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Abstract

We investigate the asymptotic behavior of the OLS estimator for regressions with two slowly

varying regressors. It is shown that the asymptotic distribution is normal one-dimensional and may

belong to one of four types depending on the relative rates of growth of the regressors. The analysis

establishes, in particular, a new link between slow variation and Lp-approximability. A revised

version of this paper has been published in Econometrics Journal (2011), volume 14, pp. 304–320.

Keywords Asymptotic distribution theory; Linear regression; Asymptotically collinear regressors

1 Introduction

Regressions with asymptotically collinear regressors arise in a number of applications, both in linear

and nonlinear settings. The examples are the log-periodogram analysis of long memory (see Robinson

(1995); Hurvich et al. (1998); Phillips (1999) and references therein), the study of growth convergence

(Barro & Sala-i Martin, 2003), and nonlinear least squares estimation (Wu, 1981). Phillips (2007)

has developed a powerful method to analyze such regressions. Using the theory of slowly varying

functions (for the definition see (Bingham et al., 1987)) he has proved asymptotic normality of OLS

estimators (with an appropriate standardization). He has also shown that the usual regression formulas

for asymptotic standard errors are valid. The limit distribution of the regression coefficients has been

shown to be one-dimensional.

In the paper just cited, Phillips has considered a variety of situations, from simple regression to

nonlinear regression. In case of simple regression and a polynomial regression in a slowly varying

function his treatment is complete. However, in case of two different slowly varying regressors, as in

ys = β0 + β1L1(s) + β2L2(s) + us, (1)

Phillips limited himself to a heuristic argument. The purpose of this paper is to provide a rigorous

result for (1).

Following Phillips (2007) let us consider slowly varying functions L with Karamata representation

L(x) = c exp

(∫ x

a

ε(t)dt/t

)
(2)

and call the function ε in this representation an ε -function of L. We say that two models of form (1)

with pairs of SV functions (L1, L2) and (L̃1, L̃2) are of different (asymptotic) types if their asymptotic

distributions contain functions of sample size n with different asymptotic behavior as n → ∞. (Phillips,

2007, Theorem 5.1) suggests that there are two types of model (1): one kind of asymptotics is true

when the ε-functions of L1, L2 satisfy ε2(n) = o(ε1(n)) and another holds when ε1(n) = o(ε2(n)). Our

2



Table 1: Basic SV functions (l1(x) = log x, l2(x) = log(log x))

L ε η µ δ

L1 = l1 1/l1 −1/l1 0 0

L2 = l2 1/(l1l2) −(1 + l2)/(l1l2) −1/(2l1) −1/(2l21)

L3 = 1/l1 −1/l1 −1/l1 −1/l1 1/l31

L4 = 1/l2 −1/(l1l2) −(1 + l2)/(l1l2) − 2+l2
2l1l2

2+l2
2l2

1
l3
2

classification theorem below shows that the number of different types is at least four (this number

depends on notational conventions) and is determined by such fine characteristics of the regressors as

ε-functions of their ε-functions. In all cases we prove a Phillips type result that the limit distribution

is normal and one-dimensional.

The most unexpected outcome is that the asymptotic distribution depends on the true β in a

discontinuous fashion: the asymptotic variances along the axes β1 = 0 and β2 = 0 differ from those for

β1 6= 0 and β2 6= 0. The method in principle is applicable to regressions with more than two different

slowly varying regressors. However, we are not sure that such generalizations are required for empirical

work.

In Section 2 we state the main results. All proofs are given in the Appendix.

2 Main results

2.1 Slowly varying functions

Here the properties of slowly varying functions are reviewed to the extent required later.

The name slowly varying and its abbreviation SV will be used for a positive measurable function

on [A,∞), where A > 0, satisfying the condition limx→∞ L(rx)/L(x) = 1 for any r > 0. Functions

with representation (2), where ε is continuous and limx→∞ ε(x) = 0, constitute a special case of SV

functions. In (2) the constant c is allowed to be negative and the ε-function of L can be found as

ε(x) = xL′(x)/L(x).

In most of the present theory, the ε-function is also assumed to be of form (2), that is ε(x) =

c exp
(∫ x

a
η(t)dt/t

)
where limx→∞ η(x) = 0 and η is continuous. Denote µ(x) = (ε(x)+ η(x))/2, δ(x) =

L(x)ε(x)µ(x). These functions will be called µ- and δ-functions of L, respectively. When the argument

of ε, µ, δ is the sample size n, that argument will be usually suppressed. Table 1 contains a summary

of practically important cases.

We observe that for l1 both µ and δ are identically zero. In all other cases ε, µ and δ are nonzero
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for all large x. Our analysis shows that the asymptotic theory of model (1) depends on the asymptotic

behavior of the ratios δ1/δ2 and ε1/ε2. In the next assumption we impose on these ratios conditions

general enough to include all possible pairs of functions from Table 1.

Assumption ε-δ.

(a) In the pair (L1, L2) only one function is allowed to be log x (and have a vanishing δ-function). By

changing the notation, if necessary, one can assume that if one of L1, L2 is log x, then it is always

L1.

(b) If neither δ1 nor δ2 vanishes, we require either δ1/δ2 → 0 or δ2/δ1 → 0 to be true at infinity.

(c) None of ε1 and ε2 vanishes. Besides, either ε1/ε2 tends to a constant κ ∈ R or ε2/ε1 → 0.

This assumption will be used everywhere without explicitly mentioning. Regarding condition (b),

we note that for the functions from Table 1 convergence of δ1/δ2 to a constant different from 0 does

not occur. Such convergence would require higher-order expansions for its analysis which will not be

considered here. The case when both δ1 and δ2 vanish but L1, L2 are not log x would also require

higher-order expansions. When L1(x) = log x, model (1) is called semi-reduced. When both δ1 and δ2

are nonzero, model (1) is called non-reduced.

Definition. We write L = K(ε, φε, θε) if

(a) L is continuous on [0,∞) and has Karamata representation (2) for some a > 0, where ε is SV,

continuous and ε(x) → 0 as x → ∞.

(b) There exist a constant c > 0 and a function φε on [0,∞) with properties:

(i) φε is positive, nondecreasing on [0,∞), φε(x) → ∞ as x → ∞,

(ii) there exist positive numbers θε, Xε such that x−θεφε(x) is nonincreasing on [Xε,∞), and

(iii) for all x ≥ c
1

cφε(x)
≤ |ε(x)| ≤ c

φε(x)
. (3)

The right inequality in condition (3) means that L is slowly varying with remainder φε (see Aljančić

et al. (1955)). All practical examples from Table 1 satisfy the above definition with φε(x) = 1/|ε(x)|

and the number θε > 0 can be chosen as close to 0 as desired. This follows from the next property of

SV functions: if L is SV, then for any θ > 0, xθL(x) → ∞ and x−θL(x) → 0 as x → ∞. (Phillips,

2007, Assumption SSV) does not have the (b) part while it seems to be essential for the most important

statements.
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2.2 Transformation of the regressor space

Assuming that µ(n) 6= 0 denote

H(t, n) =

[
L(t)− L(n)

L(n)ε(n)
− log

(
t

n

)]
1

µ(n)
, 0 < t ≤ n,

and let us call this function an H-function of L. Under certain conditions (Phillips, 2007)

H(rn, n) = log2 r + o(1) uniformly in r ∈ [a, b], (4)

for any 0 < a < b < ∞.

(Phillips, 2007, p.573) suggested to transform the regressor space as follows. (4) implies Lj(rn)/Lj(n)−

1 = εj(n) log r + εj(n)µj(n) log
2 r[1 + o(1)]. Using this expansion and suppressing the argument n in

Lj , εj , µj (1) can be rewritten as:

ys = β0 + β1L1 + β2L2

+β1L1ε1 log
s

n
+ β1L1ε1µ1 log

2 s

n
[1 + o(1)]

+β2L2ε2 log
s

n
+ β2L2ε2µ2 log

2 s

n
[1 + o(1)] + us. (5)

Dropping here o(1) produces an approximation to (5):

ys = β0 + β1L1 + β2L2 + (β1L1ε1 + β2L2ε2) log
s

n

+(β1δ1 + β2δ2) log
2 s

n
+ us. (6)

Denoting

β =




β0

β1

β2


 , γn =




γn0

γn1

γn2


 , An =




1 L1 L2

0 L1ε1 L2ε2

0 δ1 δ2


 (7)

we obtain

ys = γn0 + γn1 log
s

n
+ γn2 log

2 s

n
+ us, γn = Anβ. (8)

In (8) the regressors are not asymptotically collinear and therefore the asymptotic distribution of the

OLS estimator γ̂n is good (normal and non-degenerate). The asymptotic distribution of β̂ is extracted

from β̂ = A−1
n γ̂n. We call the γi’s γood coefficients and βi’s βad coefficients. The matrix An is called a

transition matrix.

The problem with this transformation is that it is impossible to prove that (6) approximates (5).

Therefore (Phillips, 2007, Theorem 5.1) is true for (6) and not for the original regression. Now we

describe a modification of this approach that allows us to avoid dropping any terms. Consider two

cases.
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Table 2: Transition matrix summary

Case Subcase Coefficients

Non-reduced model (δ1/δ2 → 0, β2 = 0) or a32 = δ1, a33 = 0

(δ1 6= 0, δ2 6= 0) (δ2/δ1 → 0, β1 6= 0)

(δ1/δ2 → 0, β2 6= 0) or a32 = 0, a33 = δ2

(δ2/δ1 → 0, β1 = 0)

Semi-reduced model (L1(x) = log x, δ2 6= 0) a32 = 0, a33 = δ2

Non-reduced model. Let δ1, δ2 be nonzero. Then we write

Lj(s) = Lj(n) + Lj(n)εj(n) log
s

n

+Lj(n)εj(n)

(
Lj(s)− Lj(n)

Lj(n)εj(n)
− log

s

n

)

= Lj(n) + Lj(n)εj(n) log
s

n
+ δj(n)Hj(s, n) (9)

where Hj is the H-function of Lj . Hj is not equal to log2 s
n but it is close to it in some sense (see

Appendix). Substitution of (9) in (1) yields

ys = γn0 + γn1 log
s

n
+∆n + us (10)

where

γn0 = β0 + β1L1(n) + β2L2(n),

γn1 = β1L1(n)ε1(n) + β2L2(n)ε2(n),

(11)

and

∆n = β1δ1(n)H1(s, n) + β2δ2(n)H2(s, n). (12)

Semi-reduced model. In this case by definition L1(s) = log s, δ1 = 0, δ2 6= 0. We can still apply

(9) to L2. For L1 we use simply L1(s) = L1(n)+ (L1(s)−L1(n)) = L1(n)+ log s
n . Since L1ε1 ≡ 1, (11)

is true and (12) formally holds with δ1 = 0.

From (11) we see that the first two rows of the transition matrix are the same as in (7). By (12)

a31 = 0. The analysis in Appendix shows that the other two elements of the last row of An are as

described in Table 2. The dependence of the transition matrix on the true β is not continuous. In

all cases the conditions a32(n) = 0 and a33(n) = 0 are mutually exclusive and therefore the transition

matrix is triangular, unlike (7).

2.3 Convergence statements

It is clear from the previous subsection that the asymptotic distribution of γ̂n should be derived first

and that of β̂ next. In principle, convergence of the γood coefficients is described by (Phillips, 2007,
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Theorem 4.1), where they are denoted αn. However, Theorem 4.1 depends on Phillips’ Lemma 7.4, the

proof of which is incomplete, and Lemma 2.1(iii), which can be proved under more general assumptions

on the linear process ut. Therefore we provide an independent proof.

Assumption 1 (on the regressors)

(a) In the non-reduced case we assume that Li = K(εi, φεi , θεi), εi = K(ηi, φηi
, θηi

) and ηi is slowly

varying for i = 1, 2. Further, we suppose that the µ-functions of Li are different from 0 in some

neighborhood of infinity and satisfy

1

c
max {|εi(x)| , |ηi(x)|} ≤ |µi(x)| ≤ max {|εi(x)| , |ηi(x)|} (13)

with some constant c > 0. Finally, max {2θεi , θηi
} < 1/2 for i = 1, 2.

(b) In the semi-reduced case L1(x) = log x and L2 satisfies part (a).

The next assumption is less restrictive than the corresponding condition by Phillips.

Assumption 2 (on the linear process) For all t > 0, ut has representation ut =
∑∞

j=−∞ cjet−j ,

where

(a) the numbers cj satisfy
∑∞

j=−∞ |cj | < ∞,
∑∞

j=−∞ cj 6= 0 and

(b) the sequence of random variables {ej} is a martingale difference sequence (et is Ft-measurable and

(et|Ft−1) = 0) such that E(e2t |Ft−1) = σ2
e (a constant) for all t and e2t are uniformly integrable.

Here {Ft} is an increasing sequence of σ-fields.

Theorem 2.1. Let Assumptions 1 and 2 hold. Then

√
n(γ̂n − γn)

d→ N(0, σ2G−1). (14)

Henceforth we denote σ2 =
(
σe

∑∞
j=−∞ cj

)2

and G is the Gram matrix of the system fj(x) = logj−1 x,

j = 1, 2, 3, that is, the element gij of G equals gij =
∫ 1

0
fi(x)fj(x)dx.

To describe the behavior of the βad coefficients denote

εmin =





ε1 if ε1/ε2 → κ ∈ R;

ε2 if ε2/ε1 → 0;

Bn =
√
n




εmin(β̂0 − β0)

L1ε1(β̂1 − β1)

L2ε2(β̂2 − β2)


 , f(κ) =




κ− 1

1

−1


 , g =




1

1

−1


 .
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Table 3: Type-wise OLS asymptotics

Case Subcase ε1/ε2 → κ ∈ R ε2/ε1 → 0

Non-reduced (δ1/δ2 → 0, β2 = 0) or µ1Bn
d→ f(κ)Γ µ1Bn

d→ gΓ

model (δ2/δ1 → 0, β1 6= 0)

(δ1 6= 0, δ2 6= 0) (δ1/δ2 → 0, β2 6= 0) or µ2Bn
d→ f(κ)Γ µ2Bn

d→ gΓ

(δ2/δ1 → 0, β1 = 0)

Semi-reduced model µ2Bn
d→ f(κ)Γ µ2Bn

d→ gΓ

(L1(x) = log x, δ2 6= 0)

Theorem 2.2 (Classification theorem). Let Assumptions 1 and 2 hold and let Γ ∼ N(0, σ2/4). Then

the relation between the βad coefficients (contained in Bn) and γood coefficients (represented by Γ) is

presented in Table 3.

Since (Phillips, 2007, Theorem 5.1) is actually about regression with a quadratic form in log(s/n),

no wonder its predictions are different from those in Table 3. In particular, the classification theorem

captures a new effect that the asymptotic variance depends on the true β. The scaling factor εmin is

the same as in the Phillips theorem. The case of more than two different SV regressors should present

an even larger number of different asymptotic types. (Phillips, 2007, Theorem 5.2) does not cover all

possibilities.

Example. The following example from (Phillips, 2007) has iterated logarithmic growth, a trend

decay component, and a constant regressor:

ys = β0 + β1/ log s+ β2 log(log s) + us.

Such a model is relevant in empirical research where one wants to capture simultaneously two different

opposing trends in the data. Here L1(s) = 1/ log s, L2(s) = log(log s).

From Table 1 ε1 = −1/l1, µ1 = −1/l1, δ1(n) = l−3
1 , ε2 = 1/(l1l2), µ2 = −1/(2l1), δ2(n) = −1/(2l21).

Since δ1/δ2 = −2/l1 → 0 and ε2/ε1 = −1/l2 → 0, we have εmin = ε2 and by Table 3

√
n

log2 n




1
log(logn) (β̂0 − β0)

− 1
logn (β̂1 − β1)

β̂2 − β2




d→





2gΓ if β2 6= 0;

gΓ if β2 = 0.

The formula from (Phillips, 2007, pp.575-576), after correction of two typos, gives the same asymptotics

√
n

log2 n




1
log(logn) (β̂0 − β0)

− 1
logn (β̂1 − β1)

β̂2 − β2




d→ gΓ,
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regardless of β2. The comments by Phillips apply: The coefficient of the growth term converges fastest

but at less that an
√
n rate. The intercept converges next fastest, and finally the coefficient of the

evaporating trend. All of these outcomes relate to the strength of the signal from the respective

regressor.

Final remarks. The statement of (Phillips, 2007, Theorem 3.1) regarding simple regression ys =

α+βL(s)+us is true if L = K(ε, φε, θε) with 2θε < 1 and ut satisfies Assumption 2. The statements of

(Phillips, 2007, Theorems 4.2, 4.3) regarding ys =
∑p

j=0 βjL
j(s)+ us (a polynomial regression in L(s))

are true if L = K(ε, φε, θε) with 2θεp < 1 and ut satisfies Assumption 2. The proofs are obtained by

using the central limit results contained in this paper or (Mynbaev, 2009), as appropriate.

A Proofs of Results

A.1 Bounds for first- and second-order regular variation

Lemma A.1. If L = K(ε, φε, θε), then for any b > θε there exist numbers Mb > 0 and ab ≥ max{a, c}

such that |L(λx)/L(x)− 1| ≤ Mbλ
−b/φε(x) for all x ≥ ab and ab/x ≤ λ ≤ 1.

This lemma is a special case of (Seneta, 1985, Lemma A.1.1). For the proof see also (Mynbaev,

2009). Since in practical cases the number θε can be arbitrarily close to 0, the number b > θε can also

be as close to 0 as desired. Denote G(t, n) = (L(t)− L(n))/(L(n)ε(n)).

Lemma A.2. If L = K(ε, φε, θε) and ε = K(η, φη, θη), then for any b > max{2θε, θη} there exist

constants Mb > 0 and ab ≥ max{a, c} such that

|G(λx, x)− log λ| ≤ Mbλ
−b

(
1

φε(x)
+

1

φη(x)

)
for x ≥ ab and

ab
x

≤ λ ≤ 1.

Proof. Denote r(λ, x) = L(λx)/L(x), U(λ, x) = log r(λ, x). Let x ≥ c and c/x ≤ λ ≤ 1, where c is the

constant from (3). Since λx ≤ x, (2) implies

U(λ, x) = −
∫ x

λx

ε(t)
dt

t
. (15)

Using the right inequality from (3) and the fact that φε is nondecreasing we get

|U(λ, x)| ≤
∫ x

λx

|ε(t)|dt
t

≤ c

∫ x

λx

1

φε(t)

dt

t
≤ c

φε(λx)

∫ x

λx

dt

t
= − c log λ

φε(λx)
. (16)

Fix some bε > θε. Using monotonicity of φε and the fact that it increases to ∞ at ∞, from ab ≤ xλ

we have c/φε(λx) ≤ c/φε(ab) < (bε − θε)/2 for a sufficiently large ab > 0. Then by (16)

|U(λ, x)| ≤ −bε − θε
2

log λ. (17)
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On the other hand, by part (b) of the definition of the class K(ε, φε, θε) the inequality Xε ≤ λx ≤ x

implies (λx)−θεφε(λx) ≥ x−θεφε(x) and 1/φε(λx) ≤ λ−θε/φε(x). Hence, from (16)

|U(λ, x)| ≤ −cλ−θε(log λ)/φε(x). (18)

Now consider

r(λ, x)− 1− ε(x) log λ = eU(λ,x) − 1− U(λ, x) + U(λ, x)− ε(x) log λ. (19)

By Lemma A.1 applied to ε

|ε(λx)/ε(x)− 1| ≤ c1λ
−bη/φη(x) for all x ≥ ab and ab/x ≤ λ ≤ 1 (20)

where bη is an arbitrary number > θη and c1 depends on bη. From (15) we have

|U(λ, x)− ε(x) log λ| =

∣∣∣∣−
∫ x

λx

ε(t)
dt

t
+ ε(x)

∫ x

λx

dt

t

∣∣∣∣

=

∣∣∣∣ε(x)
∫ x

λx

(
ε(t)

ε(x)
− 1

)
dt

t

∣∣∣∣ ≤ |ε(x)|
∫ 1

λ

∣∣∣∣
ε(sx)

ε(x)
− 1

∣∣∣∣
ds

s
.

The conditions ab ≤ λx and λ ≤ s ≤ 1 imply ab ≤ sx ≤ x, so we can use (20) to get

|U(λ, x)− ε(x) log λ| ≤ c1|ε(x)|
φη(x)

∫ 1

λ

s−bη−1ds =
c2|ε(x)|
φη(x)

(λ−bη − 1)

≤ c2|ε(x)|
φη(x)

λ−bη for x ≥ ab and
ab
x

≤ λ ≤ 1. (21)

Applying bounds (17) and (18) and an elementary inequality |ex − 1− x| ≤ x2e|x| we obtain

|eU(λ,x) − 1− U(λ, x)| ≤ U2(λ, x)e|U(λ,x)| ≤ c3
λ−2θε log2 λ

φ2
ε(x)

λ− 1

2
(bε−θε) (22)

where bε > θε. Combining (19), (21) and (22) gives

∣∣∣∣
L(λx)

L(x)
− 1− ε(x) log λ

∣∣∣∣ ≤ c4

[ |ε(x)|
φη(x)

λ−bη +
log2 λ

φ2
ε(x)

λ− 1

2
bε−

3

2
θε

]
. (23)

On the interval (0, 1] the function log2 λ can be dominated by c(δ)λ−δ with any δ > 0. Since the

number bε > θε is arbitrarily close to θε, the number aε ≡ 1
2bε +

3
2θε + δ is larger than, and arbitrarily

close to, 2θε. Hence, the left inequality in (3) and (23) imply

|G(λx, x)− log λ| ≤ c5

(
λ−bη

φη(x)
+

λ−aε

φ2
ε(x)|ε(x)|

)
≤ c6

(
1

φη(x)
+

1

φε(x)

)
λ−b.

Taking b > max{2θε, θη} and putting bη = aε = b we satisfy both bη > θη and aε > 2θε. The constant

c6 depends on b.
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A.2 Lp-approximability

Here we prove a stronger version of the second-order regular variation (4) that uses the notion of

Lp-approximability from (Mynbaev, 2001). Let {wn} be a sequence of vectors such that wn ∈ R
n

for each n and denote ‖f‖p =
(∫ 1

0
|f(x)|pdx

)1/p

, where p < ∞. Let ∆np denote an interpolation

operator defined by ∆npwn = n1/p
∑n

t=1 wnt1it . Here wnt are the coordinates of wn; the intervals

it = [(t − 1)/n, t/n), t = 1, ..., n, form a partition of [0, 1) and 1A is an indicator of a set A, that is

1A = 1 on A and 1A = 0 outside A. We say that {wn} is Lp-approximable if there exists a function W

on [0, 1] such that ‖W‖p < ∞ and ‖∆npwn −W‖p → 0. In this case we also say that {wn} is Lp-close

to W.

Lemma A.3. Suppose that L = K(ε, φε, θε), ε = K(η, φη, θη) and η is slowly varying. Assume, further,

that the µ-function of L is different from zero for all large x and satisfies the condition of type (13)

with some constant c > 0. For p ∈ [1,∞) define a vector wn ∈ R
n by wnt = n−1/pH(t, n), t = 1, ..., n.

If max{2θε, θη} < 1/p, then {wn} is Lp-close to f(x) = log2 x.

Proof. The definitions of wn and ∆np give ∆npwn =
∑n

t=1 H(t, n)1it . This is equivalent to n equations

(∆npwn) (u) = H(t, n) for u ∈ it, t = 1, ..., n. The condition u ∈ it is equivalent to the condition that t

is an integer satisfying t ≤ nu+1 < t+1 which, in turn, is equivalent to t = [nu+1]. Hence, the above

n equations take a compact form (∆npwn) (u) = H([nu+ 1], n), 0 ≤ u < 1.

To reflect dependence on the domain of integration, denote ‖f‖p,(a,b) =
(∫ b

a
|f(x)|pdx

)1/p

. Let

0 < δ ≤ 1/2 and with the number ab from Lemma A.2 put n1 ≡ ab/δ. For n > n1 the interval (ab/n, δ)

is not empty and by the triangle inequality

‖∆npwn − f‖p,(0,1) ≤ ‖∆npwn − f‖p,(δ,1) + ‖f‖p,(0,δ)

+ ‖∆npwn‖p,(0,ab/n)
+ ‖∆npwn‖p,(ab/n,δ)

. (24)

Since |f |p is integrable on (0, 1), we have ‖f‖p,(0,δ) → 0 as δ → 0. For the other three terms at the right

of (24) we consider three cases.

Case δ ≤ u < 1. Under the conditions of this lemma (Phillips, 2007, Equation (63)) is true and

implies (4). Therefore

H(rn, n) = [1 + o(1)] log2 r uniformly in r ∈
[
δ, 1 +

1

2ab

]
. (25)

Defining r = [nu+ 1]/n, from the inequality nu < [nu+ 1] ≤ nu+ 1 we have

δ ≤ u < r ≤ u+ 1/n < 1 + 1/n1 ≤ 1 + 1/(2ab). (26)

This leads to r = u+ o(1) and r ∈ [δ, 1 + 1/(2ab)]. From these equations and (25) we see that H([nu+
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1], n) − log2 u = o(1) uniformly in u ∈ [δ, 1) which allows us to conclude that ‖∆npwn − f‖p,(δ,1) →

0, n → ∞.

Case ab/n ≤ u < δ. Let n > n2 ≡ max{n1, 2}. Then (26) and the conditions u ∈ [ab/n, δ), n > n2

imply ab/n ≤ u < r ≤ u+ 1/n < δ + 1/n2 ≤ 1. This means we can successively apply Lemma A.2, (3),

condition (13) and (26) to get

|H([nu+ 1], n)| =
∣∣∣∣
G(rn, n)− log r

µ(n)

∣∣∣∣ ≤
Mbr

−b

|µ(n)|

(
1

φη(n)
+

1

φε(n)

)

≤ c1r
−b

|µ(n)| max {|ε(n)|, |η(n)|} ≤ c2r
−b ≤ c2u

−b for u ∈
[ab
n
, δ
]

where b > max{2θε, θη}. Hence,
∫ δ

ab/n
|∆npwn|pdu ≤ c3δ

1−pb. Here the right-hand side tends to zero if

b < 1/p. This is possible because of max{2θε, θη} < 1/p.

Case 0 < u < ab/n. By monotonicity the inequality [nu+1]/n > u implies | log([nu+1]/n)| ≤ | log u|.

On the other hand, [nu + 1] ≤ nu + 1 < ab + 1 and L([nu + 1]) ≤ c by continuity of L. Hence,

|G([nu+ 1], n)| ≤ (c/L(n) + 1) /|ε(n)| and

|H([nu+ 1], n)| ≤
∣∣∣∣
G([nu+ 1], n)

µ(n)

∣∣∣∣+
∣∣∣∣
log([nu+ 1]/n)

µ(n)

∣∣∣∣

≤
∣∣∣∣

c+ L(n)

L(n)ε(n)µ(n)

∣∣∣∣+
∣∣∣∣
log u

µ(n)

∣∣∣∣ .

All functions of n here are slowly varying and | log u| can be dominated by cu−a with 0 < a < 1/p.

Therefore

‖∆npwn‖p,(0,ab/n)
≤

∣∣∣∣
c+ L(n)

L(n)ε(n)µ(n)

∣∣∣∣
(ab
n

)1/p

+
c

|µ(n)|
(ab
n

)1/p−a

→ 0.

This tends to zero as n → ∞ because (a) sums, products and real powers of SV functions are SV and

(b) for any a > 0 and any SV function L, the product n−aL(n) tends to zero as n → ∞.

Lemma A.4. Under Assumptions 1 and 2 the last row of the transition matrix is described by Table

2.

Proof. We shall need the following linearity property of Lp-approximable sequences: if {wn} is Lp-close

to W, {vn} is Lp-close to V, {an} and {bn} are numerical sequences converging to a and b, respectively,

then {anvn + bnwn} is Lp-close to aV + bW. This follows from

‖∆np(anvn + bnwn)− (aV + bW )‖p ≤ |an − a| ‖∆npvn‖p

+ |bn − b| ‖∆npwn‖p + |a| ‖∆npvn − V ‖p + |b| ‖∆npwn −W‖p → 0

where, by Lp-approximability, ‖∆npvn‖p and ‖∆npwn‖p are bounded.

Non-reduced model. The functions L1 and L2 satisfy part (a) of Assumption 1. By Lemma A.3

the sequences w1
n, w

2
n with components wi

nt = n−1/2Hi(t, n), t = 1, ..., n, i = 1, 2, are L2-close to log2 x.

By linearity then
{
anw

1
n + bnw

2
n

}
is L2-close to (a+ b) log2 x whenever an → a, bn → b.

12



Subcase δ1/δ2 → 0. (a) Let β2 = 0. By (12) ∆n = β1δ1H1(s, n), and we put

γn2 = β1δ1, H̃(s, n) = H1(s, n). (27)

With this definition γn2 is linear in βi and

∆n = γn2H̃(s, n) and
{
n−1/2H̃(s, n)

}
is L2-close to log2 x. (28)

Definition (27) gives the corresponding cell in Table 2 (a32 = δ1, a33 = 0). (28) is the leading idea in

this and subsequent definitions: with (28), (10) becomes

ys = γn0 + γn1 log
s

n
+ γn2H̃(s, n) + us (29)

which is a realization of Phillips’ idea (8).

(b) Let β2 6= 0. By (12) ∆n = β2δ2(H1(s, n)β1δ1/β2δ2+H2(s, n)). This suggests defining γn2 = β2δ2,

H̃(s, n) = H1(s, n)β1δ1/β2δ2 +H2(s, n) which gives (28) and the corresponding definition in Table 2.

Subcase δ2/δ1 → 0. (a) Let β1 = 0. The choice γn2 = β2δ2, H̃(s, n) = H2(s, n) obviously satisfies

(28) and gives a32 = 0, a33 = δ2.

(b) If β1 6= 0 we define γn2 = β1δ1, H̃(s, n) = H1(s, n) + H2(s, n)β2δ2/β1δ1 to satisfy (28) and

a32 = δ1, a33 = 0.

In case of the semi-reduced model we have ∆n = β2δ2H2(s, n) and the choice is obvious: γn2 =

β2δ2, H̃(s, n) = H2(s, n).

A.3 Proof of Theorem 2.1

Non-reduced model. Denote

Xn =




1 log(1/n) H̃(1, n)

... ... ...

1 log(n/n) H̃(n, n)




the matrix of regressors in (29). We know from (28) that the third column of Wn ≡ n−1/2Xn is L2-

close to f3. The first column of this matrix, wn = n−1/2(1, ..., 1)′, is L2-close to f1 because ∆n2wn is

identically 1 on (0, 1). Letting p = 2, k = 1 in (Mynbaev, 2009, Theorem 3) we see that the second

column, wn = n−1/2 (log(1/n), ..., log(n/n))
′
is L2-close to f2. By (Mynbaev, 2001, Theorems 3.1(b)

and 4.1(D)) we have W ′
nu

(n) d→ N(0, σ2G), W ′
nWn → G where u(n) = (u1, ..., un)

′. Now (14) follows

from
√
n(γ̂n − γn) = (W ′

nWn)
−1W ′

nu
(n).

Semi-reduced model. In this case the situation is simpler because the first and second columns

of Xn are the same, whereas H̃(s, n) = H2(s, n).

13



A.4 Proof of Theorem 2.2

We need the following well-known fact. Let An be a nonsingular matrix. If the parameter vector β in

the linear model y = Xβ + u has been transformed as γn = Anβ, to obtain y = XA−1
n γn + u, then

γ̂n − γn = An(β̂ − β). (30)

It turns out that only γ̂n2 affects the limit distribution of β̂. By (Phillips, 2007, Lemma 7.8(iii)) the

element g33 in the lower right corner of G−1 equals 1/4. Therefore Theorem 2.1 implies

√
n(γ̂n2 − γn2)

d→ N(0, σ2/4). (31)

Case a33(n) = 0. By (11) and Table 2 the system Anβ = γn takes the form





β0 + L1β1 + L2β2 = γn0,

L1ε1β1 + L2ε2β2 = γn1,

L1ε1µ1β1 = γn2.

(32)

It is easy to check that

A−1
n =




1 − 1
ε2

1
µ1

(
1
ε2

− 1
ε1

)

0 0 1
L1ε1µ1

0 1
L2ε2

− 1
L2ε2µ1


 . (33)

Subcase ε1/ε2 → κ ∈ R. Note that

diag[ε1µ1, L1ε1µ1, L2ε2µ1]A
−1
n =




µ1ε1 −µ1
ε1
ε2

ε1
ε2

− 1

0 0 1

0 µ1 −1


 . (34)

Denoting

B(i)
n =

√
n




εi(β̂0 − β0)

L1ε1(β̂1 − β1)

L2ε2(β̂2 − β2)


 , i = 1, 2,

from (30), (33), (34) we have

µ1Bn = µ1B
(1)
n =

√
ndiag[ε1µ1, L1ε1µ1, L2ε2µ1](β̂ − β)

=




µ1ε1 −µ1
ε1
ε2

ε1
ε2

− 1

0 0 1

0 µ1 −1




√
n(γ̂n − γn).

Now take into account that ε1, η1 and µ1 vanish at infinity by the Karamata theorem, that ε1/ε2 → κ

by assumption and that
√
n(γ̂n − γn) converges in distribution by Theorem 2.1. Then the preceding
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equation and (31) imply

µ1Bn = f(κ)
√
n(γ̂n2 − γn2) + op(1)

d→ f(κ)Γ. (35)

In the other cases the argument is similar, and we indicate only the relevant analogs of (33), (34) and

(35).

Subcase ε2/ε1 → 0. The equation µ1Bn = g
√
n(γ̂n2 − γn2) + op(1)

d→ gΓ is obtained using

diag[ε2µ1, L1ε1µ1, L2ε2µ1]A
−1
n =




µ1ε2 −µ1 1− ε2
ε1

0 0 1

0 µ1 −1


 .

Case a32(n) = 0. The first two equations in (32) do not change, and instead of the third one we

have L2ε2µ2β2 = γn2. Therefore

A−1
n =




1 − 1
ε1

1
µ2

(
1
ε1

− 1
ε2

)

0 1
L1ε1

− 1
L1ε1µ2

0 0 1
L2ε2µ2


 .

Subcase ε1/ε2 → κ. The relation µ2Bn
d→ −f(κ)Γ follows from

diag[ε1µ2, L1ε1µ2, L2ε2µ2]A
−1
n =




ε1µ2 −µ2 1− ε1
ε2

0 µ2 −1

0 0 1


 .

Subcase ε2/ε1 → 0. To prove that µ2Bn
d→ −gΓ we apply

diag[ε2µ2, L1ε1µ2, L2ε2µ2]A
−1
n =




ε2µ2 −µ2
ε2
ε1

ε2
ε1

− 1

0 µ2 −1

0 0 1


 .

A laborious comparison of the equations obtained and Table 2 allows one to fill out Table 3. Note

that, because of Assumption 1, in all cases the coefficient µi in front of Bn is nonzero.
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