MPRA

Munich Personal RePEc Archive

Cointegration testing in dependent
panels with breaks

Di Iorio, Francesca and Fachin, Stefano

University of Rome ”"La Sapienza”

9 May 2007

Online at https://mpra.ub.uni-muenchen.de/3139/
MPRA Paper No. 3139, posted 09 May 2007 UTC



Cointegration Testing in
Dependent Panels with Breaks

Francesca Di Iorio Stefano Fachin
University of Naples Federico I1 University of Rome ”La Sapienza”

Abstract

In this paper we propose panel cointegration tests allowing for breaks
and cross-section dependence based on the Continuos-Path Block bootstrap.
Simulation evidence shows that the proposed panel tests have satisfactory
size and power properties, hence improving considerably on asymptotic tests
applied to individual series. As an empirical illustration we examine invest-
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1 Introduction!

Since Engle and Granger’s seminal paper, the concept of cointegration has
spurred an enormous amount of both theoretical results and applied work.
However, the two strands of literature are typically divided by a serious gap,
with the theory assuming large sample sizes very rarely available in practice.
One way to fill this gap is to develop small sample methods (inter alia, Li
and Maddala, 1997, Johansen, 2000, 2002, Omtizgt and Fachin, 2006). The
other, obviously, is to increase the information content of the datasets anal-
ysed. Since increasing the sampling frequency is of little help for the goal of
uncovering long-run structures (Shiller and Perron, 1985) this implies either
waiting for years to pass or adding an extra dimension to the data: hence the
growing interest in non-stationary panels and the new concept of panel coin-
tegration (for a thorough discussion of the latter see Pedroni, 2004). While
helping to solve one empirical problem this solution however created a new
theoretical one, namely how to do inference on panel statistics computed
from dependent units. First generation panel cointegration procedures sim-
ply ignored the issue, which is the focus of the most recent contributions to
the debate (for a recent review see Breitung and Pesaran, 2006). In this
vein, the aim of this paper is to extend to dependent panels the Gregory and
Hansen (1996), henceforth GH, cointegration tests with structural breaks in
the cointegrating relationship. Structural breaks procedures (which require
recursive estimation) are very demanding in terms of information set, so
that they can perform particularly poorly in small samples: according to
the simulation results reported by GH, with 50 observations both positive
size bias and very low power have to be expected. Hence, the properties of
panel versions of this type of tests are a topic of obvious interest, which has
not received a fully satisfactory treatment in the still very young literature
on non-stationary panels. Under the cross-section independence assumption
we find Gutierrez (2005) and Westerlund (2006a,b); the former proposes to
combine the p-values of GH tests computed for the individual units, while the
latter derives panel cointegration tests allowing for breaks in the determin-
istic kernel (level and trend) of the cointegration regression. Acknowledging
the importance of the dependence issue, Westerlund (2006b) proposes a
bootstrap procedure complementing the asymptotic test mentioned above.
However, some caution is suggested by the fact that this procedure is based
upon simple resampling of the FMOLS or DOLS cointegrating residuals:
these are weakly dependent if cointegration holds, and non-stationary if it
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does not?. Taking a completely different route, both Banerjee and Carrion-
i-Silvestre (2006) and Westerlund and Edgerton (2006b) model dependence
with a common factor approach. Unfortunately, in both cases some restric-
tive assumptions on either the breaks or the form of cross-section dependence
are needed. More precisely, Banerjee and Carrion-i-Silvestre’s asymptotics
requires the break to fall in the same period in all units, while Westerlund
and Edgerton’s excludes any sort of short- and long-run dependence of the
explanatory variables across units. Further, in both cases large sample sizes
are required. Westerlund and Edgerton’s LM test has acceptable power for
T = 200 and N = 20, but it is disappointing (power generally lower than
50%) for T' = 100. In Banerjee and Carrion-i-Silvestre’s framework the usual
single-equation definition of cointegration (stationary residuals in the coin-
tegrating equation) is accepted if the null hypothesis of non-stationarity is
rejected both for the estimated common factor and the idiosyncratic resid-
uals, an event which in their simulations has a frequency generally much
lower than 50% even with rather large sample sizes such as T' = 100 and
N = 40.

Hence, we must conclude that a panel cointegration test fully robust to
possibly heterogenous breaks and cross-section dependence and with an ac-
ceptable small sample performance is not available yet. Building on Fachin
(2007), our proposal is to exploit Paparoditis and Politis’ (2001) Continuous-
Path Block Bootstrap (CBB). As we will see, the proposed procedure can ac-
count for any form of dependence and, to some extent, heterogenous breaks,
delivering satisfactory small sample size and power properties which may
prove of considerable help in applied work.

We shall now in section 2 introduce the set-up and outline the testing
procedure and in section 3 present the design and results of a Monte Carlo
experiment. An empirical illustration on the relationship between the invest-
ment/GDP and savings/GDP ratios, the so-called Feldstein-Horioka puzzle,
already examined by Banerjee and Carrion-i-Silvestre (2004) and Gutier-
rez (2005), is presented in section 4. Some conclusions and suggestions for
future research are finally discussed in section 5.

2 Bootstrap Panel Cointegration Testing with Breaks:
Set-up

Let us consider for simplicity a standard bivariate panel cointegration set-
up, with the right- and left-handside variables, denoted as usual by X and

Incidentally, very much the same remark applies to the panel cointegration bootstrap
test proposed in Westerlund and Edgerton (2006a), where an AR model is fitted to the
cointegration residuals in order to carry out the sieve bootstrap. If cointegration does not
hold the procedure hinges crucially upon precise estimation of the unit root, a notoriously
difficult task (on this issue, see Fachin, 2004).



Y, observed over N units and T time periods, indexed respectively by i
and ¢. In each unit X and Y are linked by a linear, not necessarily cointe-
grating, relationship with a slope break in period ti’. A panel cointegration
test allowing for breaks may be defined very simply, following Pedroni’s
(1999) group mean test approach, as the mean of cointegration statistics
with breaks computed for the individual units, i.e. the minimum of a se-
quence of tests computed for all possible breakpoints®. Similarly to the case
of panel cointegration tests, the bootstrap is a natural candidate for solving
the problem of inference under the general set-up of dependent units, with
the additional advantage of allowing the use of a robust statistics such as
a median, untractable for convential asymptotic methods. To this end, we
need to design a resampling scheme delivering pseudodata:

(7) reproducing both the autocorrelation and cross-correlation properties
of the data;

(74) accounting for the break;
(7i1) obeying the null hypothesis of no cointegration.

As mentioned above, as in Fachin (2007), the algorithm we propose is
based upon Paparoditis and Politis (2001) ” Continuous-Path Block Boot-
strap” (CBB), a resampling scheme designed to construct non-stationary
pseudo-series from data of the same type. Requirement (7) is readily satis-
fied by resampling together all the units, while (¢i¢) by resampling separately
the X’s and the Y’s, thus constructing pseudodata matching a given time
observation for the former with a different one for the latter. We thus need
to discuss only (i7). The key point here is that our implementation of the
CBB assumes that the series are non-stationary with a constant drift, which
can then be consistently estimated. Now, if X is I(1) with drift, this as-
sumption is easily seen to be violated by a slope change in the cointegrating
equation, equivalent to a change in the drift of the AY’s. Hence, we have
to resample the data separately before and after the break. Since to satisfy
() the resampling scheme is applied to all columns for a given block of time
observations, this requirement introduces a complication in our procedure:
unless the breaks happen to fall all in the same period we need to impose
the constrain ¥ = ¥ Vi. A natural choice is ¥ = median(f’l’, e ,?]’V) . To
account for the estimation error in the fﬁ-” s caused by this constraint we will
take the pseudodata of the block centred on  to be equal to the actual
data.

3Two remarks are in order here. First, for simplicity we will refer to a summary statistic
of the individual cointegration tests as a ”panel test”, although in Pedroni’s terminology
this term is reserved for tests obtained imposing an homogeneity assumption. Second, al-
though GH examined all most common residual-based no cointegration statistics, Phillips’
Zo and Z; and the ADF, in this paper we will concentrate, without much loss of generality
but some computational advantage, only on the latter.



Summing up, the bootstrap testing procedure we propose to implement
is the following:

1. compute for each unit ¢ = 1,..., N, of the data set under study,
{Xi... XN, V1.0 YN}thl the no-cointegration Gregory-Hansen statis-
tic Mm(Aj)\Fz) = inf ADF;(t) for t € [71T, 72T]; the trimming coef-
ficients 71,72 must chosen to ensure stability of the statistic at the
endpoints;

2. compute the panel cointegration statistic as, e.g., the mean or median
of the N individual statistics (respectively, G, = Zf\il Min(ADF;)/N)
and Gpe = median(Min(ADF), ..., Min(ADFN));

3. estimate the breakpoints for ‘each unit; a natural choice is the break-
point %7: associated to Min(ADF};);

4. estimate a common breakpoint £, e.g., © = medz'an(?l’, L)

5. apply the CBB with block length s (assumed to be even; the choice
of s is discussed in more detail below) separately to the X’s and
the Y’s over the intervals before ([1,...,#" — 5 — 1]) and after the
break ([t* + 5 +1,...,T)), obtaining four matrices of pseudodata:

Ab,ﬁf]_ *
for the X’s {X7. --XX/};:12 and {X7 . "Xl*\f}tT—27>+ﬁ+1’ for the Y'’s
- 2
Abfﬁfl *
(Vi Yih®  and {¥7...Y3) . .. note that T* < T, as
- 2
some observations are lost in the chaining;

6. construct the pseudo-dataset for the entire time sample joining the

pseudodata constructed before and after the break with a central block
/
of actual data: X} = [azjl e 33:@,5,1 P s Tippys $:?b+§+l T

t=1,...,N, and analogously for the Y’s;

7. compute the Group statistics G} (h = m,me; see steps 1-2) for the
pseudo-data set,

(X5 X5 Y Y
8. repeat steps (5) to (7) a large number (say, B) of times;

9. compute the boostrap significance level; assuming that the rejection
region is the left tail of the distribution, p* = prop(G} < Gr),h =
m,me.

Although exploratory simulations showed the results to be quite robust
to the choice of block length, in principle this is a critical point of the



algorithm. Here for computational convenience we applied a simple rule-of-
thumb, fixing it at 7//10. In future work we plan to implement Politis and
White’s (2003) algorithm.

3 Monte Carlo Experiment

3.1 Design

We will base our simulations on a Data Generation Process (DGP) which
is essentially a generalisation of the classical bivariate Engle and Granger
(1987) DGP to the case of dependent panels; it is very similar to that consid-
ered by Kao (1999), and it has been recently adopted by Fachin (2007). The
two variables of interest, X and Y, are linked by a possibly cointegrating,
breaking relationship:

Tig = U (la)

{ oi + BoTit + “zyw t< ti‘) (1b)

vit fy; + Brwa 4+ ufy, t> 10

where i =1,... ,N,t=1,...,T. Both errors v/, j = x,y, are assumed
to be the linear combination of a common component, f’,j = x,y, and an
idiosyncratic one, €, j = x,y,:

(=i .
uy = I{ + €y

€, =e5+0
3
{ e = gt | +el, 3

where the e{t ~ N(0, afj), j = z,y, are white noise.

To have a fully general dependence set-up we assume f% to be non-
stationary, thereby inducing cointegration across units in the X’s as well as
in the Y’s in case of cointegration between X; and Y; (|¢;| < 1)*. In this
case the common factor f¥ is stationary and induces short-run correlation
between the Y’s across units, while when cointegration does not hold (¢; =
1) it is non-stationary so that cross-units cointegration in the Y’s still holds.
Summing up:

t
fF=> 0 (4)
s=1

4This set-up is likely to be representive of many empirical applications: for instance,
in the case of regional consumption and income f* will be the national stochastic GDP
trend causing income, and hence consumption, to be cointegrated across regions.
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with 1/1{ ~ N(0,1), j = z,y. Note that for simplicity we are ruling out
the possibility of cointegration holding in some units only, but the design
could be easily generalised further to include this case also.

The simulation framework outlined above is very complex, and the tests
to be evaluated computationally demanding (this issue is discussed in more
detail below). Hence, rather than aiming at the unfeasible task of a com-
plete design we will define as a base case an empirically relevant set-up
and then explore a few interesting variations. Let us first discuss the de-
sign parameters common to all experiments. Similarly to GH we take the
model as correctly specified; with no loss of generality we set both con-
stant and slope to 2 before the break, with the slope halved after it. The
factor loadings are chosen so to ensure substantial cross-correlation in the
Y’s and cross-cointegration of the the X’s: ! ~ Uniform(—1,6) Vi, j.
In the power simulations we consider on the average rather slow adjust-
ment to equilibrium, with some heterogeneity: ¢, ~ Uniform(0.6,0.8).
Finally, further heterogeneity across units is given by the noise variances:
agj ~ Uniform(0.5,1.5), j = x,y. Given the rather short time series anal-
ysed in most experiments, in order to ensure computational stability the
trimming coefficient is never smaller than 25%. Let us now examine the
various experiments (six altogether) in some detail.

1. Base case: T = 40, N = 5, 10, 20, 40; break date Uniform over units in
[0.57'+3] = [17,23]. The time span is medium in terms of annual data,
but pretty small with a quarterly frequency, so to make it relevant
for actual empirical applications. It is definitelly smaller than those
considered in the simulation studies on the other cointegration tests
with breaks available in the literature. The breaks are distributed over
six periods centred in the middle of the time sample, with the testing
procedure searching over the interval [14, 26], corresponding to a 35%
trimming at both ends of the sample. The drift 6 in €, is set to zero
both in the DGP and, following GH’s assumption of correct model
specification, in the estimation.

2. Base case - Wide search: as Base case, with the testing procedure
searching over the interval [10,30], corresponding to 25% trimming.
The aim of this exercise is to assess the importance of the choice of
the trimming parameter.

3. Large time sample: T = 160, N = 5,10, 20, 40; break date Uniform
over units in [0.57" £ 3] = [77,83]. The time span is long in terms of



annual data, but medium with a quarterly frequency, so that it is still
relevant for actual empirical applications. Since we need the results
from this experiment to be closely comparable to those from the Base
case we mimick a situation in which more observations (more precisely,
60) become available at both ends of the sample; hence, the breaks are
distributed, and the search takes place, over the same sets of periods
centred in the middle of the time sample.

4. Drift in X: as Base case, with drift in €], set to 6 = 0.01. This case
is designed to evaluate if, similarly to the unit root tests with trend
breaks studied by Ioannidis (2005), the estimation of the drift term is
critical for our bootstrap algorithm.

5. Late break: as Base case - Wide Search, with break date Uniform over
units in [0.757 £ 3] = [27,33]. Note that this a demanding set-up, as
half of the interval in which the breaks may fall is outside the searching
interval.

A critical point of the bootstrap algorithm described above is the parti-
tion of the samples before and after the estimated breakpoint, constrained to
be homogenous across units at the median of the individual estimates. This
is intuitively acceptable if all units are affected by breaks stemming from a
common cause. However, even assuming each unit to be affected by at most
one break over the period of interest, these may be widely dispersed over
units, for instance because they stem from different causes. The following
case is designed to investigate this scenario:

6. Twin breaks: as Base case - Wide Search with break date Uniform in
[0.37+ 3] = [9,15] in the odd-numbered units, and in [0.67 £ 3] =
[25,31] in the even-numbered ones. Note that in both cases the break
may take place marginally outside the search interval, [10, 30].

The last issue to be discussed is the number the number of Monte Carlo
replications. In all simulation exercises this is chosen trying to strike a bal-
ance between the contrasting requirements of precision in the results and
control of the cost and time scale of the experiment. Here this balance is
particularly difficult to achieve because of the combined effects of the the
panel structure of the data and the recursive nature of the statistics evalu-
ated: the number of loops executed is the product of bootstrap redrawings,
units, periods included in the searching interval, and number of Monte Carlo
replications. With 1000 redrawings, 40 units and search over 20 periods the
product of first three terms is equal to 800.000; fixing the Monte Carlo repli-
cations to 1000 will thus require the execution of 800 million loops for each



experiment, with an approximate confidence interval p £+ 2+/p(1 — p)/1000
for, e.g., 5% equal to [3.6%,6.4%]. Although this interval may appear not

very precise, even improving it marginally to [4.0%, 6.0%] requires doubling
the number of replications from 1000 to 2000 and thus the total number of
loops to the considerable figure of 1.6 billion. We thus decided that 1000
replications is a reasonable choice.

3.2 Results

The results are reported in Tables 1-6 below. In the first column (label
”Asy”) we reported the mean rejection rates from individual GH tests run
on all units. Although, as we will see, the comparison with the panel tests
leads to clear cut conclusions in all cases, it should be remarked that it is
strictly speaking legitimate only with the panel tests with al 40 units, as
in the other cases the units involved are not the same. Hence, in those
cases the comparison should be taken as merely suggestive of the relative
performances that can be expected.

The results for the Base case (T' = 40, N = 5, 10, 20, 40) are fairly similar
for both searching intervals (Tables 1 and 2). Consistently with GH, we
find that the asymptotic test on individual series is considerably biased
against the null, with power unsurprisingly high. On the contrary, both the
mean and median panel cointegration bootstrap tests are somehow slightly
undersized but deliver high power both with the mean and median versions,
provided the significance level and cross-section sample size are not too small
(in practice, in our simulations o > 5% or N > 10). Hence, in this Base
case exploiting the panel dimension using the proposed bootstrap procedure
seems to provide a considerable improvement with respect to individual time
series analsysis with small time samples. With a larger time sample (Table
3) the Type I errors of the bootstrap panel tests essentially converge to
nominal levels taking into account Monte Carlo estimation error, while the
GH tests on individual time series still overreject considerably. In both cases
power is always close to 100% . When a drift term is allowed in the DGP
of the 2’s (Table 4) the rejection rates of the bootstrap panel tests increase
under both Hy and Hj, with units 6 to 10 causing large overrejection: for a
5% mean test, the Type I error jumps from 3.9% for the first five units to
16.6% for the first 10. The size bias of the asymptotic test also increases,
with power somehow adversely affected. The important lessons here is that
when using very small cross-section sample sizes great care is needed.

When the breaks take place at the end of the sample (possibily outside
the searching interval) we find that the rejection rates of both the GH and
the bootstrap panel tests fall under both Hyp and H; (Table 5). As far as the
the asymptotic test is concerned this has the effect of reducing the size bias,
but at the cost of disappointing power (only marginally higher than 50%
for a test with an approximate actual 5% size). Obviously, the negative



size bias found for panel tests in the Base case (break around the middle of
the sample) is even larger here, with the actual size of a 10% test close to
1%. Taking somehow into account the size bias, which advises against use
of test with nominal size smaller than 10%, power is nevertheless high for
all cross-section sample sizes. Very much the same holds for the panel tests®
when the breaks are clustered in two different intervals (Table 5), with an
additional note of caution on the use of very small cross-section sample sizes
(here N =5).

Table 1
Base Case: T'= 40, N from 5 to 40
Rejection Ratesx100

N

1 ) 10 20 40 5 10 20 40

Q Asy Boot-Mean Boot-Median

A. Size: ¢; =1 Vi

1.0 15.8 05 04 06 05 02 04 04 0.3
5.0 22.5 22 1.8 20 11 26 29 47 3.4
10.0 28.0 49 5.7 63 4.3 79 95 10.3 7.4

B. Power: ¢; ~ Uniform(0.6,0.8)

1.0 93.0 424 54.7 63.6 84.6 36.9 47.1 605 689
5.0 96.7 73.0 80.6 84.2 84.1 70.1 785 844 85.1
10.0 97.9 83.5 87.3 89.2 88.1 81.3 86.1 88.6 88.0

DGP: eqs. (1a)-(3), t? ~ Uniform(0.5T + 3);

search interval: [0.57 % 6];

Asy: average rejection rates of invidual no cointegration tests over all 40
units, Gregory and Hansen (1996) asymptotic critical values;
Boot-mean/median: bootstrap test on the mean/median across units of
the no cointegration statistics;

Bootstrap: 1000 redrawings, block size T'/10;

Montecarlo: 1000 replications.

®Since this case is of special interest only from the panel point of view the results for
the asymptotic tests are not reported, as they will essentially duplicate those from the
”Late break” case.
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Table 2
Base Case - Wide Search: T = 40, N from 5 to 40
Rejection Ratesx100

N
1 5 10 20 40 5 10 20 40

Q Asy Boot-Mean Boot-Median

A. Size: ¢; =1Vi

1.0 16.4 01 03 03 02 02 01 02 02
5.0 24.5 1.7 24 43 27 1.1 1.0 09 04
10.0 31.5 63 74 89 56 34 36 53 19

B. Power: ¢; ~ Uniform(0.6,0.8)

1.0 94.1 42.3 535 682 759 499 538.6 719 73.2
5.0 97.4 776 86.2 92,5 93.6 81.1 881 93.1 934
10.0 98.4 90.1 94.7 982 974 92.1 96.4 987 974

t? ~ Uni form(0.5T + 3);search interval: [0.5T & 10].
All other abbreviations and definitions: see table 1.

Table 3
Large time sample: T = 160, N from 5 to 40
Rejection Ratesx100

N
1 5 10 20 40 5 10 20 40
o} Asy Boot-Mean Boot-Median
A. Size: ¢; =1Vi
1.0 10.0 0.8 0.9 0.5 0.5 0.6 0.6 0.6 0.5
5.0 16.4 4.3 4.0 5.5 3.4 4.6 4.3 3.6 2.9
10.0 20.6 8.1 8.8 10.9 7.2 8.8 9.1 8.0 7.1

B. Power: ¢; ~ Uniform(0.6,0.8)

1.0 96.5 99.9 999 999 999 99.9 999 999 999
5.0 98.5 99.9 99.9 100.0 100.0 99.9 99.9 100.0 100.0
10.0 99.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

t? ~ Uni form(0.5T +3); search interval: [0.5T =+ 6].
All other abbreviations and definitions: see table 1.
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Table 4
Drift: T =40, N from 5 to 40
Rejection Ratesx100

N
1 5 10 20 40 5 10 20 40
Q Asy Boot-Mean Boot-Median
A. Size: ¢; =1 Vi
1.0 29.3 0.5 0.6 0.6 0.5 1.2 55 1.6 1.0
5.0 39.7 39 166 6.3 5.6 57 279 81 5.2
10.0 45.8 87 36.2 16.7 15.6 11.6  47.1 157 13.6
B. Power: ¢; ~ Uniform(0.6,0.8)
1.0 76.1 58.0 822 94.0 96.4 65.7 920 97.0 97.7
5.0 86.4 92.6 999 99.8 99.8 92.8 100.0 99.6 99.9
10.0 90.4 98.2 100.0 100.0 100.0 97.1 100.0 100.0 99.9

t? ~ Uni form(0.5T +3); search interval: [0.5T = 6].
All other abbreviations and definitions: see table 1.

Table 5
Late break: T =40, N from 5 to 40
Rejection Ratesx100

N
1 5 10 20 40 5 10 20 40
e} Asy Boot-Mean Boot-Median
A. Size: ¢; =1Vi
1.0 2.6 0.0 0.0 00 0.0 0.0 0.0 00 0.0
5.0 8.0 0.1 02 00 02 03 05 02 05
10.0 13.7 05 15 03 06 09 19 05 1.0
B. Power: ¢; ~ Uniform(0.6,0.8)
1.0 50.1 30.5 452 736 894 244 36.0 T71.0 89.6
5.0 64.8 64.8 83.4 944 98.9 53.1 77.6 927 97.5
10.0 2.7 80.1 949 98.1 99.2 71.0 90.6 97.6 99.0

t? ~ Uni form(0.75T £3); search interval: [0.57 +6]

NB:0.75T + 3 = 33, 0.57 + 6 = 30.
All other abbreviations and definitions: see table 1.
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Table 6
Twin breaks: T = 40, N from 5 to 40
Rejection Ratesx100

N
5 10 20 40 5 10 20 40
e} Boot-Mean Boot-Median
A. Size: ¢; =1 Vi
1.0 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0
5.0 03 01 05 04 03 00 1.2 0.7
10.0 1.3 01 05 04 1.0 00 19 15
B. Power: ¢; ~ Uniform(0.6,0.8)
1.0 24.7 36.1 66.8 71.0 9.9 271 68.0 75.6
5.0 52.1 62.7 85.9 89.2 28.6 529 86.3 89.7
10.0 70.1 75.8 92.6 94.8 41.5 679 915 94.3
Uniform(0.3T £3) i=1,3,... ,N —1
{ Uniform(0.67+3) i =2,4,... ,N
search interval: [10, 30];
NB: 03T —3=9,0.67T + 3 = 31.
All other abbreviations and definitions: see table 1.

0~

1

4 Empirical illustration: the Feldstein-Horioka Puz-
zle

One the major empirical puzzles of contemporary macroeconomics (six al-
together according to Obstfeld and Rogoff, 2000) is the so-called Feldstein-
Horioka Puzzle, i.e. the evidence supporting the existence of a long-run link
between the investment (I) and savings (S) to GDP (Y') ratios in advanced
economies, where high capital mobility may allow the current account to
be unbalanced for long periods. Banerjee and Carrion-i-Silvestre (2004)
investigated the issue on a data set including 14 European economies (Aus-
tria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy,
Netherlands, Portugal, Spain, Sweden, UK) over the period 1960-2002 using
panel cointegration tests allowing for a single break in the cointegrating co-
efficients. Although Banerjee and Carrion-i-Silvestre were not able to reach
a clear conclusion, their findings appear on the whole rather favourable to
the cointegration-with-break hypothesis, indeed plausible from the plots re-
ported in Figs. 1-2. However, these results may not be entirely reliable,
as the bootstrap procedure used (abandoned in the revised version of the
paper, Banerjee and Carrion-i-Silvestre, 2006) implied fitting an AR model
to a MA process with a unit root under no cointegration. We thus need to
explore some alternatives. Confirming the doubts on their empirical limits,
unfortunately neither of the cointegration tests with breaks currently avail-
able in the literature may be applied. Since savings (the right-hand side

13



variable) are generally correlated in the short-run, and in some cases coin-
tegrated, across economies (results not reported here available on request)
the assumptions underlying Westerlund and Edgerton’s (2006b) test are not
satisfied, and the small sample size as well as the likely presence of heteroge-
nous breaks advises against use of Banerjee and Carrion-i-Silvestre’s (2006)
procedure. It is thus of some interest to find out the results of applying the
procedure proposed in this paper.

As a first step of our analysis we computed ADF tests to check the prop-
erties of the series, choosing the order of the autoregression on the basis of
the significance of the last lag (maximum four). The results, reported in Ta-
ble 7, suggest that the Savings/GDP ratio may be stationary in Finland and
Portugal. We thus excluded these two countries and proceed to compute the
individual and panel cointegration tests. Examining the individual statistics
(Table 8; since essentially similar results have been obtained with 25% and
12.5% trimming we report only the latter) we find that, consistently with
theoretical expectations and somehow contrary to those formed on the basis
of visual inspection of the plots, only in five countries (Netherlands, Den-
mark, France, Spain and UK) out of 12 the Min(ADF) tests reject the null
hypothesis of no cointegration according to the asymptotic critical values.
This evidence (or, better, lack of) should however be evaluated keeping in
mind the properties of the test with the dataset at hand, which has two
features suggesting caution: small size and breaks often falling far from the
middle of the sample. Since on the basis of both GH’s and our own results
very low power has to be expected in these circumstances, the failure to re-
ject cannot be taken as a conclusive piece of evidence. We thus turn to the
bootstrap panel cointegration tests, reported in Table 9. The mean p-values
are now very small with both 25% and 12.5% trimming (respectively, 3%
and 1%), while the median ones are slightly higher but still rather small (re-
spectively, 14% and 10%). While the mean p-values are definitely strongly
significant, to correctly evaluate the median ones we should keep in mind
that, as already stressed above, the breaks are widely dispersed across units.
From our simulations (" Twin breaks” case, Table 6) we know that in these
circumstances our panel cointegration tests are likely to be severly under-
sized: hence, both median p-values should be regarded as significant, and the
no cointegration hypothesis for the panel as a whole rejected according to
both mean and median criteria and with both trimming values considered.
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Fig. 1. Savings (S) and Investments (I) to GDP (Y) ratios dynamics,
1960-2002. Left Column: S/Y and I/Y (respectively solid and dotted line,
logs). Right Column: Current Account/GDP = (S —I)/Y (solid line) and

zero (dotted line). Top to bottom: Austria, Belgium, Denmark, Finland,
France, Germany, Greece.
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Fig. 2. Savings (S) and Investments (I) to GDP (Y'), 1960-2002. Left
Column: S/Y and I/Y (respectively solid and dotted line, logs). Right
Column: Current Account/GDP = (S —I)/Y (solid line) and zero (dotted
line). Top to bottom: Ireland, Italy, Netherlands, Portugal, Spain, Sweden,

UK.
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Table 7
Investment and Savings to GDP ratios: ADF Unit Root Tests

Austria Belgium  Denmark Finland France Germany Greece
I -1.31 —1.57 —1.42 —2.16 —1.26 —2.00 —2.13
S —0.62 —1.46 —2.03 —-3.34* —1.49 —1.66 —1.11
Ireland Italy Netherlands Portugal Spain  Sweden UK
I 234 —1.32 —1.11 —3.42 —2.93 —1.54 —2.16
S —1.85 —1.29 —1.94 —4.87  —2.42 —2.06 —0.79
*: significant at 5%; **: 1%.
Table 8
Investment and Savings, 1960-2002
Min(ADF) Cointegration Tests with Break
and estimated breakpoints
Austria  Belgium  Denmark France  Germany Greece
Min(ADF) —4.28 —4.44 —5.96*** —4.95%** —4.22 —4.45
Break 1991 1982 1990 1994 1994 1999
Ireland Ttaly Netherlands  Spain Sweden UK
Min(ADF) —3.36 —4.25 —b5.50%** —6.01*** -3.97 —4.92*
Break 1987 1981 1976 1979 1970 1996

trimming: 12.5% (searching interval: 1964-1999); break: argmin(ADF);
critical values: 1% : —5.47;5% : —4.95;10% : —4.68.
*: significant at 10%; **: 5%;***: 1%.

Table 9
Investment and Savings, 1960-2002
Bootstrap Panel Cointegration Tests

Trimming Mean (p*) Median (p*)
12.5% —1.69 (0.6) —1.44 (10.2)
25% —4.62 (2.8) —4.41 (13.7)

panel: Austria, Belgium, Denmark, France, Germany, Greece,
Ireland, Italy, Netherlands, Spain, Sweden, UK;

Mean/Median: mean/median of the individual Min(ADF') statistics;
p*: bootstrap p-values x100, 1000 redrawings.

5 Conclusions

Testing panel cointegration in dependent panels allowing for breaks at un-
known periods is a challenging task, as two forms of dependence (between

17



the tests computed with the break fixed at different periods and for different
units) must be accounted for. Building upon Fachin (2007), in this paper
we propose to solve this problem using the bootstrap. Simulation results
suggest that the proposed panel testing procedures improve considerably
on the performances of pure time series Gregory and Hansen (1996) tests.
Further, it appears to be more flexible than other available panel cointegra-
tion tests with breaks, which assume either homogenous breaks (Banerjee
and Carrion-i-Silvestre, 2006) or independence of the explanatory variables
(Westerlund and Edgerton, 2006b). These expectations are confirmed by
an empirical application to the Feldstein-Horioka Investment-Savings Puz-
zle for a panel of 12 european countries. Assuming free capital movements
there are no reasons to expect any long-run relationship between these two
variables to hold, but the visual inspection of the plots suggests that this
may have been possibly the case, provided breaks are allowed. The major-
ity of individual Gregory and Hansen tests for individual countries fail to
reject the null of no cointegration, thus supporting theretical expectations.
However, the bootstrap panel tests overturn this conclusion, supporting the
view of a long-run relationship with breaks holding in the panel as a whole
and suggesting that the individual tests fail to reject merely because of low
power.

Clearly, much work is still needed on several aspects of the test proce-
dure proposed: just to mention a few, data-driven choice of the CBB block
size and exploring tests performance with multivariate models or partially
cointegrated panels.
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