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Abstract

Constant factor loadings is a standard assumption in the analysis of large dimen-

sional factor models. Yet, this assumption may be restrictive unless parameter shifts

are mild. In this paper we develop a new testing procedure to detect big breaks in

factor loadings at either known or unknown dates. It is based upon testing for struc-

tural breaks in a regression of the first of the r̄ factors estimated by PC for the whole

sample on the remaining r̄− 1 factors, where r̄ is chosen using Bai and Ng´s (2002)

information criteria. We argue that this test is more powerful than other tests available

in the literature on this issue.
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1 Introduction

Despite the well-ackowledged fact that some parameters in economic relationships can

become unstable due to important structural breaks (e.g., those related to technological

change, globalization or strong policy reforms), a standard practice in the estimation of

large factor models is to assume the constancy of the factor loadings. Possibly, one of

the main reasons for this benign neglect of breaks is that the first attempt to address this

issue, by means of time-varying factor loadings, focused on characterizing the properties

of mild instabilities, under which the constructed factors using principal components (PC

hereafter) remain consistently estimated (Stock and Watson, 2002).

Later on, however, a few studies have investigated the performance of factor-based

forecasting subject not only to mild but also to large breaks in the factor model structures.

Banerjee, Marcellino and Masten (2008) conclude that the instability of factor loadings is

the most likely reason behind the worsening factor-based forecasts, particularly in small

samples. Although their results are exclusively based on Monte Carlo simulations, they

shed some light on the importance of detecting relevant structural breaks in the factor

loadings. Two additional papers have contributed to this stream of research. The first one

is by Stock and Watson (2009) who, extending their previous approach, propose several

forms of mild structural instability in factor models to then use empirical evidence showing

that the failure of factor-based forecasts is mainly due to the instability of forecast function,

rather than of the factor loadings. As a result, they conclude that the estimated factors

using PC are still consistent when instabilities are small in magnitude and independent,

claiming therefore that forecasts can be improved by using full sample factor estimates

and subsample forecasting equations. Yet, this focus on mild structural breaks, though very

useful, has also been questioned by Giannone (2007) who argues that "....to understand

structural changes we should devote more effort in modelling the variables characterized

by more severe instabilities...". In this paper, we follow this route by proving a precise

characterization of the different conditions under which big and mild structural breaks in

the factor loadings may occur, as well as develop a test to distinguish between them. We

conclude that the influence of big breaks cannot be ignored since it may lead to misleading

results in the usual econometric practices with factor models.

The second paper, which is the most closely related to ours, is by Breitung and Eick-

meier (2010). Like us, these authors propose statistical tests for big structural breaks in the

factor loadings. Their test relies on the argument that, under the null of no structural break

plus some additional assumptions, the estimation error of the factors can be ignored and

thus the estimated factors can be treated as the true factors. Consequently, a Chow-type

test can be constructed by means of separate regressions for each variable in the dataset

where the regressors are the estimated factors for the whole sample period and their trun-

cated version from the date of the break onwards whre the coefficients on the latter are

tested for statistical significance. However, in our view, the Breitung and Eickmeier’s test

suffers from two limitations: (i) it is based on comparing the empirical rejection frequency

among the individual regressions to a nominal size of 5% under the null of no breaks de-

spite the fact that the limiting distribution of this test statistic is not known; and (ii) it is
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claimed that the number of factors can be correctly estimated using subsamples before

and after the known break date. However, if either the break date is not considered to be

a priori known or the number of factors is not correctly specified, their test may exhibit

poor power. For example, as explained below, a factor model with r common factors and

1 structural break in the factor loadings admits a standard factor representation with r+1

common factors without a break. Hence, if the number of factors is incorrectly specified

as being r+1 instead of r, their test may not detect any break at all.1

Our contribution in this paper is to propose a simple testing procedure to detect struc-

tural breaks in the factor loadings which allows for different types of breaks and does not

suffer from the previous shortcomings. In particular, we first derive some asymptotic re-

sults finding that, in contrast to small breaks where both the number of factors and the

factor space are consistently estimated, the number of factors will be over-estimated when

big breaks occur. We argue that ignoring those big breaks can have serious consequences

on the forecasting performance of factors in some popular regression models. We then

propose a simple two-step test procedure for testing big breaks. In the first step, the num-

ber of factors for the whole sample period is estimated as r̂, and then the r̂ factors are

estimated using PC. In the second step, one of the estimated factors (e.g., the first one)

is regressed on the remaining r̂− 1 factors, and the standard Chow Test or the Sup Type

Test of Andrews (1993), depending on whether the date of the break is treated as known

or unknown, is then used to test for a structural break in this regression. If the null of no

structural breaks is rejected in the second-step regression, we conclude that there are big

breaks and, otherwise, that either no breaks at all exist or that only small breaks occur.

We also illustrate the finite sample performance of our test using simulations, as well as

provide an empirical application of how to implement our testing approach.

The rest of the paper is organized as follows. In Section 2, we present the basic no-

tation, assumptions and give precise definitions of two different types of structural breaks

considered here: big and small breaks. In Section 3, we analyze the consequences of big

breaks on the choice of the number of factors and their estimation, as well as the effects of

those breaks on the factor augmented regressions. In Section 4, we derive the asymptotic

results underlying our approach and discuss the advantages of our proposed test against

Breitung and Eickmeier’s (2010) test. Section 5 deals with the finite sample performance

of our test procedure using Monte-Carlo simulations. Section 6 provides two empirical

applications. Finally, Section 7 concludes.

2 Notation and Preliminaries

We consider factor models that can be rewritten in the static canonical form:

Xt = AFt + et (1)

1Even when the break date is known, the number of factors could still be incorrectly estimated due to

finite-sample problems of the consistent information criteria used to choose the number of factors to be

estimated.
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where Xt is the N ×1 vector of observed variables, A = (α1, . . . ,αN)
′ is the N × r matrix

of factor loadings, r is the number of common factors, Ft = ( ft1, . . . , ftr)
′ is the r×1 vec-

tor of common factors, and et is the N × 1 vector of idiosyncratic errors. In the case of

dynamic factor models, all the common factors ft and their lags are stacked into Ft . Thus,

a dynamic factor model with r dynamic factors and p lags of these factors can be written

as a canonical static factor model with (r + 1)× p static factors. Further, given the as-

sumptions we make about the et error terms, the case analyzed by Breitung and Eickmeier

(2010) where the eit disturbances are generated by individual specific AR(pi) processes is

also considered. Notice, however, that our setup excludes the generalized dynamic factor

models considered by Forni and Lippi (2001) when the polynomial distributed lag tends

possibly to infinity.

We assume that there is a single structural break in the factor loadings of all factors at

the same time τ :

Xt = AFt + et t = 1,2 . . . ,τ (2)

Xt = BFt + et t = τ +1, . . . ,T (3)

where B = (β1, . . . ,βN)
′ is the new factor loadings after the break. By defining the matrix

C = B−A, which captures the size of the breaks, the factor model in (2) and (3) can be

rewritten as:

Xt = AFt +CGt + et (4)

where Gt = 0 for t = 1, . . . ,τ , and Gt = Ft for t = τ +1, . . . ,T .

As argued by Stock and Watson (2002), the effects of some mild instability in the

factor loadings can be averaged out, so that estimation and inference based on PC remain

valid. Our aim is to generalize their analysis by distinguishing between two types of break

sizes: big and small. Whereas the latter correspond to those breaks characterized by Stock

and Watson (2002, 2009) and therefore can be neglected, our goal is to analyze which are

the effects of the former.We we will show that they cannot be ignored. Thus, to distinguish

between both types of breaks, it is convenient to partition the matrix C as follows:

C = [Λ H]

where Λ and H are N × k1 and N × k2 matrices that corresponds to the big and the small

breaks, and k1 + k2 = r. In other words, we assume that, among the r factors, k1 and k2

factors are subject to big and small breaks in their loadings, respectively. Accordingly, we

can also partition Gt into two parts, G1
t and G2

t , such that (4) can be rewritten as:

Xt = AFt +ΛG1
t +HG2

t + et (5)

where Λ = (λ1, . . . ,λN)
′ and H = (η1, . . . ,ηN)

′.

Once the basic notation has been established, the next step is to provide precise defini-

tions of the two types of breaks.

Assumption 1. Breaks
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a. E||λi||4 < ∞. N−1 ∑N
i=1 λiλ ′

i → ΣΛ as N → ∞ for some positive definite matrix ΣΛ.

b. ηi = Op(
1√
NT

) for i = 1,2, . . . ,N.

The matrices Λ and H are assumed to contain random elements. Assumption 1.a yields

the definition of a big break which also includes the case where λi = 0 ( no break) for a

fixed proportion of variables as N → ∞. Assumption 1.b, in turn, provides the definition

of small breaks which can be ignored as N and T goes to infinity.

To investigate the influence of the breaks on the estimation of factors and the number of

factors, some further assumptions need to be imposed. To achieve consistent notation with

the previous literature in the discussion of these assumptions, we follow the presentation of

Bai and Ng (2002) with a few slight modifications. Let tr(Σ) and ||Σ||=
√

tr(Σ′Σ)denote

the trace and the norm of a matrix Σ, respectively, while [Tπ] denotes the integer part of

T ×π for π∈ (0,1). Then

Assumption 2. Factors: E(Ft)= 0, E||Ft ||4 <∞, T−1 ∑T
t=1 FtF

′
t →ΣF and T−1 ∑τ

t=1 FtF
′

t →
π∗ΣF as T → ∞ for some positive definite matrix ΣF where π∗ = limt→∞

τ
T

.

Assumption 3. Factor Loadings: E||αi||4 ≤ M < ∞, and N−1A′A → ΣA, N−1Γ′Γ → ΣΓ
as N → ∞ for some positive definite matrix ΣA and ΣΓ , where Γ = [A Λ].

Assumption 4. Idiosyncratic Errors: the error terms et , the factors Ft and the loadings

Ai satisfy the Assumption A, B, C, E, F1 and F2 of Bai (2003).

Assumption 5. Independence of Factors, Loadings, Breaks, and Idiosyncratic Errors:

[Ft ]
T
t=1, [αi]

N
i=1, [λi]

N
i=1, [ηi]

N
i=1 and [et ]

T
t=1 are mutually independent groups, and for all i

1√
T

T

∑
t=1

Fteit = Op(1).

While Assumptions 3 and 4 are standard in the literature on factor models allowing

for weak cross-sectional and temporal correlations between the errors ( see Bai and Ng,

2002), Assumption 2 is a new one. Since factors and factor loadings cannot be separately

identified, we have to assume some stable properties for the factors in order to test the

stability of the factor loadings. We also allow the different factors to be correlated at all

leads and lags. Assumption 5 on the independence among the different groups is stronger

than the usual assumptions made by Bai and Ng (2002). Notice, however, that we could

have also assumed some dependence between these groups and then impose some restric-

tions on this dependence when necessary. Yet, this would complicate the proofs without

essentially altering the intuition behind the main idea underlying our approach. Thus, for

the sake of simplicity, we assume them to be independent.

5



3 The Effects of Structural Breaks

In this section, we study the effects of the structural breaks on the estimation of factors

based on PC, and on the estimation of the number of factors based on the information

criteria proposed by Bai and Ng (2002). Our main result is that the estimated factors using

PC are not consistent and the number of factors tends to be overestimated when big breaks

exist, in contrast to Stock and Watson’s (2002, 2009) findings that the true factor space is

still consistently estimated.

3.1 The estimation of factors

Let us rewrite model (5) with k1 big breaks and k2 small breaks in the more compact form:

Xt = AFt +ΛG1
t + εt (6)

where εt = HG2
t + et . The idea is to show that the new error terms εt still satisfy the nec-

essary conditions for (6) being a standard factor model with new factors F∗
t = [F ′

t G1′
t ]

′

and new factor loadings [A Λ].
Let r̄ be the selected number of factors, either by the information criteria or by some

prior knowledge. Note that r̄ is not necessarily equal to r. Let F̃ be
√

T times the r̄

eigenvectors corresponding to the r̄ largest eigenvalues of the matrix XX ′, and define

F̂ = F̃VN,T

as the estimated factors, where the T ×N matrix X = [X̄1, X̄2 . . . X̄T ]
′, X̄t = [Xt1,Xt2, . . . ,XtN]

′,
F̂ = [F̂1, F̂2, . . . , F̂T ]

′, and VN,T is a diagonal matrix with the r̄ largest eigenvalues of (NT )−1XX ′.
Then we have

Proposition 1. For any fixed r̄ ≥ 1, under Assumptions 1 to 5, there exists a full rank

r̄× (r+ k1) matrix D and δN,T = min{
√

N,
√

T} such that:

F̂t = DF∗
t +Op(1/δN,T ) (7)

This result implies that F̂t estimate consistently the space of the new factors, F∗
t , but

not the space of the true factors, Ft .

Let us consider two cases. First, when k1 = 0 ( no big breaks), we have that G1
t = 0,

and F∗
t = Ft , so that (7) becomes

F̂t = DFt +Op(1/δN,T ) (8)

for a r̄× r matrix D of full rank. This just trivially replicates the well-known consistency

result of Bai and Ng (2002).

Secondly, in the more interesting case when k1 > 0 (big breaks exist), we can rewrite

(7) as

F̂t = [D1 D2]

(

Ft

G1
t

)

+op(1) = D1Ft +D2G1
t +op(1) (9)
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where the r̄ × (r + k1) matrix D is partitioned into the r̄ × r matrix D1 and the r̄ × k1

matrix D2. Note that, by the definition of Gt , G1
t = 0 for t = 1,2, . . . ,τ , and G1

t = F1
t for

t = τ +1, . . . ,T , where F1
t is the k1×1 sub-vector of Ft that experiences big breaks in their

loadings. Therefore (9) can be expressed as:

F̂t = D1Ft +op(1) for t = 1,2, . . . ,τ (10)

F̂t = D∗
2Ft +op(1) for t = τ +1, . . . ,T (11)

where D∗
2 =D1+[D2 0], 0 is a r̄×(r−k1) zero matrix, such that D2 6= 0 since D is a full-

rank matrix. Hence, since D1 6= D∗
2, this result implies that, in contrast to small breaks, the

estimated factors F̂ are not consistent for the space of the true factors F under big breaks.

Thus, in this case, the use of estimated factors as predictors or explanatory variables may

lead to misleading results in the usual econometric practices with factor models.

To illustrate the consequences of having big breaks in the factor loadings, consider the

following simple Factor Augmented Regression (FAR) model (see Bai and Ng, 2006):

yt = a′Ft +b′Wt +ut , t = 1,2, ..,T (12)

where Wt is a small set of observable variables and the r× 1 vector Ft contains the r

common factors driving a large panel dataset xit (i= 1,2, ...N; t = 1,2, ...T ) which excludes

both yt and Wt .The parameters of interest are the elements of vector b while Ft is included

in (12) to control for potential endogeneity arising from omitted variables. Since we cannot

identify Ft and a, only the product a′Ft is relevant. Suppose there is a big break at date τ .

From (10) and (11), we can rewrite (12) as:

yt = (a′D−
1 )(D1Ft)+b′Wt +ut for t = 1,2, . . . ,τ

yt = (a′D∗−
2 )(D∗

2Ft)+b′Wt +ut for t = τ +1, . . . ,T

where D−
1 D1 = D∗−

2 D2 = Ir, or equivalently

yt = a′1F̂t +b′Wt + ũt for t = 1,2, . . . ,τ (13)

yt = a′2F̂t +b′Wt + ũt for t = τ +1, . . . ,T (14)

where a′1 = a′D−
1 and a′2 = a′D∗−

2 , and ũt = ut +op(1).

If the number of factors is assumed to be known a priori , r̄ = r, then D−
1 = D−1

1 ,

D∗−
2 = D∗−1

2 . Since D1 6= D∗
2, it follows that D−1

1 6= D∗−1
2 and thus a1 6= a2. Therefore,

using the indicator function I(t > τ ), (13) and (14) can be rewritten as

yt = a′1F̂t +(a2 −a1)
′F̂tI(t > τ )+b′Wt + ũt , t = 1,2, ..,T (15)

The implication is that if we were to ignore the set of regressors F̂tI(t > τ ) in (15), the

estimation of b will in general become inconsistent due to ommited variables bias. There
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are many examples in the literature where the number of factors is a priori imposed for

theoretical reasons, e.g., to name a few, a single common factor representing a global effect

is assumed in the well-known study by Bernanke, Boivin and Eliasz (2005) on measuring

the effects of monetary policy in Factor Augmented VAR (FAVAR) models, or two factors

are imposed by Rudebusch and Wu (2008) in their macro-finance model.

Alternatively, if the number of factors is not assumed to be apriori known and therefore

needs to be estimated using some information criteria, we will show in Proposition 2 in

the next section that the chosen number of factors will tend to r + k1 as the sample size

gets large. In this case, D1 and D2 are (r+ k1)× r, and by the definitions of D1 and D∗
2,

it is easy to show that we can always find a r× (r+ k1) matrix D∗ = D−
1 = D∗−

2 such that

D∗D1 = D∗D∗
2 = Ir. If we define

a∗ = a′D∗ (16)

then a′1 = a′2 = a∗ so that (13) and (14) can be rewritten as

yt = a∗F̂t +b′Wt + ũt , t = 1,2, ..,T (17)

From above equation we can see that the estimation of (12) will not be affected by the

estimated factors under big breaks if r̄ = r+ k1.

In sum, in the presence of big breaks, the use of estimated factors as the true factors

when assuming that the number of factors is a priori known will lead to inconsistent es-

timates in a FAR. As a simple remedy, F̂tI(t > τ ) should be added as regressors when

big breaks are detected and the break date is located. Alternatively, without pretending

to know a priori the true number of factors, the estimation of FAR will be robust to the

estimation of factors under big breaks if the number of factors is overestimated. Notice

that a similar argument will render inconsistent the impulse response functions in FAVAR

models where (12) becomes yt+1 = (Ft+1,Wt+1)́. As a result, in order to run regression

(17), a formal test of whether big breaks exist is required.We will illustrate these points

by using simulations in a typical forecasting exercise where the predictors are common

factors estimated by PC.

3.2 The estimated number of factors

Breitung and Eickmeier (2010) have previouosly argued that the presence of structural

breaks in the factor loadings may lead to the overestimation of the number of factors but

they do not prove this result. In this part, we fill this gap by providing a rigorous proof.

Let r̂ be the estimated number of factors in (6) using the information criteria of Bai

and Ng (2002). Then the following result holds:

Proposition 2. Under Assumptions 1 to 5, it holds that

lim
N,T→∞

P[r̂ = r+ k1] = 1
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When there is no big break (k1 = 0), this result replicates Theorem 2 of Bai and Ng

(2002). However, under big breaks (k1 > 0), their information criteria will overestimate

the number of factors by the number of big breaks (k1). Actually, Bai and Ng (2002)’s

criteria, that consistently estimate the number of true factors, will overestimate the number

of original factors when there are big breaks because we have shown that a factor model

with those breaks admits a representation without break but with more factors.

Finally, notice that, although the presence of structural breaks in the factor loadings

may lead to wrong estimation of the factor space and the number of factors, the common

part of a factor model (AFt and BFt) can still be consistently estimated if enough factors

are extracted.

4 Testing for Structural Breaks

4.1 Hypotheses of interest and test statistics

From the previous discussion, we have found that the factor space and the number of

factors are both consistently estimated only when mildl breaks exist. Therefore, our goal

here is to develop a test for big breaks.

If we were to follow the usual approach in the literature to test of structural breaks, we

should consider

H0 : A = B

H1 : A 6= B

However, if only small breaks occur, the alternative hypothesis may not be interesting

since C = A−B vanishes as N → ∞ and T → ∞. Thus, this kind of local alternatives for

which the usual test should have no trivial power, is not relevant for the large factor models

we consider here. Therefore, since our focus is on big breaks, we consider instead:

H0 : k1 = 0

H1 : k1 > 0

where the null and alternative hypotheses correspond to the cases where there are no big

breaks (yet there may be small breaks) and there is at least one big break, respectively.

To test the above null hypothesis, we consider the following two-step procedure:

1. In the first step, the number of factors to estimate, r̄ , is either determined by Bai and

Ng ´s (2002) information criteria (r̄ = r̂) or by prior knowledge, so that r̄ common

factors (F̂t) are estimated by PC.

2. In the second step, we consider the following linear regression of the first estimated

factor on the remaining r̄−1 ones:

F̂1t = c2F̂2t + · · ·+ cr̄F̂r̄t +ut = c′F̂−1t +ut (18)

9



where F̂−1t = [F̂2t · · · F̂r̄t ]
′ and c = [c2 · · ·cr̄]

′ are (r̄−1)×1 vectors. Then we test for

a structural break of c in the above regression. If a structural break is detected, then

we reject H0 : k1 = 0; otherwise, we cannot reject the null stating that there are no

big breaks.

Both steps can be easily implemented in practice. In the second step, although there

are many methods of testing for structural breaks in a simple linear regression model, we

consider the Chow Test when the possible break date is assumed to be known, and the

Sup-type Test when no prior knowledge about the break date exists. Moreover, since the

Wald, LR, and LM test statistics have the same asymptotic distribution under the null, we

focus on the LM and Wald tests because they are simpler to compute.

Following Andrews (1993), the LM test statistic is defined as:

L (π̄) =
T

π̄(1− π̄)

( 1

T

τ

∑
t=1

F̂−1t ût

)′
Ŝ−1
( 1

T

τ

∑
t=1

F̂−1t ût

)

(19)

where π̄= τ/T , ût is the residuals in the OLS regression of (18), S= limT→∞ Var
(

1√
T

∑T
t=1 F̂−1tut

)

,

and Ŝ is a consistent estimate of S.

The Sup-LM statistic is defined as:

L (Π) = sup
π∈Π

T

π(1−π)

( 1

T

[Tπ]

∑
t=1

F̂−1t ût

)′
Ŝ−1
( 1

T

[Tπ]

∑
t=1

F̂−1t ût

)

(20)

where Π is some pre-specified subset of [0,1].

Similarly, the Wald and Sup-Wald test statistics can be constructed as:

L
∗(π̄) = T

(

ĉ1(π̄)− ĉ2(π̄)
)′

V̂−1
(

ĉ1(π̄)− ĉ2(π̄)
)

(21)

and

L
∗(Π) = sup

π∈Π
T
(

ĉ1(π)− ĉ2(π)
)′

V̂−1
(

ĉ1(π)− ĉ2(π)
)

(22)

where ĉ1(π) and ĉ2(π) are OLS estimates of c using subsamples before and after the break

point : [Tπ]. In addition, V̂ = M̂−1ŜM̂−1, and M̂ = T−1 ∑T
t=1 F̂−1t F̂

′
−1t .

To illustrate why our two-step procedure is able to detect the big breaks, it is useful to

consider a simple example where r = 1,k1 = 1 (one common factor and one big break).

Then (6) becomes:

Xt = A ft +Λgt + εt

where gt = 0 for t = 1, . . . ,τ , and gt = ft for t = τ +1, . . . ,T . By Proposition 2, we will

tend to get r̂ = 2 in this case. Suppose now that we estimate 2 factors (r̄ = 2). Then, by

Proposition 1, we have:
(

f̂t1
f̂t2

)

= D

(

ft
gt

)

+op(1)
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where D =

(

d1 d2

d3 d4

)

is a non-singular matrix. By the definition of gt we have:

f̂t1 = d1 ft +op(1) f̂t2 = d3 ft +op(1) for t = 1, . . . ,τ

f̂t1 = (d1 +d2) ft +op(1) f̂t2 = (d3 +d4) ft +op(1) for t = τ +1, . . . ,T

which imply that:

f̂t1 =
d1

d3
f̂t2 +op(1) for t = 1, . . . ,τ

f̂t1 =
d1 +d2

d3 +d4
f̂t2 +op(1) for t = τ +1, . . . ,T

Thus, we can observe that the two estimated factors are linearly related and that the co-

efficients d1

d3
and d1+d2

d3+d4
before and after the break date must be different due to the non-

singularity of the matrix D. As a result, if we regress one of the estimated factors on the

other and test for a structural break in this regression, we should reject the null of no big

break. We choose the first estimated factor, f̂t1, as the regressand in the previous regres-

sions because being the "main factor" in the PC analysis it is likely that d3 6= 0.2Likewise,

if the break date τ is not a priori assumed to be known, the Sup-type Test will yield a natu-

ral estimate of τ at the date when the test reaches its maximum value. In what follows, we

derive the asymptotic distribution of the test statistics (19) and (20) under the null hypoth-

esis, as well as extend the intuition behind this simple example to the more general case in

order to show that our test has power against relevant alternatives.

4.2 Limiting distributions under the null hypothesis

Since in most applications, the number of factors is estimated by means of the information

criteria, and it converges to the true one under the null hypothesis of no big break, we start

with the most interesting case where r̄ = r.

Note that use of PC implies that ∑T
t=1 F̂−1t F̂1t = 0 for any T by construction, so we

have ĉ = 0 in (18) and ût = F̂1t in (19). To derive the asymptotic distributions of the LM

statistics, we impose the following additional assumptions:

Assumption 6.
√

T/N → 0 as N → ∞ and T → ∞. .

Assumption 7. {Ft} is a stationary and ergodic sequence, and {FitFjt −E(FitFjt),Ωt} is

an adapted mixingale with γm of size −1 for i, j = 1,2, . . . ,r, that is:
√

E
(

E(Yi j,t |Ωt−m)2
)

≤ ctγm

where Yi j,t = FitFjt −E(FitFjt), Ωt is a σ− algebra generated by the information at time

t, t−1, . . ., {ct} and {γm} are non-negative sequences and γm =O(m−1−δ) for some δ > 0.

2Since D is non singular, even if d3 = 0, d1 cannot be equal to zero. If the regression for the first sub-

sample yields an ill-defined (ie., very large) estimated slope, then we recommed using f̂t2 as the regressand

and f̂t1 as the regressor.
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Assumption 8. For the subset Π of [0,1]:

sup
π∈Π

∥

∥

∥

1√
NT

Tπ

∑
t=1

N

∑
i=1

αiF
′

t eit

∥

∥

∥

2

= Op(1)

Assumption 9.
∥

∥Ŝ−S
∥

∥ = op(1), and S is a (r−1)× (r−1) symmetric positive definite

matrix.

Assumption 6 and 8 are required to bound the estimation errors of F̂t , while Assump-

tion 7 is necessary for deriving the weak convergence of the test statistics using the Func-

tional Central Limit Theorem (FCLT).

Note that these assumptions are not restrictive. Assumption 6 allows T to be O(N1+δ)
for −1 < δ < 1. As for Assumption 7, it allows one to consider a quite general class of

linear processes for the factors: Fit = ∑∞
k=1 φikvi,t−k, where vt = [v1t . . .vrt ]

′ are i.i.d with

zero means, and Var(vit) = σ2
i < ∞. It can shown that in this case:

√

E
(

E(Yi j,t |Ωt−m)2
)

≤ σiσ j

(

∞

∑
k=m

|φik|
)(

∞

∑
k=m

|φjk|
)

then it suffices that
(

∞

∑
k=m

|φik|
)

= O(m−1/2−δ)

for some δ > 0, which is satisfied for a large class of ARMA processes. Assumption 8 is

analogue to Assumption F.2 of Bai (2003), which involves zero- mean random variables.

Finally, a consistent estimate of S can be calculated by a HAC estimator.

Let ”
d→ ”denote convergence in distribution , and Wr−1(·) denote a r − 1 vector of

standard Brownian Motions, then:

Theorem 1. Under the null hypothesis H0 : k1 = 0 and Assumptions 1 to 9:

L (Π)
d→ sup

π∈Π

(

Wr−1(π)−πWr−1(1)
)′(

Wr−1(π)−πWr−1(1)
)

/[π(1−π)];

L (π̄) d→ χ2(r−1).

The critical values for the Sup-type test are provided in Andrews (1993).

It is easy to show that Theorem 1 still holds when r̄ < r. Yet, when r̄ > r, the covariance

matrix S is not full ranked, although Ŝ can be inverted in any given finite sample size. In

the following section, we will show through simulations that Theorem 1 still provide good

approximations for the test statistics even when r̄ > r.
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4.3 Behavior of LM and Wald tests under the alternative hypothesis

We extend the idea of the simple example in section 4.1 to show that, under the alternative

hypothesis (k1 > 0), the linear relationship between the estimated factors changes at time

τ , so that big breaks can be detected.

First, let us consider the case where r < r̄ ≤ r+ k1 so that D1 and D∗
2 in (10) and (11)

become r̄× r matrices with full column rank. Notice that, since r < r̄, we can always find

r̄×1 vectors ρ1 and ρ2 which belong to the null spaces of D′
1 and D∗′

2 separately, that is,

ρ ′
1D1 = 0 and ρ ′

2D∗
2 = 0. Hence, premultiplying both sides of (10) and (11) by ρ ′

1 and ρ ′
2

leads to:

ρ ′
1F̂t = op(1) t = 1,2 . . . ,τ

ρ ′
2F̂t = op(1) t = τ +1, . . . ,T,

which, after normalizing the first elements of ρ1 and ρ2 to be 1, yields:

F̂1t = F̂ ′−1tρ∗
1 +op(1) t = 1,2 . . . ,τ (23)

F̂1t = F̂ ′−1tρ∗
2 +op(1) t = τ +1, . . . ,T (24)

Next, to show that ρ∗
1 6= ρ∗

2 , we proceed as follows. Suppose that γ ∈ Null(D′
1) and

γ ∈ Null(D∗′
2 ), then by the definition of D1 and D∗

2 and by the basic properties of full-

rank matrices, it holds that γ ∈ Null(D′). Since D is full rank r̄ × (r + k1) matrix, then

Null(D′) = 0 and thus γ = 0. Therefore, the only vector that belongs to the null space of

D1 and D∗
2 is the trivial zero vector. Further, because the rank of the null space of D1 and

D∗
2 is r̄− r > 0, we can always find two non- zero-vectors such that ρ1 6= ρ2.

Notice that when r̄ ≤ r, the rank of the null spaces of D1 and D∗
2 becomes zero. Hence,

the preceding analysis does not apply in this case despite the existence of linear relation-

ships among the estimated factors. If we regress one of the estimated factors on the others,

with ρ̂1 and ρ̂2 denoting the OLS estimates of the coefficients using the subsamples before

and after the break, it is easy to show that ρ̂1 → θ1 and ρ̂2 → θ2, but generally we cannot

verify that θ1 6= θ2.

In the case where r̄ > r + k1, the rank of null space of D defined in Proposition 1

becomes r̄− (r+ k1). Applying similar arguments as above, we can find a non zero r̄×1

vector ρ such that ρ ′D = 0. Then, premultiplying both sides of (7) by ρ ′ and normalizing

the first element of ρ to be 1, it follows that:

F̂1t = F̂ ′−1tρ∗+op(1) for t = 1,2, . . . ,T

Hence, there is still a linear relationship between the estimated factors, but this relationship

(ρ∗) is constant over time.

As a result, our test may fail to detect the breaks when r̄ ≤ r or r̄ > r+ k1, which is

confirmed by the simulation results shown in the following section. However, this may not

be a problem due to two reasons. First, we usually equate the number of factors with the

13



estimated ones, ( r̄ = r̂) and we have shown that P[r̂ = r+ k1]→ 1. Secondly, instead of

using a single value, we can try different values of r̄. Then, under the null, we should not

detect any break no matter which value of r̄ we use while, under the alternative, we should

detect breaks when r̄ lies between r and r+ k1.

4.4 Comparison with other available tests

Although the issue of instability in factor models was initially raised by Stock and Watson

(2002) in the context of small breaks, Breitung and Eickmeier (2010) (BE test, henceforth)

is, to our knowledge, the only available paper that proposes a test for big breaks. Thus,

it is natural to compare our testing procedure with theirs. In our view, the BE test suffers

from three shortcomings which are worth mentioning before the comparison is made.

First, the BE test will lose power when the number of factors is overestimated. The BE

test is equivalent to the Chow test in the regression Xit = αiFt +eit where Ft is replaced by

F̂t . However, as shown in equation (5), a factor model with big breaks in the factor loadings

admits a new representation with more factors but no break. In other words, when the

number of factors is overestimated, the PC estimators consistently estimate (up to a linear

transformation) the new factors and loadings which are stable in the new representation.

Thus the BE test may fail to detect breaks in this case. Although the authors are fully

aware of this problem (see Remark B in their paper) and suggest to split the sample to

estimate the correct number of factors, in principle this is not feasible when the break date

is considered to be unknown. Using a Sup-Type Test, as BE propose, solves the problem

of the unknown break date but, since the number of factors will tend to be overestimated,

lack of power will still be a problem.

Secondly, their testing procedure is mainly heuiristic. Their null hypothesis is A = B,

or αi = βi for all i = 1, . . . ,N, rather than α j = β j for a specific j 3. They construct N

test statistics (denoted by si i = 1, . . . ,N) for each of the N variables, but do not derive

a single statistic for H0 : A = B. One possibility that the authors mention is to combine

the N individual statistics to obtain a pooled test, but this requires the errors eit and e jt

to be independent if i 6= j, an assumption which is too restrictive. In their simulations

and applications, the decisions are merely based on the rejection frequencies, i.e., the

proportion of variables that are detected to have breaks using the individual statistics si.

This rejection frequency, defined by N−1 ∑N
i=1 I(si > α ) where I (.) is an indicator function

and α is some critical value, may converge to some predetermined nominal size (typically

5%), as shown by their simulations, but this is not a proper test insofar as its limiting

distribution is not derived.

Finally, the individual tests for each of the variables may lead to incorrect conclusions

about which individual variables are subject to breaks in their loadings of the factors, as

3The authors do not mention this, but it is implicitly assumed because they need the factors to be consis-

tently estimated under the null, which will hold only if αi = βi for all i = 1, . . . ,N, or alternatively if the the

break is small according to our definition..
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BE seemingly do.4 A key presumption for their individual test to work properly is that

the estimated factors F̂t can replace the true factors, even under the alternative hypothesis

(given that the number of factors is correctly estimated). As we have shown before, the

true factor space can only be consistently estimated under the null of no break or only

small breaks. By contrast, when big breaks exist, the space of the true factors is not well

estimated (see equations (10) and (11)). If we plug in the estimated factors in this case,

some variables that have constant loadings may be detected to have breaks due to the poor

estimation of the factors. For example, consider a factor model with big breaks in the

factor loadings where we select the right number of factors r̄ = r, and there is one of the

variables Xit that has constant loadings:5

Xit = α ′
i Ft + eit .

Then, from (10) and (11), we can also write the above-mentioned equation as follows:

Xit = (α ′
i D

−1
1 )(D1Ft)+ eit = (α ′

i D
−1
1 )F̂t + ẽit t = 1,2 . . . ,τ

Xit = (α ′
i D

∗−1
2 )(D∗

2Ft)+ eit = (α ′
i D

∗−1
2 )F̂t + ẽit t = τ +1, . . . ,T

where ẽit = eit +op(1). Notice that α ′
i D

−1
1 6= α ′

i D
∗−1
2 since D1 6=D∗

2. As a result, the factor

loadings will exhibit a break when the true factors are replaced by the estimated factors.

Hence if we apply the individual test to Xit using F̂t , we may wrongly conclude that there

is a big break in that variable when there is none.

To analyze how serious this problem could be in practice, we design a very simple

simulation. First, we generate a factor model with N = T = 200, r = 1, where the first 100

variables have constant factor loadings while the remaining 100 variables have big breaks

in their loadings. Then we estimate the factors by PC and apply the individual tests for

all the 200 variables.6 Applying the BE test, we find that rejection frequency for all the

200 variables is 53.07%, close to the proportion of variables that have breaks. However,

the rejection frequencies for the first and second 100 variables are 52.98% and 53.15% ,

respectively, which means that we falsely reject the null for more than half of the variables

that are stable while we reject the null correctly for only half of the variables that have

breaks. Further, if we increase the size of the breaks, the reject frequency can rise up to

90% while the true proportion is 50%.

Our LM and Wald tests cannot identify either which particular variables are subject

to breaks in the factor loadings but avoid the other two problems. Regarding the first

problem, we have derived its limiting distribution in Theorem 1 both for the cases of

known and unknown breaking dates. As for the second one, contrary to the BE test, our

4For example, in BE (2010, Section 6, pg. 26), it is stated that "there seems to be a break in the loadings

on the CPI and consumer expectations,..., but not in the loadings of commodity prices".
5Notice that this is possible because of Assumption 1.a.
6For simplicity, all the loadings, factors and errors are generated as standard normal variables, the mean

of the factor loadings of the second 100 variables are shifted by 0.3 at time τ = 100. The reported numbers

are averages of 1000 replications
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test needs more estimated factors than the true number (r + k1 ≥ r̄ > r) to maintain the

power. However, this overestimation it is still preferable to the BE test because in practice

the number of factors to estimate is chosen by means of the information criteria (r̄ = r̂),
and we have proved in Proposition 2 that P[r̂ = r+ k1]→ 1.

5 Simulations

In this section, we first study the finite sample properties of our proposed LM/Wald and

Sup-LM/Wald tests. Then a comparison is made with the properties of the BE test by

means of Monte-Carlo simulations. Since the only BE test with a known limiting distri-

bution is their pooled statistic when the idiosyncratic components in the factor model are

uncorrelated, we restrict the comparison to this specific case instead of using their rejection

frequency approach whose asymptotic distribution remains unknown.

5.1 Size properties

We first simulate data from the following DGP:

Xit =
r

∑
k=1

αikFkt + eit

where r = 3, αik and eit are generated as i.i.d standarised normal variables, and {Fkt} are

generated as:

Fkt = φkFk,t−1 + vkt

where φ1 = 0.8, φ2 = 0.5, φ3 = 0.2, and vkt is another i.i.d standarized normal error term.

The number of replications is 1000. We consider both the LM and Wald tests and their

Sup-type versions defined in (19)-(20) and (21)-(22). The potential breaking date τ is

considered to be a priori known and is set at T/2 for the LM/Wald tests while Π is chosen

as [0.15,0.85] for the Sup-type versions of the tests. The covariance matrix S is estimated

using the HAC estimator of Newey and West (1987).

Table 1 reports the empirical sizes (in percentages) for the LM/Wald tests and Sup-

LM/Wald tests (in brackets) using 5% critical values for sample sizes (N and T ) equal to

100, 150, 200, 250, 300 and 1000.7. We consider three cases regarding the choice of the

number of factors to be estimated by PC: (i) the correct one (r̄ = r = 3), (ii) smaller than

the true number of factors (r̄ = 2 < r = 3), and (iii) larger than the true number of factors

(r̄ = 4 > r = 3).8

Broadly speaking, the LM and Wald tests are slightly undersized for r = 2 and 3 and

more so when r = 4. Yet the effective sizes converge to the nominal size as N and T

7As mentioned earlier, the critical values of the Sup–type tests are taken from Andrews (1993).
8Notice that the choice of r = 3 allows us to analyze the consequences of performing our proposed test

with the under-parameterised choice of r = 2, where two factors are needed to perform the LM/Wald test in

(18). Had we chosen r = 2 as the true number of factors, the test could not be performed for r = 1.
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increase This finite sample problem is more accurate with the Sup-LM test especially for

small T , in line with the findings in other studies (see, Diebold and Chen, 1996) This is

hardly surprising because, for instance, when T = 100 and Π = [0.15,0.85], we only have

15 observations in the first subsample. By contrast, the Sup-Wald test is too liberal for

T = 100. Therefore, although we impose that
√

T/N goes to zero, a large T is preferable

when the Sup-LM test is used. Another conclusion to be drawn is that, despite some

minor differences, the tests perform quite similarly in terms of size even when the selected

number of factors is not correct.

5.2 Power properties

We next consider similar DGPs but this time with r = 2 and now subject to big breaks

which are characterized as deterministic shifts in the means of the factor loadings 9. The

factors are simulated as AR(1) processes with coefficients of 0.8 for the first factor and 0.2
for the second. The shifts in the loadings are 0.2 and 0.4 at time τ = T/2. Table 2 reports

the empirical rejection rates of the LM/Wald and Sup-LM/Wald tests in percentage terms

using again 1000 replications.

As expected, both tests are powerful to detect the breaks as long as r = 2< r̄ ≤ r+k1 =
4, while the power is trivial when r̄ = r = 2. Moreover, the power is low for the Sup-LM

test when T ≤ 150, which is not surprising given that the Sup-LM test is undersized. This

problem could be fixed by either using size-corrected critical values, or by the Sup-Wald

test that is more powerful in finite samples. For safety, we recommend to use data sets

with large T (at least around 200) in practice.

5.3 Comparison with BE test

To compare our test to the BE test, we need to construct a pooled statistic as suggested at

the beginning of this section. The pooled BE test is constructed as follows:

∑N
i=1 si −Nr̄√

2Nr̄

where si is the individual LM statistics in BE (2010). This test should converge to a

standarised normal distribution as long as eit and e jt are independent, an assumption we

also adopt here. For simplicity, we only report results for the case of known break dates.

We first generate factor models with r = 2, and compare the two tests under the null.

The DGPs are similar to those used in the size study. The second column of Table 3 (no

break) reports the 5% empirical sizes. In general, we find that the pooled BE and the LM

tests exhibit similar sizes.

Then, we generate a break in the loadings of the first factor while the other parts of the

models remain the same as in the DGP where we study the power properties. The break

9The results with other types of breaks such as random shifts are similar.
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is generated as a shift of 0.1 in the mean of the loadings. We consider two cases: (i) the

number of factors is correctly selected: r̄ = r = 2; and (ii) the selected number of factors

is larger than the true one: r̄ = 3 > r = 2. The third and fourth columns in Table 3 report

the empirical rejection rates of both tests. In agreement with our previous discussion, the

differences in power are striking: when r̄ = 2, the pooled BE test is much more powerful

while the opposite occurs when r̄ = 3. However, according to our result in Proposition 2,

the use of Bai and Ng’s (2002) selection criteria will yield the choice of r̄ = 3 as a much

more likely outcome as N and T increase.

5.4 The effect of big breaks on forecasting

Finally, in this section we consider the effect of having big breaks in a typical forecasting

exercise where the predictors are estimated common factors. First, we have a large panel

of data Xt driven by the factors Ft which are subject to a break in the factor loadings:

Xt = AFtI(t ≤ τ )+BFtI(t > τ )+ et

Secondly, the variable we wish to forecast yt , which is excluded from to Xt , is assumed to

be related to Ft as follows:

yt+1 = a′Ft + vt+1

We consider a DGP where N = 100,T = 200,τ = 100,r = 2,a′ = [1 1], Ft are generated

as two AR(1) processes with coefficients 0.8 and 0.2, respectively, et and vt are i.i.d normal

variables, and the break size is characterized by a mean shift between loadings A and B

occuring at half of the time sample size.

The following forecasting methods are compared in our simulation:

Bechmark Forecasting: The factors Ft are treated as observed and are used directly

as predictors. The one-step-ahead forecast of yt is defined as yt(1) = â′Ft , where â is the

OLS estimate of a using yt+1 and Ft .

Forecasting 1: We first estimated 2 factors F̂t from Xt by PCs, which are then used as

predictors. yt(1) = â′F̂t , where â is the OLS estimate of a using yt+1 and F̂t .

Forecasting 2: We first estimated 2 factors F̂t from Xt by PC, then use F̂t and F̂tI(t > τ )
as predictors. yt(1) = â′[F̂t F̂tI(t > τ )], where â is the OLS estimate of a in the regression

of yt+1 on F̂t and F̂tI(t > τ )].
Forecasting 3: We first estimated 4 factors F̂t from Xt by PC, then use them as predic-

tors. yt(1) = â′F̂t , where â is the OLS estimate of a using yt+1 and F̂t .

The above forecastings are implemented recursively, e.g., at each time t, the data

Xt ,Xt−1, . . . ,X1 and yt ,yt−1, . . . ,y1 are treated as known to forecast yt+1. This process

starts from t = 149 to t = 199, and the mean square errors (MSEs) are calculated by

MSE =
199

∑
t=149

(yt+1 − yt(1))
2

51

To facilitate the comparisons, the MSE of the Benchmark Forecasting is standardized to 1.
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The results of 1000 replications are reported in Figure 1 with different break sizes rang-

ing from 0 to 1. It is clear that the MSE of the Forecasting 1 method increases drastically

with the size of the breaks. The Forecasting 1 and 2 procedures perform equally well and

their MSEs remain constant as the break size increases, although they can not outperform

the benchmark forecasting due to the estimation errors of the factors.

6 Empirical Applications

To provide a few empirical applications of our test, we first use the dataset of Stock and

Watson (2009). This data consist of 144 quarterly time series for the US ranging from

1959:Q1 to 2006:Q4, concerning nominal and real variables. Since not all variables are

available for the whole period, we end up using their suggested balanced panel of stan-

darized variables with T = 190,N = 109 which more or less corresond to the case where

T=200, N=100 in Table 2, where no severe size distortions are found. We refer to Stock

and Watson (2009) for the details of the the data description and the standardization pro-

cedure to achieve stationarity.

Since the estimated numbers of factors using various Bai and Ng’s (2002) information

criteria range from 3 to 6, we implement the test for r̄ = 3,4,5 and 6. For the Sup- LM and

Wald tests, the trimming Π = [0.3,0.7] is used. It corresponds to the time period ranging

from 1973Q3 to 1992Q3 which includes several relevant events like, e.g., the second oil

price shock (1979) and the beginning of great moderation (1984). The graphs displayed in

Figure 1 are the series of LM and Wald tests for different values of r̄, with the horizontal

lines representing the 5% critical values of the Sup-type test.

As can be observed, the LM and the Wald tests reject the null of no big breaks (i.e.,

exceeds the lower horizontal line) for r̄ = 4,5,6 when the break date is assumed to be

known at 1984 in agreement with the results in BE (2010). Stock and Watson (2009) get

similar conclusions about the existence of breaks around the early 1980s. However, one

important implication of our results is that the breaks should be interpreted as being big

and thus cannot be neglected.

As for the case when the break date is not assumed to be a priori known, we find that,

while the Sup-LM test cannot reject the null for all values of r̄, the Sup-Wald test rejects

the null when r̄ = 5,6.(i.e., exceeds the upper horizontal line) The estimate of the break

date provided by the last test is around 1979 (second oil price shock), rather than 1984

which, as mentioned before, is the only date considered by BE (2010) as a potential break

date in their empirical application using the same dataset.

A second empirical application relies on another dataset of Stock and Watson (2003).

The data we use consists of 240 monthly marco series from 11 European countries from

1982M1 to 1997M8. This data set is standardized to a panel with T = 188 and N = 240

(see the original paper for the details). We use the trimming Π = [0.15,0.85] which spans

the period from 1984M12 to 1995M6, during which the Maastricht Treaty was signed and

the European Union was created. The results of the LM and Wald tests are shown in Figure

2 with the 5% critical values of the Sup-type test for r̄ = 3 to 6.
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It is clear that, under the assumption of a known break date, the comparison of the test

values to the 5% critical values of a χ2 distribution implies that we can easily reject the

null of no big break around 1994. However, in contrast to the Stock and Watson’s (2009)

dataset, if we compare the maximum of the LM and Wald tests to the critical values of the

Sup-type test, no big break is detected during the sample period.

7 Conclusions

In this paper, we propose a simple two- step procedure to test for big structural breaks

in the factor loadings of large dimensional factor models.that overcomes some limitations

in other available tests, like Breitung and Eickmeier (2010). In particular, we derive the

limiting distributions of our test, while theirs remains unknown, and show that it has much

better power than their test when the choice of the number of factors is based upon Bai

and Ng’s (2002) consistent information criteria Our method can be easily implemented

in practice either when the break date is considered to be known or unknown, and can

be adapted to a sequential procedure when the number of factors might not be correctly

chosen in finite samples. Lastly, and foremost, our testing procedure is useful to avoid

serious forecasting/estimation problems in standard econometric practices with factors,

like FAR and FAVAR models, especially if the number of factor is a priori determined and

the factor loadings are subject to big breaks.

In the second step of our testing approach, a Sup-type test is used to detect a break of

the parameters in that regression when the break date is assumed to be unknown. As the

simulations show, this test does not perform very well especially when T is not too large

(T < 200). As other studies on the size of sup-type tests suggest, bootstrap can improve the

finite sample performance of the test.compared to the tabulated asymptotic critical values

of Andrews (1993). It is high in our research agenda to explore this possibility.

Further research is also needed if we were to allow for multiple breaks. As Breitung

and Eickmeier point out, sequential estimation, as in Bai and Perron (1998), or an efficient

search procedure, as in Bai and Perron (2003), for finding the candidate break dates may

be employed.

Finally, while we only consider the case where structural breaks affect the factor load-

ings, it has been noted by Stock and Watson (2009) that there could be other sources of

parameter instability stemming from breaks in the factor dynamics and/or in the idiosyn-

cratic errors. Given the instability of the whole model, how to identify the instability of

each of these components is an issue that also requires further investigation.
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Appendix

A.1: Proof of Propositions 1 and 2

The proof procedes by showing that the errors, factors and loadings in model (6) satisfy Assump-

tions A to D of Bai and Ng (2002). Then, once this is shown, Propositions 1 and 2 just follow

immediately from Theorems 1 and 2 of Bai and Ng (2002). Define F∗
t = [F ′

t G1′
t ]

′, εt = HGt
2+et ,

Γ = [A Λ].

Lemma 1. E||F∗
t ||4 < ∞ and T−1 ∑T

t=1 F∗
t F∗′

t → Σ∗
F as T → ∞ for some positive matrix Σ∗

F .

Proof. E||F∗
t ||4 < ∞ follows from E||Ft||4 < ∞ by Assumption 2 and the definition of G1

t .

To prove the second part, we partition the matrix ΣF (= limT→∞ T−1 ∑T
t=1 FtF

′
t ) into:

(

Σ11 Σ12

Σ′
12 Σ22

)

where Σ11 = limT→∞ T−1 ∑T
t=1 F1

t F1′
t , Σ22 = limT→∞ T−1 ∑T

t=1 F2
t F2′

t , Σ12 = limT→∞ T−1 ∑T
t=1 F1

t F2′
t ,

and F1
t is the k1 ×1 subvector of Ft that has big breaks in their loadings, F2

t is the k2 ×1 subvector

of Ft that doesn’t have big breaks in their loadings. By the definition of F∗
t and G1

t we have:

T−1
T

∑
t=1

F∗
t F∗′

t =





T−1 ∑T
t=1 F1

t F1′
t T−1 ∑T

t=1 F1
t F2′

t T−1 ∑T
t=τ+1 F1

t F1′
t

T−1 ∑T
t=1 F2

t F1′
t T−1 ∑T

t=1 F2
t F2′

t T−1 ∑T
t=τ+1 F2

t F1′
t

T−1 ∑T
t=τ+1 F1

t F1′
t T−1 ∑T

t=τ+1 F1
t F2′

t T−1 ∑T
t=τ+1 F1

t F1′
t





By Assumption 2, the above matrix converges to

Σ∗
F =





Σ11 Σ12 (1−π∗)Σ11

Σ′
12 Σ22 (1−π∗)Σ′

12

(1−π∗)Σ11 (1−π∗)Σ12 (1−π∗)Σ11





Moreover,

det(Σ∗
F) = det





Σ11 Σ12 0

Σ′
12 Σ22 (1−π∗)Σ′

12

0 0 π∗(1−π∗)Σ11



= det(ΣF)det(π∗(1−π∗)Σ11)> 0

because ΣF is positive definite by assumption. This completes the proof.

Lemma 2. E||Γi||4 < ∞, and N−1Γ′Γ → ΣΓ as N → ∞ for some positive definite matrix ΣΓ .

Proof. This follows directly from Assumptions 1.a and 3.

The following lemmas involve the new errors εt . Let M and M∗ denote some positive con-

stants.

Lemma 3. E(εit) = 0, E|εit |8 ≤ M∗

Proof. This follows easily from E|eit |8 ≤ M (Assumption 4), E(Ft) = 0, E||Ft ||4 < ∞ (Assumption

2), and ηi = op(1) (Assumption 1.b).
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Lemma 4. E(ε ′
sεt/N)=E(N−1 ∑N

i=1 εisεit)= γ∗N(s, t), |γ∗N(s,s)| ≤M∗ for all s, and ∑T
s=1 γ∗N(s, t)2 ≤

M∗ for all t and T .

Proof.

γ∗N(s, t) = N−1
N

∑
i=1

E(εisεit)

= N−1
N

∑
i=1

E(eis +η ′
i G

2
s )E(eit +η ′

i G
2
t )

= N−1
N

∑
i=1

[

E(eiseit)+E(η ′
iG

2
s η ′

i G
2
t )
]

≤ N−1
N

∑
i=1

E(eiseit)+N−1
N

∑
i=1

√

E
(

η ′
i G

2
s

)2
E
(

η ′
i G

2
t

)2

Since N−1 ∑N
i=1 E(eiseit)= γN(s, t) by Assumption C of Bai and Ng (2002), and E

(

η ′
i G

2
t

)2
=O( 1

NT
)

for all t by Assumptions 1.b and 2, we have γ∗N(s, t) ≤ γN(s, t)+O( 1
NT

). Then

|γ∗N(s,s)| ≤ |γN(s,s)|+O(
1

NT
)≤ M∗

by Assumption C of Bai and Ng (2002). Moreover,

T

∑
s=1

γ∗N(s, t)2 ≤
T

∑
s=1

(

γN(s, t)+O(
1

NT
)
)2

=
T

∑
s=1

γN(s, t)
2 +O(

1

N
)

≤ M+O(
1

N
)≤ M∗

by Assumption E.1 of Bai (2003). The proof is complete.

Lemma 5. E(εitε jt) = τ ∗
i j,t with |τ ∗

i j,t | ≤ |τ ∗
i j| for some τ ∗

i j and for all t; and N−1 ∑N
i=1 ∑N

j=1 |τ ∗
i j| ≤

M∗.

Proof. By Assumption C.3 of Bai and Ng (2002), |τi j,t | ≤ |τi j| for some τi j and all t, where τi j,t =
E(eite jt). Then:

|τ̂i j,t | = |E(εitε jt)|
= |E(eit +η ′

i G
2
t )(e jt +η ′

jG
2
t )|

≤ |E(eite jt)|+
√

E
(

η ′
i G

2
s

)2
E
(

η ′
i G

2
t

)2

≤ |τi j|+O(
1

NT
)

for all t. Therefore

N−1
N

∑
i=1

N

∑
j=1

|τ ∗
i j| ≤ N−1

N

∑
i=1

N

∑
j=1

(

|τi j|+O(
1

NT
)
)

≤ M+O(
1

T
)

≤ M∗
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by Assumption C.3 of Bai and Ng (2002).

Lemma 6. E(εitε js) = τ ∗
i j,ts and (NT )−1 ∑N

i=1 ∑N
j=1 ∑T

t=1 ∑T
s=1 |τ ∗

i j,ts| ≤ M∗.

Proof. By Assumption C.4 of Bai and Ng (2002), (NT )−1 ∑N
i=1 ∑N

j=1 ∑T
t=1 ∑T

s=1 |τi j,ts| ≤ M, where

E(eite js) = τi j,ts. Then:

E(εitε js) = τ ∗
i j,ts = E(eite js)+E(η ′

iG
2
t η ′

jG
2
s ) = τi j,ts +E(η ′

i G
2
t η ′

jG
2
s )

and we have

(NT)−1
N

∑
i=1

N

∑
j=1

T

∑
t=1

T

∑
t=1

|τ ∗
i j,ts| ≤ (NT)−1

N

∑
i=1

N

∑
j=1

T

∑
t=1

T

∑
t=1

|τi j,ts|+(NT)−1
N

∑
i=1

N

∑
j=1

T

∑
t=1

T

∑
t=1

|E(η ′
i G

2
t η ′

jG
2
s )|

≤ M+O(1)

≤ M∗

following the same arguments as above.

Lemma 7. For every (t,s), E|N−1/2 ∑N
i=1[εisεit −E(εisεit)]|4 ≤ M∗.

Proof. Since εit = eit +η ′
i G

2
t = eit +Op(

1√
NT

), we have:

E|N−1/2
N

∑
i=1

[εitεis −E(εitεis)]|4 = E|N−1/2
N

∑
i=1

[eiteis −E(eiteis)+Op(
1√
NT

)+O(
1√
NT

)]|4

= E|N−1/2
N

∑
i=1

[eiteis −E(eiteis)]+Op(
1√
T
)+O(

1√
T
)|4

≤ M+O(
1√
T
)

≤ M∗

Lemma 8. E
(

1
N ∑N

i=1

∥

∥

∥

1√
T

∑T
t=1 F∗

t εit

∥

∥

∥

2)

≤ M∗.

Proof. By the definition of εit we have:

E
( 1

N

N

∑
i=1

∥

∥

∥

1√
T

T

∑
t=1

F∗
t εit

∥

∥

∥

2)

≤ E
( 1

N

N

∑
i=1

∥

∥

∥

1√
T

T

∑
t=1

F∗
t eit

∥

∥

∥

2)

+E
( 1

N

N

∑
i=1

∥

∥

∥

1√
T

T

∑
t=1

F∗
t η ′

i G
2
t

∥

∥

∥

2)

then by the definition of F∗
t and G2

t ,

∥

∥

∥

1√
T

T

∑
t=1

F∗
t eit

∥

∥

∥

2

=
∥

∥

∥

1√
T

T

∑
t=1

Fteit

∥

∥

∥

2

+
∥

∥

∥

1√
T

T

∑
t=τ+1

F1
t eit

∥

∥

∥

2

∥

∥

∥

1√
T

T

∑
t=1

F∗
t η ′

i G
2
t

∥

∥

∥

2

=
∥

∥

∥

1√
T

T

∑
t=1

Ftη ′
i F

2
t

∥

∥

∥

2

+
∥

∥

∥

1√
T

T

∑
t=1

F1
t η ′

i F
2

t

∥

∥

∥

2

Therefore, by Assumptions 1.b, 2 and 5, it follows easily that the first part of the right hand side of

the last inequality is O(1) and the second part is O( 1
N
). Thus the proof is complete.

Once we have proved that the new factors: F∗
t , the new loadings: Γ and the new errors: εt all

satisfy the necessary conditions of Bai and Ng (2002), Propositions 1 and 2 just follow directly

from theirTheorems 1 and 2, with r replaced by r+ k1 and Ft replaced by F∗
t .
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A.2: Proof of Theorem 1

Let F̂t define the r×1 vector of estimated factors. Under the null: k1 = 0, when r̄ = r we have

F̂t = DFt +op(1)

let D(i·) denote the ith row of D, and D(· j) denote the jth column of D. Define F̂t = DFt , and

F̂kt = D(k·)×Ft as the kth element of F̂t . Let F̂1t be the first element of F̂t , and F̂−1t = [F̂2t · · · F̂rt].

F̂1t and F̂−1t can be defined in the same way. Note that F̂t depends on N and T because D =

(F̂F/T )(A′A/N) (see Bai and Ng (2002)).

Lemma 9.

sup
π∈Π

∥

∥

∥

1

T

T π

∑
t=1

(F̂t − F̂t)F
′

t

∥

∥

∥
= Op(δ−2

N,T )

Proof. Following Bai (2003) we have:

1

T

Tπ

∑
t=1

(F̂t − F̂t)F
′

t = T−2
T π

∑
t=1

T

∑
s=1

F̂sF
′

t γN(s, t)+T−2
Tπ

∑
t=1

T

∑
s=1

F̂sF
′

t ζst +T−2
Tπ

∑
t=1

T

∑
s=1

F̂sF
′

t κst +T−2
Tπ

∑
t=1

T

∑
s=1

F̂sF
′

t ξst

= I+ II+ III+ IV

where

ζst =
e′set

N
−γN(s, t).

κst = F ′
s A′et/N.

ξst = F ′
t A′es/N.

First, note that:

I = T−2
T π

∑
t=1

T

∑
s=1

(F̂s −DFs)F
′

t γN(s, t)+T−2D
Tπ

∑
t=1

T

∑
s=1

FsF
′

t γN(s, t)

Consider the first part of the right hand side, we have

∥

∥

∥T−2
Tπ

∑
t=1

T

∑
s=1

(F̂s −DFs)F
′

t γN(s, t)
∥

∥

∥

=
∥

∥

∥
T−2

T

∑
s=1

(

(F̂s −DFs)
Tπ

∑
t=1

F ′
t γN(s, t)

)∥

∥

∥

≤ T−1/2

√

1

T

T

∑
s=1

∥

∥F̂s −DFs

∥

∥

2

√

1

T

T π

∑
t=1

∥

∥Ft

∥

∥

2

√

1

T

T

∑
s=1

T π

∑
t=1

γN(s, t)2

= T−1/2Op(δ−1
N,T )Op(1)

because 1
T ∑T

s=1

∥

∥F̂s−DFs

∥

∥

2
is Op(δ−2

N,T ) by Theorem 1 of Bai and Ng (2002), ∑T π
t=1

∥

∥Ft

∥

∥

2
is Op(1)

by Assumption 2, and 1
T ∑T

s=1 ∑T π
t=1 γN(s, t)

2 ≤ 1
T ∑T

s=1 ∑T
t=1 γN(s, t)

2 = Op(1) by Lemma 1(i) of Bai

and Ng (2002).
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For the second part, note that:

∥

∥

∥T−2D
Tπ

∑
t=1

T

∑
s=1

FsF
′

t γN(s, t)
∥

∥

∥

≤ T−2‖D‖
T

∑
t=1

T

∑
s=1

∥

∥FsF
′

t

∥

∥|γN(s, t)|

≤ Op(1)T
−1
( 1

T

T

∑
t=1

T

∑
s=1

|γN(s, t)|
)

= Op(T
−1)

because ‖D‖,
∥

∥FsF
′

t

∥

∥ and 1
T ∑T

t=1 ∑T
s=1 |γN(s, t)| are all Op(1) from Bai and Ng (2002) and Assump-

tions 2 and 4. Therefore, we have

sup
π∈Π

‖I‖= Op

( 1

δN,T

√
T

)

. (A.1)

Next, II can be written as:

T−2
T π

∑
t=1

T

∑
s=1

(F̂s −DFs)F
′

t ζst +T−2D
Tπ

∑
t=1

T

∑
s=1

FsF
′

t ζst

Similarly, we have

∥

∥

∥
T−2

Tπ

∑
t=1

T

∑
s=1

(F̂s −DFs)F
′

t ζst

∥

∥

∥

≤
√

1

T

T

∑
s=1

∥

∥F̂s −DFs

∥

∥

2

√

1

T

Tπ

∑
t=1

∥

∥Ft

∥

∥

2

√

1

T 2

T

∑
s=1

Tπ

∑
t=1

ζ 2
st

≤
√

1

T

T

∑
s=1

∥

∥F̂s −DFs

∥

∥

2

√

1

T

T

∑
t=1

∥

∥Ft

∥

∥

2

√

1

T 2

T

∑
s=1

T

∑
t=1

ζ 2
st

= Op

( 1

δN,T

√
N

)

because ζst = N−1 ∑N
i=1[eit eis −E(eiteis)] is Op(1/

√
N) by Assumption C.5 of Bai (2003). For the

second term, we can write:

T−2D
Tπ

∑
t=1

T

∑
s=1

FsF
′

t ζst =
1√
NT

1

T
D

T π

∑
t=1

qtF
′

t

where

qt =
1√
NT

T

∑
s=1

N

∑
i=1

[eit eis −E(eiteis)]Fs
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Since E‖qt‖2 < M by Assumption F.1 of Bai (2003), we have

sup
π∈Π

∥

∥

∥
T−2D

T π

∑
t=1

T

∑
s=1

FsF
′

t ζst

∥

∥

∥

=
1√
NT

sup
π∈Π

∥

∥

∥
T−1D

T π

∑
t=1

qtF
′

t

∥

∥

∥

≤ 1√
NT

‖D‖ sup
π∈Π

∥

∥

∥

√

1

T

Tπ

∑
t=1

‖qt‖2

√

1

T

T π

∑
t=1

‖Ft‖2

≤ Op(1)
1√
NT

∥

∥

∥

√

1

T

T

∑
t=1

‖qt‖2

√

1

T

T

∑
t=1

‖Ft‖2

= Op

( 1√
NT

)

Then it follows that

sup
π∈Π

‖II‖= Op

( 1

δN,T

√
N

)

. (A.2)

III can be written as:

III = T−2
T π

∑
t=1

T

∑
s=1

(F̂s −DFs)F
′

t κst +T−2D
T π

∑
t=1

T

∑
s=1

FsF
′

t κst

and the second part on the right hand side can be written as

D
( 1

T

T

∑
s=1

FsF
′
s

) 1

NT

T π

∑
t=1

N

∑
i=1

αiF
′

t eit

therefore:

sup
π∈Π

∥

∥

∥T−2D
T π

∑
t=1

T

∑
s=1

FsF
′

t κst

∥

∥

∥

≤ 1√
NT

‖D‖
∥

∥

∥

1

T

T

∑
s=1

FsF
′
s

∥

∥

∥
sup
π∈Π

∥

∥

∥

1√
NT

Tπ

∑
t=1

N

∑
i=1

αiF
′

t eit

∥

∥

∥

= Op

( 1√
NT

)

by Assumption 8.
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For the first part on the right hand side, we have

sup
π∈Π

∥

∥

∥
T−2

Tπ

∑
t=1

T

∑
s=1

(F̂s −DFs)F
′

t κst

∥

∥

∥

≤
√

1

T

T

∑
s=1

∥

∥F̂s −DFs

∥

∥

2
sup
π∈Π

√

1

T

T

∑
s=1

∥

∥

∥

1

T

Tπ

∑
t=1

F ′
t κst

∥

∥

∥

2

= Op(δ−1
N,T )

1√
NT

sup
π∈Π

√

1

T

T

∑
s=1

∥

∥

∥
F ′

s

1√
NT

T π

∑
t=1

N

∑
i=1

αiF
′

t eit

∥

∥

∥

2

≤ Op(δ−1
N,T )

1√
NT

√

1

T

T

∑
s=1

∥

∥

∥Fs

∥

∥

∥

2

sup
π∈Π

√

∥

∥

∥

1√
NT

T π

∑
t=1

N

∑
i=1

αiF
′

t eit

∥

∥

∥

2

= Op

( 1

δN,T

1√
NT

)

by Assumption 8. Thus,

sup
π∈Π

‖III‖= Op

( 1√
NT

)

. (A.3)

It can also be proved in the similar way that

sup
π∈Π

‖IV‖= Op

( 1√
NT

)

. (A.4)

Finally we have:

sup
π∈Π

∥

∥

∥

1

T

Tπ

∑
t=1

(F̂t − F̂t)F
′

t

∥

∥

∥
≤ sup

π∈Π
‖I‖+ sup

π∈Π
‖II‖+ sup

π∈Π
‖III‖+ sup

π∈Π
‖IV‖

= Op

( 1√
TδN,T

)

+Op

( 1√
NδN,T

)

+Op

( 1√
NT

)

= Op

( 1

δ2
N,T

)

Lemma 10.

sup
π∈Π

∥

∥

∥

1

T

T π

∑
t=1

F̂t F̂
′

t −
1

T

Tπ

∑
t=1

F̂tF̂
′
t

∥

∥

∥
= Op(δ−2

N,T )

Proof. Note that:

1

T

T π

∑
t=1

F̂t F̂
′

t −
1

T

T π

∑
t=1

F̂tF̂
′
t

=
1

T

T π

∑
t=1

F̂t F̂
′

t −
1

T

T π

∑
t=1

(DFt)(F
′

t D′)

=
1

T

T π

∑
t=1

F̂t(F̂
′

t −F ′
t D′)+

1

T

T π

∑
t=1

(F̂t −DFt)(F
′

t D′)

=
1

T

T π

∑
t=1

(F̂t −DFt)(F̂t −DFt)
′+

1

T
D

Tπ

∑
t=1

Ft(F̂t −DFt)
′+

1

T

Tπ

∑
t=1

(F̂t −DFt)(F
′

t D′)
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Thus:

sup
π∈Π

∥

∥

∥

1

T

T π

∑
t=1

F̂t F̂
′

t −
1

T

Tπ

∑
t=1

F̂tF̂
′
t

∥

∥

∥

≤ sup
π∈Π

∥

∥

∥

1

T

T π

∑
t=1

(F̂t −DFt)(F̂t −DFt)
′
∥

∥

∥+2‖D‖ sup
π∈Π

∥

∥

∥

1

T

Tπ

∑
t=1

(F̂t −DFt)F
′

t

∥

∥

∥

≤ 1

T

T

∑
t=1

∥

∥F̂t −DFt

∥

∥

2
+2‖D‖ sup

π∈Π

∥

∥

∥

1

T

T π

∑
t=1

(F̂t −DFt)F
′

t

∥

∥

∥

since
∥

∥F̂t −DFt

∥

∥=Op(δ−1
N,T ) and supπ∈Π

∥

∥

∥

1
T ∑Tπ

t=1(F̂t −DFt)F
′

t

∥

∥

∥
is Op(δ−2

N,T ) by Lemma 9, the proof

is complete.

The following two lemmas follow from Lemma 10 and Assumption 6:

Lemma 11.

sup
π∈Π

∥

∥

∥

1√
T

Tπ

∑
t=1

F̂−1t F̂1t −
1√
T

Tπ

∑
t=1

F̂−1tF̂1t

∥

∥

∥
= op(1)

Proof. See Lemma 10 and Assumption 6.

Lemma 12.
∥

∥

∥

1√
T

T

∑
t=1

F̂−1tF̂
′
1t

∥

∥

∥= op(1)

Proof. By construction we have 1
T ∑T

t=1 F̂−1t F̂
′
1t = 0, then the result follows from Lemma 11.

Let ⇒ denote weak convergence, D∗ = QΣA, where Q = lim F̂ ′F
T

(See proposition 1 of Bai

(2003)), ΣA = lim A′A
N

. And define Ft = D∗Ft , S = limVar
(

1
T ∑T

t=1 FF ′
)

. Then:

Lemma 13.
1√
T

T π

∑
t=1

(

F−1tF1t −E(F−1tF1t)
)

⇒ S1/2
Wr−1(π)

for π∈ [0,1].

Proof. F−1tF1t is stationary and ergodic because Ft is stationary and ergodic by Assumption

7. First, we show that {FktF1t −E(FktF1t),Ωt} is an adapted mixingale of size −1 for k =
2, . . . ,r. By definition, we have FktF1t = (D∗

(k·)Ft)(D
∗
(1·)Ft) =

(

∑r
p=1 D∗

kpFpt

)(

∑r
p=1 D∗

1pFpt

)

=

∑r
h=1 ∑r

p=1 D∗
kpD∗

1hFptFht , and FktF1t − E(FktF1t) = ∑r
h=1 ∑r

p=1 D∗
kpD∗

1h(FptFht − E(FptFht)) =
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∑r
h=1 ∑r

p=1 D∗
kpD∗

1hYhp,t . Thus:

√

E
(

E
(

FktF1t −E(FktF1t)|Ωt−m

)

)2

=

√

E
( r

∑
h=1

r

∑
p=1

D∗
kpD∗

1hE(Yhp,t |Ωt−m)
)2

≤
r

∑
h=1

r

∑
p=1

|D∗
kpD∗

1h|
√

E
(

E(Yhp,t |Ωt−m)
)2

≤ ∆
r

∑
h=1

r

∑
p=1

c
hp
t γhp

m

≤ ∆r2 max(chp
t )max(γhp

m )

since max(γhp
m ) is O(m−1−δ) for some δ > 0 by Assumption 7, we conclude that {FktF1t −

E(FktF1t),Ωt} is an adapted mixingale of size −1 for k = 2, . . . ,r.

Next, we proof the weak convergence using the Crame-Rao device. Define

zt = a′S−1/2
(

F−1tF1t −E(F−1tF1t)
)

where a ∈ R
r−1, and a′a = 1. Note that

zt =
r

∑
k=2

ãk[FktF1t −E(FktF1t)]

where ãk is the k−1th element of a′S−1/2.

E(z2
t ) ≤

(

r

∑
k=2

√

E
(

ãk[FktF1t −E(FktF1t)]
)2
)2

≤ ∆
(

r

∑
k=2

√

E
(

FktF1t

)2

−
(

E(FktF1t)
)2
)2

≤ M

because E‖Ft‖4 < ∞ and Fkt = D∗
k·Ft . Moreover, zt is stationary and ergodic, and {zt ,Ωt} is an

adapted mixingale sequence of size −1, because:

√

E

(

E(zt |Ωt−m)

)2

=

√

E

(

r

∑
k=2

ãkE
(

FktF1t −E(FktF1t)|Ωt−m

)

)2

≤
r

∑
k=2

|ãk|
√

E

(

E
(

FktF1t −E(FktF1t)|Ωt−m

)2
)

≤ max(|ãk|)
r

∑
k=2

c̃k
t γ̃k

m

by the results above we known γ̃k
m is O(m− 1− δ) for k = 2, . . . ,r, it follows that {zt ,Ωt} is an

adapted mixingale sequence of size −1. Then it follows from Theorem 7.17 of White (2001) that:

1√
T

T π

∑
t=1

zt = a′S−1/2 1√
T

Tπ

∑
t=1

(

F−1tF1t −E(F−1tF1t)
)

⇒ W (π)
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Moreover, it can be proved that:

a′1
1√
T

Tπ2

∑
t=Tπ1

(

F−1tF1t −E(F−1tF1t)
)

+a′2
1√
T

T π0

∑
t=1

(

F−1tF1t −E(F−1tF1t)
)

 N (0,(π2−π1)a
′
1Sa1+π0a′2Sa2)

by using Corrollary 3.1 of Woodridge and White (1988). The proof is complete by using Lemma

A.4 of Andrews (1993).

Lemma 14.
1√
T

T π

∑
t=1

F̂−1t F̂1t ⇒ S1/2
B

0
r−1(π)

for π∈ Π, where B0
r−1(π) = Wr−1(π)−πWr−1(1) is a vector of Brownian Bridge.

Proof. If we show that

1√
T

T π

∑
t=1

[

F−1tF1t −T−1
s

∑
s=1

F−1sF1s

]

⇒ S1/2
B

0
r−1(π) (A.5)

and

sup
π∈Π

∥

∥

∥

∥

1√
T

Tπ

∑
t=1

F̂−1tF̂1t −
1√
T

T π

∑
t=1

[

F−1tF1t −T−1
s

∑
s=1

F−1sF1s

]

∥

∥

∥

∥

= op(1) (A.6)

then the result follows from Lemma 11.

First note that

1√
T

Tπ

∑
t=1

[

F−1tF1t −T−1
s

∑
s=1

F−1sF1s

]

=
1√
T

Tπ

∑
t=1

(

F−1tF1t −E(F−1tF1t)
)

+
1

T

T π

∑
t=1

(

1√
T

T

∑
s=1

(

F−1sF1s −E(F−1sF1s)
)

)

hence A.5 can be verified by applying Lemma 13.

To prove A.6, we first define D−1 as the second to last rows of D, and D1 as the first row of D.

Then we have

F̂−1tF̂1t = D−1FtF
′

t D′
1

and

F−1tF1t = D∗
−1FtF

′
t D∗′

1

it follows that:

1√
T

Tπ

∑
t=1

(

F̂−1tF̂1t −F−1tF1t

)

=
1√
T

Tπ

∑
t=1

(

D−1FtF
′

t D′
1 −D−1FtF

′
t D∗

1 +D−1FtF
′

t D∗
1 −D∗

−1FtF
′

t D∗
1

)

= D−1

(

1√
T

T π

∑
t=1

FtF
′

t

)

(

D′
1 −D∗′

1

)

+
(

D−1 −D∗
−1

)

(

1√
T

Tπ

∑
t=1

FtF
′

t

)

D∗′
1
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Next, define F−1tF1t =
1
T ∑T

s=1 F−1sF1s, and F−1tF1t =
1
T ∑T

s=1 F−1sF1s, then:

1√
T

Tπ

∑
t=1

(

T−1
s

∑
s=1

F−1sF1s

)

= D∗
−1

(

1√
T

Tπ

∑
t=1

F−1tF1t

)

D∗′
1

= D∗
−1

(

1√
T

Tπ

∑
t=1

F−1tF1t

)

D∗′
1 −D−1

(

1√
T

Tπ

∑
t=1

F−1tF1t

)

D∗′
1 +D−1

(

1√
T

Tπ

∑
t=1

F−1tF1t

)

D∗′
1

−D−1

(

1√
T

T π

∑
t=1

F−1tF1t

)

D′
1 +D−1

(

1√
T

T π

∑
t=1

F−1tF1t

)

D′
1

=
(

D∗
−1 −D−1

)

(

1√
T

T π

∑
t=1

F−1tF1t

)

D∗′
1 +D−1

(

1√
T

T π

∑
t=1

F−1tF1t

)

(

D∗′
1 −D′

1

)

+
1√
T

Tπ

∑
t=1

( 1

T

T

∑
s=1

F̂−1sF̂1s

)

Combining the above results gives:

1√
T

Tπ

∑
t=1

F̂−1tF̂1t −
1√
T

Tπ

∑
t=1

[

F−1tF1t −T−1
s

∑
s=1

F−1sF1s

]

=
1√
T

Tπ

∑
t=1

(

F̂−1tF̂1t −F−1tF1t

)

+
1√
T

T π

∑
t=1

(

T−1
s

∑
s=1

F−1sF1s

)

= D−1

(

1√
T

T π

∑
t=1

(

FtF
′

t −F−1tF1t

)

)

(

D′
1 −D∗′

1

)

+
(

D−1 −D∗
−1

)

(

1√
T

Tπ

∑
t=1

(

FtF
′

t −F−1tF1t

)

)

D∗′
1

+
1√
T

T π

∑
t=1

( 1

T

T

∑
s=1

F̂−1sF̂1s

)

Following the similar arguments of Lemma 13, we can prove that

sup
π∈Π

∥

∥

∥

1√
T

T π

∑
t=1

(

FtF
′

t −F−1tF1t

)

∥

∥

∥= Op(1).

Moreover, it is easy to see that ‖D‖= Op(1) and ‖D−D∗‖= op(1). Finally,

∥

∥

∥

1√
T

∑T
s=1 F̂−1sF̂1s

∥

∥

∥

is op(1) by Lemma 12. Then A.6 follows easily and the proof is complete.

Theorem 1:

Proof. First note that limVar
(

1
T ∑T

t=1 F̂−1t F̂1t

)

= S because 1
T ∑T

t=1 F̂−1t F̂1t − 1
T ∑T

t=1 F−1tF1t =

op(1) and E‖Ft‖4 < ∞. Then Theorem 1 follows from Assumption 9, Lemma 14, and Continuous

Mapping Theorem.
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Table 1: Size study, 3 factors
N T α̂0.05|r̄ = 2 α̂0.05|r̄ = 3 α̂0.05|r̄ = 4

LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald

100 100 5.0 1.0 5.9 4.8 2.3 0.2 4.2 6.7 0.5 0.2 1.3 11.6

100 150 5.0 1.9 4.9 3.1 3.5 0.7 3.7 4.8 1.1 0.3 1.9 7.0

100 200 5.7 2.7 5.0 4.0 4.9 1.8 4.0 3.5 3.0 0.5 2.9 3.9

100 250 5.3 3.2 5.3 3.9 4.4 1.8 4.7 3.2 2.3 0.9 3.4 3.1

100 300 6.2 4.5 6.7 4.0 5.3 2.0 5.1 3.4 3.8 1.1 4.7 3.9

150 100 5.3 1.2 5.9 5.1 2.6 0.2 4.0 7.9 0.8 0.2 2.3 12.9

150 150 5.9 1.8 5.2 4.0 2.9 0.5 3.4 4.0 1.3 0.3 2.7 6.1

150 200 5.5 2.6 6.2 4.5 3.5 1.2 5.1 3.4 2.3 0.9 3.0 4.3

150 250 6.0 2.9 6.9 3.8 3.5 1.6 5.7 3.1 3.2 0.5 3.6 4.7

150 300 5.8 3.7 6.3 4.4 3.9 2.5 5.1 4.0 3.5 1.3 4.0 3.7

200 100 4.6 1.1 5.4 5.0 2.3 0.1 3.0 8.6 0.4 0.4 1.5 15.6

200 150 4.7 2.3 5.6 3.2 2.8 0.2 3.7 4.3 1.2 0.1 2.7 5.6

200 200 5.4 3.0 5.1 2.9 4.0 1.6 3.4 2.5 2.6 1.3 3.2 3.5

200 250 6.2 3.7 7.0 4.0 3.8 2.0 6.8 4.1 2.4 1.1 4.1 5.2

200 300 5.3 3.1 5.5 4.6 3.2 1.5 3.5 4.0 3.4 1.3 2.6 4.5

250 100 5.2 0.8 7.4 5.1 2.1 0.4 4.5 7.0 0.6 0.2 3.5 12.9

250 150 4.1 2.5 5.7 3.6 2.9 0.5 3.9 4.2 1.6 0.0 2.4 6.4

250 200 5.3 2.6 6.5 4.9 3.5 0.8 4.6 5.0 2.9 0.3 3.4 5.2

250 250 5.3 3.1 6.2 4.3 4.7 1.8 5.6 3.1 4.0 0.7 3.5 3.6

250 300 5.5 4.0 5.1 3.7 4.3 1.5 4.0 3.3 3.4 1.4 2.9 3.7

300 100 4.7 0.6 5.2 5.4 1.5 0.2 3.4 8.5 0.3 0.3 2.9 14.0

300 150 4.6 1.8 6.4 5.4 2.9 0.8 4.8 4.7 1.7 0.5 2.8 7.0

300 200 3.7 2.6 7.0 4.0 3.2 0.8 6.5 4.1 1.7 0.5 4.2 5.5

300 250 5.9 3.5 6.3 4.1 4.8 1.7 5.2 3.4 2.7 1.0 3.3 3.5

300 300 5.7 4.2 4.2 4.1 6.2 3.2 4.4 3.4 3.9 1.4 2.8 3.2

1000 1000 5.7 6.1 7.1 5.9 5.8 4.2 6.2 4.9 6.5 4.7 5.8 3.5
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Table 2: Power study, 2 factors
N T α̂0.05|r̄ = 2 α̂0.05|r̄ = 3 α̂0.05|r̄ = 4

LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald

100 100 6.3 1.8 8.1 5.4 77.9 1.8 100 98.3 41.7 0.5 100 97.3

100 150 8.9 2.5 10.0 4.8 95.8 24.0 100 100 88.8 2.8 100 99.9

100 200 8.9 4.1 9.3 5.4 97.6 72.9 92.0 92.0 95.5 39.6 91.8 92.5

100 250 12.0 5.3 12.4 6.5 99.1 98.0 97.4 97.4 99.0 77.9 97.4 97.4

100 300 13.0 6.5 11.6 6.0 99.6 98.0 83.6 83.6 99.4 94.1 83.5 83.7

150 100 6.1 2.2 7.8 5.9 77.9 1.4 99.7 99.5 41.6 0.6 99.8 99.0

150 150 7.5 2.2 8.3 5.0 95.4 24.5 100 100 88.5 2.2 100 100

150 200 8.8 4.1 9.8 5.4 98.8 76.5 100 100 97.7 40.2 100 100

150 250 9.7 4.8 10.3 6.0 99.4 94.4 99.0 99.1 98.5 79.1 99.0 99.1

150 300 11.4 6.3 10.8 7.1 99.7 98.6 90.5 91.1 99.7 94.5 90.7 91.1

200 100 6.4 1.5 7.6 4.6 79.4 2.3 100 97.7 42.9 0.7 100 99.2

200 150 8.5 3.4 9.5 6.3 97.0 24.1 100 100 89.0 3.0 100 100

200 200 8.6 3.5 9.3 4.5 99.0 77.6 100 100 98.0 38.8 100 100

200 250 11.5 4.5 12.3 5.7 100 96.8 100 100 100 82.7 100 100

200 300 11.2 5.4 12.6 6.4 99.8 98.8 99.9 99.9 99.7 95.1 99.9 99.9

250 100 5.1 1.4 6.7 4.5 80.4 1.8 100 99.7 45.2 1.0 100 99.2

250 150 6.7 2.4 7.8 5.0 97.0 24.5 99.9 100 90.7 3.2 100 100

250 200 7.2 3.4 7.8 5.0 99.2 78.9 100 100 98.4 40.9 100 100

250 250 10.5 5.5 11.3 5.8 99.8 95.6 100 100 99.7 82.4 100 100

250 300 11.5 5.7 12.0 7.6 99.9 99.2 100 100 99.9 95.1 100 100

300 100 6.0 1.6 7.0 6.7 80.1 1.2 100 99.1 45.4 0.3 100 98.9

300 150 8.6 2.1 9.9 4.7 97.3 24.9 100 100 91.5 3.4 100 100

300 200 8.6 4.3 9.2 6.8 99.3 79.0 100 100 98.4 43.3 100 100

300 250 11.4 4.4 11.9 5.8 99.8 94.3 100 100 99.5 82.6 100 100

300 300 11.3 5.9 12.1 7.7 99.8 99.0 100 100 99.8 96.3 100 100
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Table 3: Comparison of LM test, 2 factors: known break date

N T no break, r̄ = 2 1 break, r̄ = 2 1 break, r̄ = 3

BE LM BE LM BE LM

100 100 6.0 3.9 100 5.6 21.9 96.8

100 150 5.9 5.2 100 7.2 18.2 100

100 200 5.2 4.3 100 6.2 26.0 89.8

100 250 5.3 4.8 100 8.7 17.9 97.7

100 300 5.7 4.3 100 7.4 30.2 83.9

150 100 6.4 4.3 100 5.8 18.3 94.6

150 150 5.9 5.7 100 6.6 16.2 100

150 200 5.6 4.3 100 6.2 12.5 100

150 250 5.5 4.5 100 5.7 14.9 98.3

150 300 4.9 4.0 100 5.6 20.6 89.7

200 100 5.5 4.1 100 4.1 20.0 95.8

200 150 5.4 4.8 100 6.6 15.8 100

200 200 7.0 4.5 100 6.3 14.0 100

200 250 6.5 4.7 100 7.5 12.6 100

200 300 5.0 4.7 100 7.8 12.0 99.7

250 100 6.8 3.9 100 4.2 18.8 97.0

250 150 5.4 5.3 100 5.9 14.9 100

250 200 4.5 4.6 100 6.1 11.3 100

250 250 5.1 4.2 100 6.6 10.9 100

250 300 6.6 4.9 100 8.3 7.9 100

300 100 7.3 4.7 100 5.4 19.7 96.3

300 150 7.0 3.6 100 6.1 14.4 100

300 200 5.9 3.4 100 6.0 13.6 100

300 250 5.9 5.4 100 6.7 12.0 100

300 300 5.7 6.1 100 7.0 10.0 100
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Figure 1: The MSEs of different forecasting methods.
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Figure 2: US data set. The LM test (dotted) and Wald test (solid) using the trimming

Π = [0.3,0.7], for r̄ = 3 to 6 (from top to bottom), and the corresponding critical values

(horizontal dotted lines) for the Sup Test.
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Figure 3: EU data set. The LM test (dotted) and Wald test (solid) using the trimming

Π = [0.15,0.85], for r̄ = 3 to 6 (from top to bottom), and the corresponding critical values

(horizontal dotted lines) for the Sup Test.
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