

WRITE(*,*) ' ————— -~ !
KF=1 ! NO. OF FUNCTIONS
DATA TIT(1)/'KF=1 CONSTRUCT CORRELATION MATRIX:M-VARIABLES M=?'/
DO I=1,NFUNCT

WRITE(*,*)TIT(I)

ENDDO

WRITE (* , *) e e e e e e e e e e e e e e e e e e e NN
WRITE(*,;)'NO. OF VARIABLES=UNKNOWN CORRELATION COEFFICIENTS [M]?'
READ(*,*) M

FTIT=TIT(KF) ! STORE THE NAME OF THE CHOSEN FUNCTION IN FTIT
RETURN

END

SUBROUTINE FUNC(X,M,F)
TEST FUNCTIONS FOR GLOBAL OPTIMIZATION PROGRAM

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

common /nfcal/nfcall
DIMENSION X(*)
NFCALL=NFCALL+1 ! INCREMENT TO NUMBER OF FUNCTION CALLS

KF IS THE CODE OF THE TEST FUNCTION
CONSTRUCT CORRELATION MATRIX
CALL CONCOR(M,X,F)

RETURN

SUBROUTINE EIGEN(A,N,V,W)

COMPUTES EIGENVALUES AND VECTORS OF A REAL SYMMETRIC MATRIX

A(N,N) =GIVEN REAL SYMMETRIC MATRIX WHOSE EIGENVALUES AND VECTORS
ARE BE FOUND. ITS ORDER IS N X N

W(N,N) CONTAINS EIGENVALUES IN ITS MAIN DIAGONAL. OTHER ELEMENTS=0
V(N,N) CONTAINS EIGENVECTORS

PROGRAM BY KRISNAMURTHY,EV & SEN (1976) COMPUTER-BASED NUMERICAL
ALGORITHMS. AFFILIATED EAST-WEST PRESS, NEW DELHI

DOUBLE PRECISION A(10,10),v(10,10),w(10,10),P(10)
DOUBLE PRECISION PMAX,EPLN,TAN,SIN,COS,AI,TT,TA,TB

Page 6

complete-cormat
DIMENSION MM(10)
———————————— INITIALISATION === == e e e e e
DO I=1,N
DO J=1,N
v(1,3)=0.d0
w(I,3)=A(1,3)
ENDDO
P(1)=0.d0
ENDDO
PMAX=0.d0
EPLN=0.d0
TAN=0.dO
SIN=0.d0
C0s=0.d0
AI=0.dO
TT=0
NN=1
EPLN=1.0D-100
IF(NN.NE.O) THEN
DO I=1,N
DO J=1,N
v(1,3)=0.d0
IF(I.EQ.]) Vv(I,3)=1.d0
ENDDO
ENDDO
ENDIF
NR=0
MI=N-1
DO I=1,MI
P(1)=0.d0
MI=I+1
DO J=MJ,N
IF(P(I).LE.DABS(A(I,J))) THEN
P(I)=DABS(A(I,J))
MM(I)=]
ENDIF
ENDDO
ENDDO

DO 8 I=1,MI

IF(I.LE.1) GoTO 10

IF(PMAX.GT.P(I)) GOTO 8

PMAX=P (I)

IP=I

IP=MM(I)

CONTINUE

EPLN=DABS (PMAX)*1.0D-09

IF (PMAX.LE.EPLN) THEN
WRITE(*,*)"PMAX EPLN',PMAX, EPLN
PAUSE ' CONVERGENCE CRITERION IS MET'
GO TO 12

ENDIF

NR=NR+1

TA=2.d0*A(IP,JIP)
TB=(DABS(A(IP,IP)-A(IP,IP))+
1DSQRT((A(IP,IP)-A(IP,IP))**2+4.d0*A(IP,IP)**2))
TAN=TA/TB

IF(A(IP,IP).LT.A(JP,IP)) TAN=-TAN
C0S=1.d0/DSQRT(1.dO+TAN*%*2)
SIN=TAN*COS

AI=A(IP,IP)
A(IP,IP)=(COS**2)*(AI+TAN*(2.d0*A(IP,IP)+TAN*A(IP,IP)))

Page 7

16
17

15

20
19

21

22
18

24

26

30

25

27

29

28

31

complete-cormat
AQIP,IP)=(Ccos**2)*(A(IP,IP)-TAN*(2.d0*A(IP,IP)-TAN*AI))

A(IP,IP)=0.d0
IF(A(IP,IP).GE.A(JP,IP)) GO TO 15
TT=A(IP,IP)

A(IP,IP)=A(IP,IP)

A(IP,IP)=TT

IF(SIN.GE.0.d0) GO TO 16

TT=COS

GO TO 17

TT=-COS

COS=DABS(SIN)

SIN=TT

DO 18 I=1,MI

IF(I-IP) 19, 18, 20

IF(I.EQ.JP)GO TO 18
IF(MM(I).EQ.IP) GO TO 21
IF(MM(I).NE.JP) GO TO 18

K=MM(I)

TT=A(I,K)

A(TI,K)=0.d0

MI=I+1

P(1)=0.d0

DO 22 J=MJ,N
IF(P(I).GT.DABS(A(I,]))) GO TO 22
P(I)=DABS(A(I,J))

MM(I)=]

CONTINUE

A(T,K)=TT

CONTINUE

P(IP)=0.d0

P(IP)=0.d0

DO 23 I=1,N

IF(I-IP) 24, 23, 25

TT=A(I,IP)
A(I,IP)=COS*TT+SIN*A(I,IP)
IF(P(I).GE.DABS(A(I,IP))) GO TO 26
P(I)=DABS(A(I,IP))

MM(I)=IP
A(I,IP)=-SIN*TT+COS*A(I,IP)
IF(P(I).GE.DABS(A(I,JIP))) GO TO 23
P(I)=DABS(A(I,IP))

MM(I)=JP

GO TO 23

IF(I.LT.JP) GO TO 27

IF(I.GT.JP) GO TO 28

IF(I.EQ.JP) GO TO 23

TT=A(IP,I)
A(IP,I)=COS*TT+SIN*A(I,IP)
IF(P(IP).GE.DABS(A(IP,I))) GO TO 29
P(IP)=DABS(A(IP,I))

MM(IP)=I
A(I,IP)=-TT*SIN+COS*A(I,IP)
IF(P(I).GE.DABS(A(I,JIP))) GO TO 23
GO TO 30

TT=A(IP,I)
A(IP,I)=TT*COS+SIN*A(IP,I)
IF(P(IP).GE.DABS(A(IP,I))) GO TO 31
P(IP)=DABS(A(IP,I))

MM(IP)=I
A(IP,I)=-TT*SIN+COS*A(IP,I)
IF(P(JP).GE.DABS(A(IP,I))) GO TO 23
P(JP)=DABS(A(IP,I))

MM(JIP)=I

Page 8

23

32
12

complete-cormat
CONTINUE
IF(NN.EQ.0) GOTO 7
DO 32 I=1,N
TT=V(I,IP)
V(I,IP)=TT*COS+SIN*V(I,IP)
V(I,JP)=-TT*SIN+COS*V(I,IP)
CONTINUE
GO TO 7
DO I=1,N
P(I)=A(I,I)
ENDDO
DO I=1,N
DO J=1,N
A(T,3)=w(1,1)
w(I,3)=0.D0
ENDDO
W(I,I)=P(I)
ENDDO
RETURN
END

SUBROUTINE CONCOR(M,X,F)

CONSTRUCTING VALID CORRELATION MATRICES
IMPLICIT DOUBLE PRECISION (A-H,0-Z2)
COMMON /NEAREST/Z,MORDER

COMMON /RNDM/IU,IV

DIMENSION z(10,10),A(10,10)

DIMENSION X(*),v(10,10),w(10,10),P(10)

CHECK THE NUMBER OF INVALID ELEMENTS
MINVAL=0

DO I=1,MORDER

DO J=I,MORDER

IF(DABS(Z(I,3)).GT.1.D0) MINVAL=MINVAL+1

ENDDO

ENDDO
IF(M.NE.MINVAL) THEN
WRITE(*,*)"

WRITE(* “‘) VR?2?2?2?°??2?2??2?2?22?2?2°??°2?2?°2°?°2?°2?°°2°?72°?7°2°?7?2°7°?72°?°27"

WRITE(*,*) 'PARAMETER DOES NOT MATCH.'
WRITE(*,*)'THE VALUE OF M SHOULD BE=',6MINVAL

WRITE(*,*) 'RERUN THE PROGRAM WITH M =', MINVAL
STOP
ENDIF

DO I=1,M

IF(X(I).LT.-1.D0 .OR. X(I).GT.1.DO) THEN
CALL RANDOM(RAND)
X(I)=(RAND-.5d0)*2
ENDIF
ENDDO
CONSTRUCT THE MATRIX(MM,MM)
ICOUNT=0
DO I=1,MORDER
A(I,I)=1.d0
DO J=I+1,MORDER
IF(DABS(Z(1,3)).GT.1.D0) THEN
ICOUNT=ICOUNT+1
A(I,3)=X(ICOUNT)
ELSE

Page 9

complete-cormat
A(T,1)=2(1,3)
ENDIF
ENDDO

ENDDO
FILLING THE LOWER DIAGONAL
DO I=1,MORDER
DO J=1,1
A(I,3)=A(3,I)
ENDDO
ENDDO
FIND EIGENVALUES AND EIGENVECTORS OF MATRIX A
CALL EIGEN(A,MORDER,V,W)
STORE EIGENVALUES (DIAGONAL OF RETURNING W) INTO P
F=0.D0
PSUM=0.D0 ! SUM OF MAGNITUDE OF EIGENVALUES
DO I=1,MORDER
P(I)=w(I,I)
IF(P(I).LT.0.D0) PSUM=PSUM+DABS(P(I))
ENDDO
PROD=1.DO0
DO I=1,MORDER
IF(P(I).LT.0.D0) THEN
F=F+P(I)**2
PROD=PROD*P (I)
ENDIF
ENDDO
IF(PROD.LT.0.D0.0OR.PROD.GT.1.D0) F=(F+PSUM+PROD**2)*%*2
RETURN
END
SUBROUTINE NCORX(X,M,OUTFIL)
NEAREST CORRELATION MATRIX PROBLEM
IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON /NEAREST/Z,MORDER
DIMENSION Z(10,10),X(*)
DIMENSION A(10,10),v(10,10),w(10,10)
CHARACTER *70 OUTFIL
CHARACTER *15 CFIL

CFIL="CORRESULTS'! IT IS AN INTERMEDIATE FILE

OPEN (7, FILE=CFIL) ! OPENS INTERMEDIATE FILE FOR INPUT

OPEN(8, FILE=OUTFIL) ! OPENS OUTPUT FILE TO STORE VALID MATRICES
CONSTRUCT THE CORRELATION MATRIX

READ(7,*) N ! READS POPULATION SIZE FROM INTERMEDIATE FILE

DO IC=1,N

READ(7,*) (X(3),3=1,M) ! READS VECTOR FROM INTERMEDIATE FILE

ICOUNT=0
DO I=1,MORDER
A(I,1)=1.d0
DO J=I+1,MORDER
IF(DABS(Z(1,3)).GT.1.D0) THEN
ICOUNT=ICOUNT+1
A(TI,3)=X(ICOUNT)
ELSE
A(T,3)=2(1,3)
ENDIF
ENDDO
ENDDO
FILLING THE LOWER DIAGONAL
DO I=1,MORDER
DO J=1,I

Page 10

complete-cormat
A(1,1)=A(3,D)
ENDDO
ENDDO
WRITE(*,*)" '
WRITE (8 , T P e e e e e e e e e N N NN
WRITE(8,*)"'A VALID CORRELATION MATRIX'
DO I=1,MORDER
WRITE(8,1)(A(I,3),I=1,MORDER)
ENDDO
WRITE(*,*) ' '
CALL EIGEN(A,MORDER,V,W)
MSIGN=0
Sumw=0.D0
PROD=1.DO0
DO I=1,MORDER
SUMW=SUMW+W (I, I)
PROD=PROD*W(I,I)
IF(W(I,I).LT.0) MSIGN=1
ENDDO
WRITE(S8,*) 'EIGENVALUES, SUM AND PRODUCT OF EIGENVALUES'
WRITE(8,1)(w(I,I),I=1,MORDER) , SUMW,PROD
WRITE(8,*) "EIGENVECTORS '
DO I=1,MORDER
WRITE(8,1)(v(I,3),I=1,MORDER)
ENDDO
FORMAT (8F10.7)
IF(MSIGN.EQ.1) THEN
WRITE(8,*) 'FAILURE OF THE METHOD'
ELSE
WRITE(S8,*) 'SUCCESS OF THE METHOD'
ENDIF
ENDDO
CLOSE(7)
CLOSE(8)
RETURN
END

Page 11

