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Abstract This paper introduces a notion of partitioned correlated equilib-
rium that extends Aumann’s correlated equilibrium concept (1974, 1987).
This concept captures the non-cooperative interactions arising simultane-
ously within and between groups. We build on this notion in order to pro-
vide a foundation for contest success functions (CSFs) in a game wherein
contests arise endogenously. Our solution concept and analysis are general
enough to give a foundation for any model of contest using standard equi-
librium concepts like e.g., Nash, Bayesian-Nash or Perfect-Nash equilibria.
In our environment, popular CSFs can be interpreted as a list of equilib-
rium conjectures held by players whenever they contemplate deviating from
the “peaceful outcome” of the “group formation game”. Our setup allows to
relate the form of prominent CSFs with some textbook examples of (linear)
utility functions, social utility functions in the spirit of Fehr and Schmidt
(1999) and non-expected models of utility a la Quiggin (1981, 1982). We
also show that our framework can accommodate situations in which agents
cannot correlate their actions.
Keywords: Contest success functions · Correlated equilibrium · Inter and
intra-group conflicts · Induced contests
JEL Classification Numbers: C72 · C73

1 Introduction

In a contest game agents exert irreversible effort to increase their proba-
bility of winning a prize. These situations cover phenomena ranging from
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litigation, conflict and appropriation, sport events, competition for promo-
tion within a firm, influence activities and rent seeking, situations of war
and peace, innovation and patent-race games to name just a few.1

Central to these studies, is the mechanism that determines final success or
failure for each contestant. Most of the existing contest literature starts out
by assuming a probabilistic choice function that translates an individual’s
effort into his probability of winning. Usually, in the literature this function
is called “technology of conflict” or contest success function (CSF). An im-
portant question is whether it is possible to justify certain of the technologies
of conflict used in the modeling of contests. The literature has addressed
this question in different ways.
Following the seminal work of Skaperdas (1996), a strand of the literature
provides some axiomatic foundations (see e.g. Clark and Riis, 1998). Hill-
man and Riley (1989) offer a model of the political process where the impact
of effort is uncertain. Fullerton and McAfee (1999), Baye and Hoppe (2003)
and Fu and Lu (2011) offer micro-foundations for certain CSFs for innova-
tion tournaments and patent races. Another approach rationalizes CSFs by
assuming some mediated or cooperative frameworks (Epstein and Nitzan
2006, Corchón and Dahm, 2009, 2010). However, CSFs may also arise as
the result of equilibrium behavior, in a non-cooperative framework. This is
the main purpose of this paper.
A formal description of a CSF is as follows. Given a vector of efforts, G,

each contestant i ∈ N ≡ {1, ..., n}, has a probability pi(G) of winning a
prize such that

∑n

i=1 pi(G) = 1. As a specific instance of a CSF, Tullock
(1980) proposed the following form, where, given a positive scalar σ,

pi(G) =
Gσ

i∑n

j=1 Gσ
j

for i = 1, ..., n. (1)

A generalization of this form is the (general) additive form,

pi(G) =
fi(Gi)∑n

j=1 fj(Gj)
for i = 1, ..., n (2)

where fi(·) is a non-negative, increasing function called effectivity function

which measures the merit of i in the contest.
The building block of our model is a two-stage game called the gun-butter
game. In the gun-butter game, agents simultaneously choose an activity of
production or appropriation, or any mixed combination of these two activ-
ities and then decides how much effort they exert. A natural interpretation
is that individuals choose how much of their time and effort they spend on
rent-seeking (resp. productive) activities.
Our foundation for CSFs builds on the analysis of the first-stage of this
game, when players simultaneously consider the choice of their activities at
the individual and coalitional level. In order to model these situations, we

1 For thorough surveys of this literature see e.g. Corchón (2007) and Konrad
(2009).
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introduce the notion of partitioned correlated equilibrium. This notion is
a natural extension of the correlated equilibrium concept (Aumann 1974,
1987). Aumann’s correlated equilibrium captures important aspects of col-
lective strategic behavior by allowing correlation between all players. How-
ever there are situations in which correlation takes place simultaneously,
within several groups of players. In this paper we motivate and develop
such a concept in our foundation of CSFs.
Roughly speaking, the partitioned correlated equilibrium concept aims at
modeling the idea that subgroups of players may simultaneously form dis-
joint coalitions in order to exploit the strategic correlation opportunities
specific to their own group while taking into account the correlation devices
of other groups. More formally, take any non-cooperative game in normal
form, and suppose that (disjoint) groups are formed. Then, in a partitioned
correlated equilibrium, each group plays a correlated equilibrium given the
strategies played within the other groups. In other words, a partitioned cor-
related equilibrium can be seen as an attempt to provide a solution concept
that (i) requires self-enforcing agreements within each group of players (ii)
imposes the resulting profile of non-binding agreements to be self-enforcing
between all groups.
After proving general existence results for finite strategic-form games, we ap-
ply this concept to select some particular perfect Bayesian equilibria (PBEs)
of the gun-butter game. In the context of our model, the notion of par-
titioned correlated equilibrium is a natural solution concept: a subset of
individuals will form a group because by doing so its members have the
possibility to exploit the strategic correlation opportunities specific to their
group. Hence, an underlying aspect of the partitioned correlated equilib-
rium concept is to connect the formation of a coalition with its correlation
devices. In particular, in our model, this suggests that the grand coalition
may exploit its correlated signals in order to coordinate the activities of its
members on the peaceful outcome, wherein no player devote their time on
conflict. We show that popular CSFs emerge from such an environment,
when each player contemplates the possibility to deviate from the peaceful
outcome.
To understand the intuitions behind our derivations, let us consider the
following scenario. Suppose players form the grand coalition in order to
achieve the peaceful outcome of the gun-butter game, in a (trivial)2 corre-
lated equilibrium. Then, suppose a player contemplates seceding from the
grand coalition to form a stand-alone coalition against the rest of players.
In this case, the seceding player needs to form some equilibrium beliefs by
taking into account the reactions of the rest of players, which would antic-
ipate her own deviation. In our model, this is captured by requiring that
agents play in a partitioned correlated equilibrium, in which the seceding
agent play against the correlated (equilibrium) strategies of the rest of play-
ers. Our results show that popular CSFs can be understood as the lists of

2 In our model, this correlated equilibrium boils down to a Nash equilibrium.



4 Yohan Pelosse

equilibrium beliefs generated by the set of seceding players.
Here, the sequential nature of the gun-butter game allows us to exploit the
fact that players must hold interim beliefs about the others’ choices of an
activity, conditionally on any vector of effort G that might be chosen in the
second-stage. This way we obtain a CSF as arising from the conjectures of
players in a particular subset of the perfect Bayesian equilibria of the gun-
butter game. This establishes a link between the form of win probabilities
used in contests and the probabilistic beliefs of players in the gun-butter
game. More specifically, in our model, a win probability for agent i, pi,

coincides with i’s equilibrium belief to appropriate the goods produced by
others when i is playing the first-stage of the gun-butter game in a stand-
alone coalition while others correlate their choices on productive activities.
Note that the idea of modeling the interaction of agents in an initial state-
of-nature, as a two-stage game is not new. This modeling choice was notably
used by Muthoo (2004) in order to study the emergence of property rights.
In our setup, this allows to separate the decision of appropriative or produc-
tive activity (war or peace) with the intensity of effort (how much should
be allocated to war) in a clean way.
Our notion of partitioned correlated equilibrium allows to rationalize a large
class of prominent CSFs for any number of contestants. But we also study
an alternative notion of a rationalizability, when players are unable to use
some correlated devices. In this case, our approach can still yield a founda-
tion for CSFs by considering a modified version of the gun-butter game. In
this version of the model, we notably show (see section 7) that CSFs can
be supported by a set of subgame perfect Nash equilibria of the gun-butter
game wherein players choose their activities sequentially.
A key aspect of the model and analysis is to determine the plausibility of a
CSF in terms of the players’ utility functions. We derive several prominent
CSFs by assuming some textbook examples of utility functions. For instance,
when players have preferences that exhibit perfect substitutes over the pro-
duction of others, we can rationalize the standard Tullock CSF (2). Moving
beyond the traditional expected utility model, we obtain a surprising con-
nection between a prominent family of CSFs that relies on absolute effort
differences (like difference-form CSFs) and\or relative effort differences and
recent behavioral models where individuals exhibit other-regarding prefer-
ences (Fehr and Schmidt (1999)), or rank-dependent utility (RDU) (Quiggin
(1981, 1982)).
Relationship with the literature
The main objective of this paper is closely related to Corchón and Dahm
(2009) and Corchón and Dahm (2010). Our paper should be considered as
complementary to their papers in the following sense. Corchón and Dahm
(2010) adopt a cooperative framework in which CSFs are related to bargain-
ing, claims and taxation problems. In two other approaches their derivations
arise in some mediated environments, which explicitly require the presence
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of a planner.3 Instead, we provide foundations for popular CSFs within a
purely non-cooperative and unmediated environment.
Our approach is also related to the economics literature on conflict see e.g.,
Skaperdas (1992), Grossman and Kim (1995), Hirshleifer (1995), and Este-
ban and Ray (1999). In particular, our model draws its inspiration from the
recent studies by Bloch et al. (2006) and Esteban and Ray (1999) and Jack-
son and Morelli (2009). Esteban and Ray (1999) introduce a general model
of conflict. Their analysis focuses on the relation between distribution and
the level of conflict. The analysis of Bloch et al. (2006) is geared toward the
endogenous formation of groups in models of conflict. In their setup, when
an agent contemplates breaking the universal agreement, she must antic-
ipate the reaction of other players to this initial secession. We focus our
attention on a different question, but the scenario underlying our notion of
a rationalizable CSF is similar in spirit. In our model, one may imagine that
players will form the grand coalition in order to coordinate their activities
on the peaceful outcome in the first-stage of the gun-butter game. More-
over, in both models the focus is on the conjectures held by players when
they deviate unilaterally from the grand coalition. In our case, the way a
deviating player anticipates the reaction of others when he deviates from
the initial agreement is determined by the concept of partitioned correlated
equilibrium. By contrast, Bloch et al. (2006) model the reaction of external
players by adopting a non-cooperative approach of games of coalition for-
mation, as suggested by Hart and Kurz (1983). We will further discuss this
point in Section 5.
Our paper is also related to the recent rationalist literature on war. Beviá
and Corchón (2009) study which kind of agreements can prevent war. They
analyze a two-stage game where two players can transfer some of their re-
sources to the other players in a first-stage. Then in a second-stage, players
are allowed to decide whether to declare war on the other player. Jackson
and Morelli (2009) explore a model where two countries choose armament
levels and then whether or not to go to war. Hence, a common assumption
with the present analysis is that war-peace decisions are endogenous in both
models. This contrast with most of the literature on war, which usually pos-
tulates the existence of a future conflict.4

The present paper shares also some aspects with Muthoo (2004). As in
Muthoo, we assume that players does not have property rights over the
fruits of their labor. But our focus is different. Muthoo explores the emer-
gence of these property rights by assuming the existence of a contest and
a class of conflict technologies is assumed rather than derived. By contrast,
this paper seeks to understand the emergence of a contest, but remains
silent on the determinants of the peaceful outcome. As already mentioned,
we develop a similar two-stage game to model some agents in an initial state

3 In Corchón and Dahm (2009), the planner can also be seen as a surrogate of
what the system achieves by its own forces.

4 Usually, this literature postulates a given relative military power and does not
account for war-peace decisions.
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of nature. Transported in our setting, his time line is opposite to ours: in
Muthoo’s model, players first decide how much effort they spend on two ac-
tivities (work or leisure), and in a second-stage, they simultaneously choose
the nature of this effort (fight or peace).
The rest of the paper goes as follows. We present the basic model in Section
2. In Section 3 we introduce the notion of partitioned correlated equilibrium
and establish existence results. In Section 4-5 we present our notion of ra-
tionalizability. In section 6, we present our derivations. Section 7 presents
an alternative notion of a rationalizable CSF and Section 8 concludes.

2 Model

Consider an environment populated by a finite set N = {1, 2, ..., n} of indi-
viduals (n ≥ 2). In the base model we consider a n-player two-stage game
called the gun-butter game.
In the first-stage of the game, each player i simultaneously chooses an ac-
tion θi interpreted as an activity. There are two kind of activities: produc-

tive activities, θ = 0 and appropriative activities, θ = 1, e.g., rent-seeking
activities. We assume that players can allocate their time between these
two sort of activities. 5 To model this situation, we allow each player to
pick a mixed strategy defined over the set of pure activities,

{
θ, θ

}
≡ Θ.

Thereafter, ∆(Θ) denotes the set of mixed strategies of each player i in the
first-stage of the gun-butter game.6 In light of this formulation, the unit
interval, [0, 1], represents the set of possible activities and we will refer to
[0, 1] as the set of mixed activities. It is convenient to write θi ∈ [0, 1] for
the mixed activity of player i that attaches probability θi to the appropria-
tive activity, θ.7 In a second-stage of the game, each player i chooses how
much he expends effort (i.e., intensity), Gi ∈ R+, given the realization of
his mixed strategy. For future references, let θN = (θ1, ..., θn), and as usual,
θ−i = (θ1, ..., θi−1, θi+1, ...θn) and G−i = (G1, ..., Gi−1, Gi+1, ...Gn).
To summarize, we consider the following sequence of events.

1. Players simultaneously choose an activity θi that is a mixture of an
appropriative and productive activity.

2. There is a chance move: given the mixed activity θi chosen by player i,
nature chooses a pure activity in Θ, according to the mixed strategy of
player i.

3. Each player privately observes the nature of his activity and players
simultaneously choose an effort they apply to the resulting activity.

5 The model is formulated in general terms such that different interpretations
for the underlying structured environment are possible.

6 The restriction that players have the same space of strategies is without loss
of generality.

7 From this viewpoint, appropriative and productive activities are thus just
special, “extreme”, mixed activities.
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4. Players receive their payoffs. In particular, a player obtains a prize if he
successfully appropriates outputs produced by others.

3 Partitioned correlated equilibrium

In our main approach, our foundation of CSFs requires that agents correlate
their choice of an activity in the first stage of the gun-butter game. This is
in line with Aumann’s correlated equilibrium (1974, 1987). But, in our case
correlation takes place within some proper subset of players only, whereas
in a correlated equilibrium correlation is between all players.

3.1 definition

Attention in this section is focused on finite n-player normal-form games,
Γ = 〈N, (Θi, Ui)i∈N 〉, where Θi is a finite set of strategies available to
player i, and Ui : ×i∈NΘi → R is the payoff function of player i. A coalition
structure, P(N), is a partition of N, and its elements are called coalitions
(or groups). For any coalition S ⊆ N, let ΘS = ×i∈SΘi. For a set A let
∆(A) be the set of all probability measures. For any non-singleton coalition
S, an element pS of ∆(ΘS) is called a correlated strategy distribution for
S. For any coalition structure P(N), let p−S ≡ (pS

′ )S
′∈P(N)\{S}.

When a coalition S forms, the correlation device, (ΩS , qS , (Pi
S)i∈S) ≡ dS , of

group S is described by a finite set of signals ΩS , a probability distribution
qS over ΩS and a partition Pi

S of ΩS for every player i ∈ S. Since ΩS is
finite, the probability distribution qS is just a real vector qS = (qS(w))w∈ΩS

.

From Γ and (dS)S∈P(N) ≡ dP(N), we define the extended game ΓP(N) as
follows:

– for each coalition S ∈ P(N), w is chosen in ΩS according to qS

– every player i ∈ S is informed of the element P i
S(w) of Pi

S which contains
w.

– Γ is played: every player i chooses a strategy θi in Θi and gets the utility
Ui(θN ) where θN = (θi)i∈N .

A (pure) strategy for player i ∈ S in ΓP(N) is a mapping τ i
S : ΩS → Θi

which is Pi
S-measurable.8 Let τS = (τ i

S)i∈S be a strategy profile in game
ΓP(N). The interpretation is that in, ΓP(N), every player i in a coalition
S chooses θi as a function of his private information on the random signal
w ∈ ΩS which is selected before the beginning of Γ .
For our purposes, what really matters in correlated equilibrium is the in-
duced probability distribution over the action profiles. Therefore, with some
abuse of terminology, we will directly define a correlated equilibrium as a

8 In other words, τ i

S(w
′

) = τ i

S(w) if w
′

∈ P i

S(w).
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probability distribution over the action profiles. Let (dS , τS) be a correla-
tion device for coalition S. Its induced probability distribution over action
profiles is given by the function pS : ΘS → [0, 1] defined by,

pS(θS) = qS({w ∈ ΩS : τS(w) = θS}) =
∑

{w∈ΩS :τS(w)=θS}

qS(w).

For any coalition S ∈ P(N), and any strategy profile, p−S , we define,
Ui(·, p−S) : ΘS → R, as the payoff function of player i ∈ S. This way, it is
then natural to define the (parametrized) intra-coalition game of coalition
S, ΓS(p−S) = 〈S, (Θi, Ui(·, p−S))i∈S〉 , for every p−S . The multi-linear ex-
tension of Ui(·, p−S) to ∆(ΘS) is still denoted by Ui(·, p−S).
In a partitioned correlated equilibrium, each coalition plays a correlated
equilibrium of his own intra-coalition game.

Definition 1 Let ΓS(p−S) be the intra-coalition game of S. A correlated dis-
tribution pS ∈ ∆(ΘS) is a correlated equilibrium for coalition S in ΓS(p−S)
if ∑

θS\i∈ΘS\i

pS(θS)Ui(θS , p−S) ≥
∑

θS\i∈ΘS\i

pS(θS)Ui(θ
′

i, θS\i, p−S)

with θS = (θi, θS\i), ∀i ∈ S, ∀θi ∈ Θi,∀θ
′

i ∈ Θi.

In a P(N)-correlated equilibrium, each coalition S ∈ P(N) plays a cor-
related equilibrium given the strategies played within the other coalitions
S

′

6= S. Formally:

Definition 2 We say that a profile (pS)S∈P(N) is a partitioned correlated
equilibrium with partition, P(N), (P(N)-correlated equilibrium hereafter)
for Γ if for any non-singleton coalition S ∈ P(N), distribution pS ∈ ∆(ΘS)
is a correlated equilibrium of ΓS(p−S) and, (ii) if player i is in a singleton
coalition, {i} ∈ P(N), then i plays a best response to p−i.

Let us first discuss how the concept of partitioned correlated equilibrium
is related to the correlated equilibrium concept of Aumann (1974, 1987).
By definition, when P(N) = {N} i.e. the grand coalition forms, then a
{N}-partitioned correlated equilibrium boils down to the usual correlated
equilibrium concept. Thereafter we say that a P(N)-correlated equilibrium
is trivial if it coincides with a correlated equilibrium. Aumann’s concept is a
very powerful solution concept to model groups’ behavior. Therefore, a par-
titioned correlated equilibrium seems to be a compelling solution concept
when our aim is to simultaneously analyze the conflicts arising within and
between the coalitions: in a partitioned correlated equilibrium, the play is
indeed required to be self-enforcing within and between the coalitions.
A natural interpretation of the partitioned correlated equilibrium is that
there is a mediator, one for each coalition S ∈ P(N), that selects a distri-
bution of play for coalition S according to a distribution pS and privately
recommends an action to player i ∈ S, for every S ∈ P(N).
It is also instructive to relate the partitioned correlated equilibrium and
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Nash equilibrium concept: a profile θN is a Nash equilibrium if and only if
θN is a canonical {{i}}i∈N -correlated equilibrium. Unlike the Nash equilib-
rium concept, one of the main feature of a partitioned correlated equilibrium
is that each player must simultaneously consider the correlated distribution
of his own coalition together with correlated distributions of other coali-
tions. However, notice that the definition does not imply that the resulting
profile (pS)S∈P(N) must constitute a Nash equilibrium of some“coalitional”
game where each coalition is treated as a single player. In particular, it is
worth noting that the conditions for an “equilibrium” between the coali-
tions are weaker than what the Nash equilibrium concept requires: in a
non-trivial partitioned correlated equilibrium, the distribution p−S does
not render each member i of a coalition S indifferent between his pure
strategies θi whenever pS(θS\{i}, θi) > 0., The requirement is only that
the distribution p−S induced by the correlated equilibrium distributions of
the other coalitions, (pS

′ )S
′ 6=S , makes pS a correlated equilibrium for the

intra-group game of coalition S. Therefore, in a P(N)-correlated equilib-
rium each distribution pS is a correlated equilibrium of ΓS(p−S), which de-
pends, in turns, on the profile of correlated equilibria (pS

′ )S
′ 6=S of the intra-

coalition games,
{
ΓS

′ (p−S
′ )

}
S

′ 6=S
. On the other hand, note that by defini-

tion, ×j∈S∆(Θj) ⊂ ∆(×j∈SΘj). Thus, a non-trivial P(N)-correlated equi-
librium does not necessarily require the use of correlated mixtures within
coalitions.
As it is well-known, a correlated equilibrium cannot be construed as a co-
operative agreement externally enforced among coalition members. That is,
members of a group cannot make agreements that are binding in the sense
of providing some method (outside the given game) for punishing agents
who violate the agreement.9 Therefore, requiring the notion of partitioned
correlated equilibrium does not imply that agents can write binding agree-
ments within groups.
Finally, it is worth noting that our concept of partitioned correlated equilib-
rium is reminiscent of the first step of the coalitional concept developed in
Ray and Vohra (1997). However, in our approach, a“coalitional strategy”pS

is just a surrogate of what the players in S can achieve non-cooperatively.
By contrast, in Ray and Vohra, the best responses of a coalition are ordered
by a Pareto criterion: their solution concept requires that an equilibrium be-
tween the coalitions is a strategy profile such that, given the strategic choice
of the other coalitions, no coalition can improve all its members’ utility.

3.2 Existence

For arbitrary coalition structures, P(N), the existence of a P(N)-correlated
equilibrium of a finite game Γ is a priori not guaranteed. Nevertheless, as
shown below, finite games, always admit a P(N)-correlated equilibrium,

9 For a thorough discussion of this issue, see Aumann (1974) .
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for all P(N).
It is well-known that the set of correlated equilibria of a game contains at
least the convex hull of its Nash equilibria. For our purpose, we will be
mainly concerned to the case in which every distribution pS of a P(N)-
correlated equilibrium profile, (pS)S∈P(N), is a distribution over some of
the Nash equilibria of the intra-coalition game of S, ΓS(p−S). In the sequel,
we will refer to this particular subset of partitioned correlated equilibria as
the set of canonical P(N)-partitioned correlated equilibria of Γ.

Theorem 1 Fix a coalition structure P(N). For every finite game, Γ =
〈N, (Θi, Ui)i∈N 〉 ,

(1) there exists a P(N)-correlated equilibrium;
(2) if each intra-coalition game, ΓS(p−S), S ∈ P(N), has at least two Nash
equilibria, there exists a canonical P(N)-correlated equilibrium in which
each (non-singleton) coalition S randomizes over the set of Nash equilibria
of his intra-coalition game, ΓS(p−S).

Proof. See Appendix A. �

Property (2) of Theorem 1 exhibits an appealing feature of the P(N)-
correlated equilibrium concept: players within the same coalition S random-
ize over the multiple Nash equilibria. Property (1) proves that the existence
of an arbitrary P(N)-correlated equilibrium is not a issue if one assumes
that players can agree on a particular profile of actions that is self-enforcing.
More precisely, this result asserts that for any coalition structure, P(N),
every finite game will have at least one P(N)-correlated equilibrium, with
players randomizing independently or using some correlated mixed strate-
gies within each coalition. Here, the need to extend the game to correlated
mixtures within coalitions plays the same role as the use of mixed strate-
gies to prove the existence of Nash equilibria in finite games. Notice in
particular that the conditions of existence of a non-trivial P(N)-correlated
equilibrium are sufficient not necessary. As in the case of the Nash equilib-
rium concept, it is always possible to have some pure Nash equilibria (resp.
P(N)-correlated equilibria) without resorting to mixtures (resp. correlation
within coalitions). Nevertheless, the statement is tight in the sense that the
use of independent mixed (rather than correlated) strategies within coali-
tions leads in general to the failure of the existence of a P(N)-correlated
equilibrium.

4 Partitioned correlated equilibria in the gun-butter game

For the purpose of this paper, we need to apply the concept of partitioned
correlated equilibrium to the first stage of the gun-butter game. We first give
a characterization of the {{N \ i} , {i}} ≡ P(N, i)-correlated equilibria,
i = 1, ..., n, of this game when the class of payoff functions is admissible.
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4.1 Admissible payoffs

In the gun-butter game, the overall utility of player i depends on the deci-
sions that player i and its opponents make about the choice of an activity
– production or appropriation – and its intensity G = (Gi, G−i). In the
remainder of this paper, we assume that the payoffs have the following
properties.
Whether the effort is of a welfare enhancing or appropriative nature, it is
not costless. Therefore the choice of an activity along with G delivers a
utility to each player i, Ui(θi, θ−i,G), given by

Ui(θi, θ−i,G) = Wi(θi, θ−i,G) − Ci(Gi)

where Wi(θi, θ−i,G) is player i’s gross revenue, subject to the players’ choice
of a vector of activities, θ = (θi, θ−i), with players’ effort intensity profile G.

Ci(Gi) is the cost of expending effort intensity Gi borne by player i regard-
less of his choice of an activity θi. We consider the class of cost functions,
Ci : R+ → R+.

Each player i has a strictly increasing production function, fi(·), that pro-
duces a good for consumption yi as a function of player i’s effort Gi.Thus, a
vector of production, (f1(G1), ..., fn(Gn)) ≡ f(G), corresponds to a bundle
of consumption goods (y1, ..., yn). It seems reasonable to require that the
class of gross output functions, Wi, fulfill the following intuitive properties:

1. Wi(θi, θ−i,G) = Vi(G) for all G.

2. Wi(θi, θ−i,G) = 0 for all G.

3. Wi(θi, θ−i,G) ≡ Li(f(G)) with Li(f(G)) < 0 for all G.

4. Wi(θi, θ−i,G) = Ûi(f(G)) + Û0(G) + Vi(G) where Ûi(f(G)) ≥ 0 and

Û0(G) ≥ 0 for all G.

5. Let θ(k) be the activity profile when the number of players choosing
θ ∈ Θ is exactly k. Then, Wi(θi, θ(k),G) and Wi(θi, θ(k),G) are weakly
increasing in k = 0, ..., n − 1, for all G.

From properties 1-4, it follows that profiles θN and θN are two Nash equilib-
ria of the game played in the first-stage of the gun-butter game, Γ (G), for
any continuation profile G. Assumption 5 is for simplicity of exposition; it
could be weakened in several ways and our results would still hold. Basically,
we use this assumption in order to analyze the P(N, i)-correlated equilib-
ria of Γ (G). In fact, 5 ensures that profiles θN\i and θN\i are two Nash
equilibria of the intra-coalition game, ΓN\i(G)(pi), played in the first-stage
of the gun-butter game by coalition N \ i, for any continuation profile G,
any pi with pi ≡ pi(· | G), and any number of players. However, notice that
since we focus attention on canonical P(N, i)-correlated equilibria (in our
main approach), it is enough to have θN\i and θN\i as two Nash equilibria
for coalitions, N \ i, of size n − 1. Hence, in this paper, we do not exploit
the fact that this property continues to hold for some coalitions of smaller
size. In addition, the need to have θN\i and θN\i as two Nash equilibria of
ΓN\i(G)(pi) is in fact required to hold for only one, arbitrary, nondegenerate
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mixed strategy of player i. The reason for this is given in Remark 1. Even if
assumption 5 is not fully exploited, it allows to view the two Nash equilibria
of ΓN\i(G)(pi) as arising from a more general property of the underlying
game. In fact, assumption 5 indicates that the benefit that an individual de-
rives from being a producer depends on how many other individuals spend
their effort on production. This property is reminiscent of Shelling’s (1978)
threshold model of collective action, in which the participation of an indi-
vidual in an action depends on the fraction of the population engaged in
the action. In our case, this property captures the idea of production exter-
nalities that depends only on the size of the population of rent-seekers.
The intuitions behind the other properties are as follows. Property (1) means
that if player i chooses to appropriate others’ production with an effort Gi

while other players exert G−i in a joint production process, then player i ob-
tains a prize, Vi(G). Property (2) indicates that when all players choose the
gun activity, all players bear the cost of conflict and there is no production
to seize. Property (3) means that when player i chooses productive activities
while others engage in appropriative activities, then he cannot defend what
he himself has produced. In this case anarchy prevails and player i cannot
prevent the rest of the players from seizing his output. Here, Li(f(G)) per-
mits us to capture the disutility incurred by player i in case of a pillage.
In particular, Li(f(G)) may refer to the fact that player i derives disutility
from not consuming the bundle of goods, f(G). This might explicitly in-
volves loss aversion, as the disutility of loss may exceed the production value
fi(Gi). Property (4) represents the “peaceful outcome” in which all players

choose the peace activity, θ. Hence, Ûi(f(G)) reflects the fact that i may
potentially consume the quantities of output, (f1(G1), ..., fn(Gn)) = f(G),

produced by others. The prize Vi(G) together with Û0(G) have intuitive
interpretations: they reflects the fact that in the peaceful outcome player
i exercises some control over the fruits of his effort. The additional term,
Û0(G), is assumed to be identical across players. Thus, it can be thought
of as a minimal lump-sum transfer of total output.
Assume now that we have a list of payoff functions {Ui}i∈N fulfilling con-
ditions 1-5. When payoffs are admissible, Theorem 1 (2) guarantees the
existence of a canonical {{N \ i} {i}} ≡ P(N, i)-correlated equilibrium,
i = 1, ..., n, of Γ (G) (the game played in the first-stage of the gun-butter
game conditionally on the continuation strategy profile G), in which play-
ers in coalition N \ i randomize over θN\i and θN\i. In order to render our
notion of partitioned correlated equilibrium more familiar to the reader, the
following Lemma provides a direct proof of this fact.

Lemma 1 Fix a profile of effort G. If {Ui}i∈N is a list of admissible payoff
functions, then for all i ∈ N, the game Γ (G) has a non-trivial canonical
P(N, i)-correlated equilibrium, (pi(· | G), pN\i(· | G)), in which players in
N \ {i} randomize over the two pure Nash equilibria of ΓN\i(pi)(G), θN\i

and θN\i.
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Proof. It suffices to apply Theorem 1 (2). Otherwise, we can also check this
result directly as follows. To economize on notations, let pi = pi(· | G). Let
ΓN\i(pi)(G), be the parametrized intra-coalitional game of coalition N \ i,

under a profile of effort G when player i plays pi ∈ ∆(Θ). It is well-known
that any convex combination of Nash equilibria of a normal form game de-
fines a (canonical) correlated equilibrium of this game. From the admissible
payoff conditions (see condition 5), θN\i and θ\i are two pure Nash equi-
libria of ΓN\i(pi)(G), regardless of the distribution pi. Therefore, we can
show that a non-trivial canonical P(N, i)-correlated equilibrium exists by
picking the distribution pN\i which renders player i indifferent between his

two pure activities, θ and θ (here we apply condition (ii) of the definition of
a P(N)-correlated equilibrium). Since the resulting distribution, pN\i, is a
canonical correlated equilibrium of ΓN\i(pi)(G), the profile (pN\i, pi) con-
stitutes a P(N, i)-correlated equilibrium whenever pi is i’s best response to
pN\i. This completes the proof. �

Remark 1 Suppose assumption 5 is relaxed and there exists only certain non-
degenerate mixed strategies, p̃i(· | G), such that θN\i and θ\i are two pure
Nash equilibria of ΓN\i(p̃i(· | G))(G), for every G. In a P(N, i)-correlated

equilibrium, player i is indifferent between θ and θ. Hence, in particular, we
can choose the distribution p̃i(· | G) as the mixed strategy used by player i

in the canonical P(N, i)-correlated equilibrium of Γ (G). Clearly, this shows
that assumption 5 is much stronger than necessary.

5 P(N)-correlated PBE

We will now use our notion of P(N)-correlated equilibrium as a refinement
criterion to select certain perfect Bayesian equilibria (PBEs) of the gun-
butter game.

5.1 Strategies and beliefs in the gun-butter game

In the gun-butter game, player i’s behavioral strategy specifies a (possibly
degenerate) probability distribution, pi ∈ ∆(Θ), in stage 1 and a pure effort

level Ĝi(θi) ∈ R+ for each outcome θi ∈ Θ of the mixed strategy pi in stage

2. Formally, this means that Ĝi must specify an effort level Gi for each
information set, {(θi, θ−i)}θ−i∈Θ−i

≡ Ii(θi), with θi ∈ Θ and θ−i ∈ Θ−i, in
stage 2 of the gun-butter game.
We want to analyze the gun-butter game for its PBEs. More specifically,
we are interested to select those PBEs in which players play a non-trivial
canonical partitioned correlated equilibrium in the first-stage of the game.
Clearly, this requires that we specify the players’ strategies and beliefs con-
ditionally on a coalition structure. It is therefore useful to introduce the
following notations.
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In the case of the coalition structure, P(N, i), in which all players N \ {i}

form a coalition against i, we shall denote by (pi, Ĝi)|P(N,i) ≡ xi
|P(N,i)

the strategy-beliefs pair of i. Given P(N, i), define player i’s interim beliefs
when player i forms a stand-alone coalition against the others, in Γ (G),
as a probability distribution on Θ−i, µi

P(N,i)(· | θi,G), conditionally on i’s

pure activity θi ∈ Θ and a continuation strategy profile G. Let (x, µ)j

|P(N)

be a strategy-belief for player j under a coalition structure P(N) and
((x, µ)j

|P(N))j∈N ≡ (x, µ)|P(N) denotes a strategy-belief profile under coali-

tion structure P(N).

Definition 3 Let P(N) be an arbitrary coalition structure. We say that a
strategy-belief profile, (x, µ)|P(N) , is a P(N)-correlated PBE of the gun-
butter game if it is a PBE, such that for any continuation strategy G, we
have that {pS(· |G)}S∈P(N) is a canonical P(N)-correlated equilibrium of

Γ (G).

In the discussion below, we argue that in a P(N)-correlated PBE, all the
desiderata of a usual PBE are indeed verified.
By definition, in a canonical P(N)-correlated PBE, any player i in a coali-
tion S cannot benefit from deviating unilaterally from the recommendation
made by the mediator of his coalition S given the recommendations made
by the other mediators of other coalitions S

′

6= S, in the first stage of
the gun-butter game. A a result, in a P(N)-correlated PBE, players must
be sequentially rational as in any standard PBE. Moreover, in a P(N)-
correlated equilibrium, the play of stage 1 of the gun-butter game implies
that conditional on θj , the interim equilibrium beliefs of players j ∈ S,

µ
∗j

P(N)(θ−j | θj ,G) = p(θS\j | θj ,G) ×
∏

S
′∈P(N)\{S}

pS
′ (θS

′ |G),

are correct, for any continuation strategy G. In a P(N)-correlated PBE,
these conditions must hold for any player j ∈ N. Hence, our notion of P(N)-
correlated PBE captures all the standard requirements of a PBE: beliefs
µ

j

P(N)(· | θj ,G) are consistent with the strategies, which are optimal given

the beliefs. Therefore, the P(N)-correlated PBE constitutes a standard
PBE.
Next, we use the concept of partitioned correlated equilibrium in order to
select a particular subset of PBEs. In fact, our notion of a rationalizable CSF
requires that we use an even stronger form of refinement, since we shall focus
our analysis on PBEs in which agents play a canonical P(N, i)-correlated
equilibrium in the first stage of the gun-butter game.

5.2 Rationalizable CSFs

A (general) contest is a n-player strategic-form game, 〈N, (Gi,Πi)i∈N 〉 , with
Gi ⊆ R+ the set of actions available to player i, and Πi : ×i∈NGi → R the
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payoff function of player i defined by Πi(Gi, G−i) = pi(Gi, G−i)Vi(G) −
Ci(Gi) with player i’s valuations for winning and pi(Gi, G−i) the contest
success function defined such that pi(Gi, G−i) ≥ 0 and

∑
i∈N pi(Gi, G−i) =

1 for all (Gi, G−i).
The definition below says that a canonical partitioned correlated PBE of the
gun-butter game induces a contest for player i whenever i’s (equilibrium)
interim payoff derived in a stand-alone coalition against all others coincides
with his expected payoff obtained in a contest.

Definition 4 We say that a canonical P(N, i)-correlated PBE (x, µ)|P(N,i)

of the gun-butter game induces the contest, 〈N, (Gi,Πi)i∈N 〉 , for player i if
his interim equilibrium belief, µ∗i

P(N,i)(· | θi,G), induces in the game Γ (G)

starting at information set, Ii(θi) =
{
(θi, θ−i)

}
θ−i∈Θ−i

, a conditional ex-

pected payoff

∑

θ−i∈Θ−i

µ∗i
P(N,i)(θ−i | θi,G)Ui(θi, θ−i,G) = pi(G)Vi(G) − Ci(Gi) ≡ Πi(G)

for all G.

In the context of the present model, an appealing feature underlying the
partioned correlated equilibrium concept is that player will form a coalition
S ⊆ N because by doing so, members of S have the possibility to exploit the
correlation device, dS , in order to correlate their activities in the first-stage
of the gun-butter game. Hence, a correlation device, dS , is a characteristic
which can be used to describe the subset of individuals S ⊆ N . For in-
stance, if all players decide to form a singleton coalition, then the signals
are independent across all players, thereby restricting the possible outcomes
to those of Nash equilibria. By contrast, if agents decide to form the grand
coalition, {N} , then all players can correlate their activities in a correlated
equilibrium. All other coalition structures will lead agents to play in a par-
titioned correlated equilibrium.
In this context, one may imagine that interactions across individuals occur
in two main steps. In the first step, agents form groups in order to exploit
the correlation devices specific to their own group. In the second stage, they
engage in the gun-butter game.10 With this scenario in mind, it is therefore
natural to couch our notion of rationalizable CSF in terms of the following
coalition formation process.
Assume that when players decide to form the grand coalition, they exploit
the correlation device dN in order to achieve the peaceful outcome by cor-
relating their actions on the profile of activities, θN , in the first-stage of
the gun-butter game. Under admissible payoff functions, this peaceful out-
come can be achieved in a (trivial) canonical {N}-correlated PBE of the

10 Note that this time line is the same as in the games of coalition formation
developed by Hart and Kurz 1983, Bloch 1996 and Ray and Vohra 1997.
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gun-butter game.11 In particular, any coalition structure, P(N, i) corre-
sponds to a situation where player i does not correlate his activities with
the rest of players, whereas all players within coalition N \{i} exploit corre-
lation device dN\{i}, “against” player i. This scenario allows to understand
a CSF as the result of an underlying coalition formation process, where the
possible payoffs obtained in a coalition structure P(N, i) and the grand
coalition {N} are obtained from the canonical P(N, i)-correlated PBE and
a {N}-correlated PBE , respectively.12 Formally:

Definition 5 Assume that agents play θN i.e. the peaceful outcome, when
they form the grand coalition {N} . Then, a CSF {p1(G), p2(G), ..., pn(G)}
is rationalizable if there exists a list of admissible payoff functions {Ui(θ,G)}i∈N =
U , and a set of canonical P(N, i)-correlated PBEs i = 1, ..., n, of the gun-
butter game such that when player i secedes from the grand coalition to form
coalition, {i} ∈ P(N, i), she has

(i) for all G, an interim equilibrium belief µ∗i
P(N,i)(θ−i = θ−i | θi,G) =

pi(G) at Ii(θi) and;
(ii) a contest, 〈N, (Gi,Πi)i∈N 〉 , is induced for i.

In this view, a CSF is thus a list of interim equilibrium beliefs that is induced
when each player i contemplates playing the first-stage of the gun-butter
in a stand-alone coalition rather than correlating his peaceful activity with
the other agents, anticipating that the rest of players will correlate their
activities accordingly.
Note that condition (i) is very much in line with the classical interpretation
of CSFs as win probabilities. It tells us that a rationalizable win probability
for player i must coincide with i’s equilibrium belief that all other players
have chosen to devote their effort to usefully productive activities, when
i has chosen to grab others’ output. Thus, in our setup, a CSF arises as
the probability that each player i successfully appropriates others’ output
whenever i contemplates to play the gun-butter game against the rest of
players. This interpretation of a CSF is thus also in line with the traditional
interpretation of a “winner-take-all-contest”, whereby a player is able to
claim the entire production of others as his prize, leaving nothing. Condition
(ii) implies that one can think of a contest as the conditional expected
payoffs induced on the equilibrium path of some certain PBEs of the gun-
butter game.
As already mentioned, our formulation is reminiscent of the noncooperative
games of coalition formation initially proposed by Hart and Kurtz (1983)
– called the δ model – and used by Bloch et al. (2006) and Sanchez-Pagés
(2008), in which each player contemplates unilaterally his deviation from
the grand coalition. In these models, the external players remain together

11 Recall that admissible payoff functions imply that θ
N

is a Nash equilibrium
of Γ (G) for all continuation profile G.
12 By definition, a pure Nash equilibrium induces a canonical correlated equilib-
rium.
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following the secession, so that the seceding agent faces a coalition of all
the other players, as it is the case in a P(N, i)-correlated equilibrium. In
the present paper, this is modeled by the fact that each player breaking the
peaceful agreement anticipates that the rest of players will correlate their
activities in the first-stage of the gun butter game.

6 Results

Our first application of the concept of a rationalizable CSF concerns (2).
In fact, many papers dealing with contest models assume (2) in which the
outcome of contests depends on the ratio of efforts (see e.g., Nitzan 1994
and Konrad 2007).
In our model, fj(Gj) represents player j’s own output when he commits to
the productive activity. Hence, if player i successfully seizes the output of
others,

∑
j∈N\{i} fj(Gj) represents the total amount of goods available for

consumption in the economy for player i. By contrast, −fi(Gi) corresponds
to the loss in consumption incurred by agent i in case of an act of pillage i.e.,
player i losses his control over his own output. Our first result shows that
when players’ preferences capture this simple (endogenous) (re)allocation
of outputs among players viz. players have linear utility functions, Tullock
CSFs are rationalizable.

Proposition 1 When the list, {Ui(θ,G)}i∈N = U, is admissible and the
goods produced by others are viewed as perfect substitutes for each player in
the peaceful outcome i.e., Ûi(f(G)) =

∑
j∈N\{i} fj(Gj), with Û0(G) = 0,

and the disutility in case of pillage is Li(f(G)) = −fi(Gi), then the (general)
additive CSF (2) is rationalizable.

Proof. Consider P(N, i) = {{i} , {N \ {i}}} i.e., player i forms a stand-
alone coalition. Conditional on continuation strategies G, let pi(· | G) ∈
∆(Θ) and pN\{i}(· | G) ∈ ∆(Θ−i) be the conditional probability distribu-
tions of player i and coalition N \ {i}, in the first stage of the gun-butter
game. We will analyze the canonical P(N, i)-correlated PBE of the gun-
butter game. In a canonical P(N, i)-correlated PBE, sequential rationality
requires – assuming that the play continues according to G –, that profile
(pi(· | G), pN\{i}(· | G)) is a canonical P(N, i)-correlated equilibrium of the
game, Γ (G), played in the first stage of the gun-butter game under contin-
uation profile G.

Let us first concentrate on condition (i) of rationalizability. Recall that ad-
missibility implies that ΓN\{i}(pi(· | G),G) has two pure Nash equilibria,

(θj)j 6=i and (θj)j 6=i. We first need to examine the (canonical) correlated
equilibria of ΓN\{i}(pi(· | G),G) where players in coalition N \ i randomize

over (θj)j 6=i and (θj)j 6=i. In such a canonical P(N, i)-correlated equilibrium,
the indifference condition for player i implies that distribution pN\{i} verifies

p∗
N\{i}(θ−i | G) =

Ui((θi,θ−i),G)−Ui((θi,θ−i),G)

Ui((θi,θ−i),G)−Ui((θi,θ−i),G)+Ui((θi,θ−i),G)−Ui((θi,θ−i),G)
. Us-

ing the payoff conditions given in Proposition 1, it is then easy to see that
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p∗
N\{i}(θ−i | G) = fi(Gi)∑

j∈N f(Gj)
. Moreover, at a PBE, the Bayesian updating

requires that beliefs are correct, thereby inducing that i’s interim beliefs
verify µ∗i

P(N,i)(θ−i = θ−i | θi,G) = p∗
N\{i}(θ−i | G). Hence condition (i)

for rationalizability is met. Last we check (ii). In the canonical P(N, i)-
correlated PBE, player i is indifferent between θ and θ. Hence, when he
holds belief, µ∗i

P(N,i)(· | θi,G), player i’s conditional expected payoff,

Ui(θi, µ
∗i
P(N,i) |G) ≡

∑

θ−i∈Θ−i

µ∗i
P(N,i)(θ−i | θi,G)Ui(θi, θ−i,G),

boils down to fi(Gi)∑
j∈N fj(Gj)

(Vi(G) − Ci(Gi)) + (1 − fi(Gi)∑
j∈N fj(Gj)

)(−Ci(Gi)).

This expression readily simplifies as fi(Gi)∑
j∈N fj(Gj)

Vi(G)−Ci(Gi). These equi-

librium conditions hold for any arbitrary agent i playing Γ (G) in a canonical
P(N, i)-correlated PBE. Thus, we have generated a collection of probabil-

ities, µ∗i
P(N,i)(θ−i | θi,G) = fi(Gi)∑

j∈N fj(Gj)
≡ pi(G) for i = 1, ..., n that forms

a probability distribution for every G. This completes the proof. �

Example 1 Suppose that each player i has the Cobb-Douglas production
function, fi(Gi) = aGσ

i where a and σ are two positive scalar so that aGσ
i

corresponds to the number of units of good yi. Thus, we are considering
production functions such as the one originally studied by Tullock (1980).
The payoff conditions of proposition 1 entail that each player i’s utility
function has perfect substitution over the goods produced by others in the
peaceful outcome i.e., Ûi(f(G)) =

∑
j 6=i aGσ

j . Thus, in light of proposition
1 we conclude that (1) is rationalizable.
Example 2 Next we further illustrate how our framework may be used to
examine the implications of behavioral assumptions on the interpretation
of CSFs. Assume that there are only two players and suppose that every
player i(= 1, 2) exhibits risk aversion (over consumption bundles) in the
peaceful outcome (i.e. the state in which all players choose a productive

activity), in that Ûi(f(G)) =
G

1−r
j

1−r
for r chosen so that r > 0, r 6= 1. On the

other hand, assume that the disutility incurred in case of pillage is given
by L̂i(f(G)) = −Ûi(f(G)). Then, using proposition 1, it is straightforward

to show that the power form p∗i = pi(G) =
G

σ(r)
i

G
σ(r)
1 +G

σ(r)
2

where σ(r) ≡ 1 − r

is rationalizable. It is well-known that r equals the degree of relative risk
aversion. Thus, an interpretation of the power σ(r) is that it represents the
degree of relative risk aversion behavior in consumption of players in the
peaceful outcome.

6.1 Pride and status in the peaceful outcome

The second important popular class of CSFs builds on the idea that only dif-
ferences in effort matter. It has been proposed by Hirshleifer (1989) and fur-
ther studied in Skaperdas (1996), Baik (1998) and Che and Gale (2000). In
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particular, Che and Gale postulate the following piecewise linear difference-
form

p1 = max

{
min

{
1

2
+ σ(G1 − G2), 1

}
, 0

}
for p1 = 1 − p2 (3)

where σ is a positive scalar. Corchón and Dahm (2008) consider the following
extension of (3) to three contestants. Suppose without loss of generality that
G1 ≥ G2 ≥ G3 and,

p1 = min

{
1

2
+

1

s
(Gσ

1 − Gσ
2 ), 1

}
for, p1 = 1 − p2, p3 = 0;

whenever Gσ
1 − Gσ

3 ≥ s
3 and otherwise,

pi =
1

3
+

1

2s
(2Gσ

i − Gσ
j − Gσ

k) for i = 1, 2, 3 and i, 6= j, k.

where s and σ are two positive reals. To rationalize this class of CSFs, we
will examine the implications of the presence of relative concerns in individ-
uals’ preferences. As shown in the proposition below, parameter s may be
interpreted as the propensity for pride. Individual i is “proud” in the sense
that his utility in the peaceful outcome is reduced when the production level
of others increase. More specifically, our foundation for this family of CSFs
imports a utility function similar to that of Fehr-Schmidt (1999). However,
in our context, players’ utility in the peaceful outcome arises largely from
how their output – instead of income – ranks relative to those produced by
others. The idea is that players strive to produce more than others in the
peaceful outcome for the sake of higher status.
For notational convenience we will state the next result for the three player-
case. Nevertheless, it is straightforward to extend the following result to
more than three contestants.
Let N = {1, 2, 3} and assume without loss of generality that G1 ≥ G2 ≥ G3.

Suppose that individuals who produce the biggest outputs in the peaceful
outcome are lauded for enhancing social welfare. This confers on them the
pride of status, (at the same time as it inflicts envy on the others). We cap-
ture this idea by supposing that the prize Vi(G) represents the pride that i

feels in the peaceful outcome. Formally, we will assume a prize of the form,

Vi(G) =

{
α(2Gσ

i − Gσ
j − Gσ

k) if Gσ
i − Gσ

k < K;

α
′

(Gσ
i − Gσ

j ) if Gσ
i − Gσ

k ≥ K,

where parameters α, α
′

and K are strictly positive.
In this setting, cardinal comparisons affect i’s utility Ûi in the peaceful
outcome with the following interpretation: individual i cares about his pro-
duction level vis-a-vis others, feeling pride when his production is larger
relative others by a long shot. Here, the number K can be thought of as a
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threshold that roughly measures the perceived relative effort of individual
i into enhancing social welfare. If i feels he is relatively deserving, then he
compares his performance with the next-best player only. In the following
proposition, we show that with these preferences we can rationalize the fam-
ily of difference-form CSFs. Hence, in our setup, the family of difference-form
CSFs arises from the fact that, in the peaceful outcome, a player’s well-being
depends on how his production compares to that of others.

Proposition 2 Suppose that N = {1, 2, 3} . Assume without loss of gener-
ality that Gσ

1 ≥ Gσ
2 ≥ Gσ

3 where σ > 0. When the list, {Ui(θ,G)}i∈N = U,

is admissible with Û0(G) = 0 for all G, and ,

Ûi(f(G)) =
1

2
+Vi(G) for i = 1, 2 and Û3(f(G)) = 0 whenever Gσ

1−Gσ
3 ≥

s

3

where Vi(G) = 1
s
(Gσ

i − Gσ
j ) for s > 0 and otherwise

Ûi(f(G)) =
2

3
+ Vi(G) for i = 1, 2, 3

with Vi(G) = 1
2s

(2Gσ
i −Gσ

j −Gσ
k), for i 6= j, k, and the loss in case of pillage

is Li(Ûi(f(G))) = − 1
2 − Vi(G) for i = 1, 2 where Vi(G) = 1

s
(Gσ

i − Gσ
j )

and L3(Û3(f(G))) = 0 whenever Gσ
1 − Gσ

3 ≥ s
3 and otherwise

Li(Ûi(f(G))) = −
1

3
− Vi(G) for i = 1, 2, 3

with Vi(G) = 1
2s

(2Gσ
i − Gσ

j − Gσ
k), for i 6= j, k, then the above extension of

(3) is rationalizable.

Proof. See Appendix B. �

6.2 Rank-dependent utility in the peaceful outcome

Alcade and Dahm (2007) stress the importance of CSFs incorporating si-
multaneously an absolute and relative criterion. In this section, we propose
to rationalize the following extension of their serial CSF,

pi =
n∑

j=i

f(Gj) − f(Gj+1)

jfh(G)
where f(Gn+1) = 0, (4)

for i = 1, ..., n where fh(G) = max {f(G1), f(G2), ..., f(Gn)} is the highest
production level under a vector of effort G. We will show that in order
to derive this form of CSF one needs to assume that players exhibit rank-
dependent preferences as in Quiggin (1981, 1982).13

13 This class of non-expected utility functions is the basis of prospect theory
(Tversky and Kahneman 1992)
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Imagine that i’s utility in the peaceful outcome depends on his (subjective)
prior distribution of output. Formally, suppose that each player i ∈ N has a
subjective prior probability distribution, (α̃i

1, ..., α̃
i
n), over an ordered vector

of outputs, f(G) = (f(G1), f(G2), ..., f(Gn)) where f(G1) ≤ f(G2), ...,≤
f(Gn) for all G. Consider i’s (subjective) lottery (G1, α̃

i
1;G2, α̃

i
2; ...;Gn, α̃i

n)
where α̃i

j means that i assigns probability α̃i
j to effort level Gj . It will also

prove useful to consider the lottery (G1, α
i
1; ..., Gi, α

i
i; ...;Gn, αi

n) ≡ Li with
αi

j =
∑n

l=j α̃l and αi
j = 0 for all j < i. Thus, αi

j denotes i’s prior probability
of getting a consumption level of at least f(Gj).
Assume further that an individual’s utility in the peaceful outcome depends
on his production relative to that of others. Suppose in particular that
i’s utility derived in the peaceful outcome arises solely from the minimal
positive increments in production levels i.e., output levels less than or equal
to f(Gi) do not enter i’s utility in the peaceful outcome as i’s attention
is only focused on the potential gains in productions f(Gi+1), ..., f(Gn)
above his own output. Such preferences can be modeled by assuming that
each individual i has preferences that are “rank dependent” in the peaceful
outcome.14 Formally, suppose that Ûi(f(G)) is equal to the following welfare
functional

Fi(Li) =
n∑

j=1

wi(α
i
j) (f(Gj) − f(Gj−1)) ,

where wi : [0, 1] → [0, 1] is i’s weighting function which is strictly increasing
and continuous with wi(0) = 0 and wi(1) = 1. These preferences are referred
to as rank dependent because a change in the ranking of individuals’ output,
f(G), would affect the functional. Intuitively, this utility function entails
that the attention given by individual i to the production level of a good yj

depends not only on the probability of the outcome, f(Gj), it also depends
on how much larger f(Gj) is in comparison to f(Gj−1). Such preferences
reflect the fact that in the peaceful outcome, each individual i enjoys outputs
that are larger than i’s own production level, whereas the cost is borne
privately by others. The next proposition says that if each individual has
rank dependent preferences over the production of others in the peaceful
outcome then the serial CSF is rationalizable.

Proposition 3 When the list {Ui(θ,G)}i∈N = U is admissible, and the
utility of consumption over the goods produced by others in the peaceful
outcome is given by the rank-dependent utility (RDU), Fi(Li) = Ûi(f(G))

with the weighting function, wi(α
i
j) = 1

j
whenever j ≥ i, Û0(G) = fh(G) ,

Vi(G) =
Ûi(f(G1),...,f(Gj))

2 , and the loss of consumption in case of pillage is,

Li(Ûi(θ,G)) = −Ûi(f(G1), ..., f(Gj)), then (4) is rationalizable.

Proof. The proof uses the same arguments as in the previous proposi-
tions. Conditional on continuation strategies G, we consider the game Γ (G)
played under the coalition structure, P(N, i) = {{i} , {N \ {i}}} , wherein

14 Recall that f(·) is any increasing function.
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player i forms a stand-alone coalition. Straightforward algebraic manipula-
tion shows that (using the standard formula given in the proof of Proposition

1), p∗−i(θ−i | G) = Ûi(f(G))
fh(G) which amounts to p∗−i(θ−i | G) =

∑n

j=i

f(Gj)−f(Gj+1)
jfh(G)

with f(Gn+1) = 0. Therefore, in a canonical P(N, i)-correlated PBE, player
i’s interim (correlated) equilibrium beliefs are µ∗i

P(N,i)(θ−i = θ−i | θi,G) =

p∗−i(θ−i | G) for all i = 1, ..., n at Ii(θi) on the equilibrium path. Condition
(ii) of rationalizability yields

µ∗i
P(N,i)(θ−i = θ−i | θi,G)

[
2Ûi(f(G1), ..., f(Gj)) − Ci(Gi)

]
+ (1 −

µ∗i
P(N,i)(θ−i = θ | θi,G))(−Ci(Gi)),

which readily simplifies as µ∗i
P(N,i)(θ−i = θ | θi,G)Vi(G) − Ci(Gi). �

7 Rationalizable CSFs without correlation

The difficulty to derive CSFs for more than two contestants has already been
stressed in Corchón and Dahm (2008). In their mediated frameworks, these
authors derive CSFs by assuming the existence of a contest administrator
who allocates the prize to one of the contestants. In the present unmediated
setting, we overcome this problem by taking into account the possibility that
groups or coalitions of players may be willing to coordinate their moves, in
order to achieve mutually beneficial outcomes even if no binding agreements
are made. To our thinking, the notion of P(N)-correlated equilibrium leads
to a coherent model. But, in fact, this is not crucial to our analysis. We can
derive the same class of contest success functions without relying on any
extraneous correlation device by analyzing the following version of the gun-
butter game.
In this alternative approach, players cannot form a coalition S ⊆ N in or-
der to use some correlation devices within their coalition. However, they can
choose the order of moves. More precisely, assume that prior to choosing the
effort profile G, players pick their activity in a sequential-move game where
the order of moves in the first-stage of the gun-butter game is endogeneously
determined: player i can choose to select his mixed activity before the other
players. Then player j 6= i, observing the realization of player i’s mixed
strategy picks θj etc.15 As a result, the game that takes place before players
choose (simultaneously) their effort is a sequential game which depends on
the ordering of players.
In the sequel, Γ̂i(G), denotes the sequential-move game that is played in the
first-stage of this version of the gun-butter game, when player i is the first
mover and continuation strategy is G. For each such game, Γ̂i(G), payoffs,{

Ûi

}
, are thus also dependent on the identity of the first mover and are

determined at the end of this version of the gun-butter game in the obvious

15 For players j 6= i, the order of players’ moves is irrelevant.
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manner. We will use a notion of rationalizability based on the subgame per-
fect Nash equilibria (SPNE) of this new version of the gun-butter game and
show how this may allow to construct a list of beliefs for the first-movers
(via the behavioral strategy of a player j 6= i) corresponding to a CSF.
Below we present an example yielding a special case of the additive CSF (2)
for three contestants. This example can be extended to more agents and to
other CSFs.
Example 3 We construct a SPNE, one for each gun-butter game played
under a first mover, i = 1, 2, 3, in the first-stage. For the sake of exposition,
consider the case where player 1 is the first to move, player 2 the second

and player 3 the third-mover. Let the payoffs
{

Ûi

}
of this version of the

gun-butter game be admissible as in Proposition 1 for player 1 and 3. For
player 2, we consider the following modifications: W2((θ1, θ2, θ3),G) = 0
and W2((θ1, θ2, θ3),G) =

∑
j 6=2 fj(Gj), for any continuation strategy G

(the other conditions remain unchanged). We assume that players’ payoffs

depend on the order in which players choose their activity in Γ̂i(G). Then,
we proceed by backward induction and use the payoff conditions of Propo-
sition 1. Player 3 plays the following optimal strategy:

θ∗3 =

{
θ if θ12 = (θ1, θ2) or if θ12 = (θ1, θ2);
θ otherwise.

Notice that the new payoff conditions for player 2 imply that,

U2(θ1, θ2, θ3,G) = U2(θ1, θ2, θ3,G), and U2(θ1, θ2, θ3,G) = U2(θ1, θ2, θ3,G).

In particular, suppose 2 plays θ with probability p and θ with 1 − p. From
the first-mover’s perspective, by construction, p corresponds to the proba-
bility that 2 and 3 will play θ23, while 1− p is the probability that they will
coordinate on θ23 in a SPNE. In particular, in a SPNE player 2 can ran-
domize with some probability distribution, so that player 1 (the first-mover)
becomes indifferent:

U1(θ123,G)(1− p) + U1(θ1, θ23,G)p = U1(θ1, θ23,G)(1− p) + U1(θ123,G)p.

Solving for p yields a behavioral strategy of 2, p∗ = b∗2(θ), such that:

b∗2(θ) =
U1(θ123,G) − U1((θ1, θ23),G)

U1((θ123,G) − U1((θ1, θ23),G) + U1(θ123,G) − U1((θ1, θ23),G)
.

By using the payoff conditions of proposition 1, and by proceeding similarly
for the two other coalition structures, we obtain a list of probabilities form-
ing the additive CSF (2) in the case of three players.
This alternative notion of rationalizability can be thought of as the strip-
down version of a richer setup that would allow for endogenous order of
moves: before they play the gun-butter game, players have the opportunity
to choose the order in which they choose their activity. Hence, in this view,
a CSF results from the fact that each player i contemplates the perspective
of playing the gun-butter game as the first-mover.
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8 Concluding remarks

This paper has shown how the extension of Aumann’s correlated equilib-
rium could account for popular contest success functions (CSFs) used in
standard models of contests. Our partitioned correlated equilibrium con-
cept is defined as follows. Take any non-cooperative game in normal form,
and suppose that (disjoint) groups are formed. In a partitioned correlated
equilibrium, each group plays a correlated equilibrium given the strategies
played within the other groups. We have established the existence of such an
equilibrium for finite games. In addition, we showed that this concept can
be used to refine the set of perfect Bayesian equilibria of certain multi-stage
games.
This refinement criterion provides a natural way to justify prominent CSFs
used in contest models, in an unmediated non-cooperative environment and
allows to establish new connections with various recent behavioral models.
In our setup, popular CSFs have a clear preference-based meaning: the spe-
cific form of a CSF reflects the preferences of the individuals. For example,
we have seen that Tullock CSFs reflect the simple endogenous (re)allocation
of the goods produced by players choosing a productive activity, social util-
ity functions a la Fehr and Schmidt (1999) produce difference-form CSFs,
while the class of serial CSFs introduced by Alcade and Dahm (2007) in-
volves the rank-dependent utility model introduced by Quiggin (1981, 1982).
A partitioned correlated equilibrium allows to model non-cooperative situ-
ations where players can correlate their actions within their group, whereas
correlation is usually imposed to all players. The application of this concept
for some other strategic environments seems to be a fruitful approach left
for further research.
Appendix A
Proof of Theorem 1. (1) Let us start by proving the existence of P(N)-
correlated equilibria when P(N) does not contain a singleton coalition. Fix
such a coalition structure P(N). For each p−S ∈ ×S

′∈P(N)\{S}∆(ΘS
′ ),

let ∆CE
S (p−S) ⊆ ∆(ΘS) be the set of probability distributions over ac-

tion profiles induced by the correlated equilibria of ΓS(p−S). Define ∆CE
S

as the set of all distributions that are contained in a set ∆CE
S (p−S) with

p−S ∈ ×S
′∈P(N)\{S}∆(ΘS

′ ). We need to show that ∆CE
S is compact and

convex.
For finite games, the set of correlated equilibrium distributions is a non-
empty convex set (see Aumann, 1974). In fact, the set of correlated equi-
libria of a game Γ is a non-empty polytope which contains the convex
hull of all the Nash equilibria of Γ. Therefore, ∆CE

S (p−S) is a non-empty
and convex and compact set for all product probability measures p−S ∈
×S

′∈P(N)\{S}∆(ΘS
′ ). The set ∆CE

S is convex because if pS and p
′

S are

in ∆CE
S , then for any pλ

S = λpS + (1 − λ)p
′

S with λ ∈ [0, 1], there exists

pλ
−S = λp−S + (1 − λ)p

′

−S ∈ ×S
′∈P(N)\{S}∆(ΘS

′ ) (this set is convex) so

that pλ
S ∈ ∆CE

S (pλ
−S). ∆CE

S is also compact by the continuity of payoffs. Let
∆CE := ×S

′∈P(N)∆
CE
S

′ . This set is compact and convex as it is the Carte-
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sian product of the sets, ∆CE
S

′ , each of which being compact and convex.
For each non-singleton coalition S ∈ P(N), define the correspondences
ΛCE

S : ×S
′∈P(N)∆

CE
S

′ ⇒ ∆CE
S . Each ΛCE

S (p−S) is convex-valued since

ΛCE
S (p−S) = ∆CE(p−S). Let p = (pS)S∈P(N) and define ΛCE(p) := ×S

′∈P(N)Λ
CE
S

′ (p−S
′ ).

This implies that ΛCE(p) is also convex for each p and therefore ΛCE is
convex-valued. Observe that if p ∈ ΛCE(p), then pS ∈ ΛCE

S (p−S) for all
S ∈ P(N), and hence p is a P(N)-correlated equilibrium of Γ.

By continuity of payoff functions, ΛCE
S (p−S) has a closed graph. Since this

holds for each S, we conclude that ΛCE has a closed graph. Under all these
properties Kakutani’s fixed point Theorem applies which completes the
proof for coalition structures not containing some singleton coalitions. The
above arguments extend easily to P(N)-correlated equilibria when P(N)
contains some singleton coalitions by defining the usual best response cor-
respondences, BRi : ×S

′∈P(N)∆(ΘS
′ ) ⇒ ∆(Θi). This proves the existence

of non-trivial P(N)-correlated equilibria.
Next we prove (2). Let us denote the set of Nash equilibria of ΓS(p−S) by
NE(p−S). By taking the convex hull of Nash equilibrium distributions of
each game ΓS(p−S), we obtain the convex and compact subset, ∆NE

S (p−S)
of the set of all correlated equilibria of ΓS(p−S). Observe that the set of all
sets ∆NE

S (p−S) is finite since Γ is finite. Denote this set by ∆NE
S . Being

a finite union of compact sets it is also compact. Using the same argu-
ments as above, this set is also convex. Define the correspondence, ΛNE

S :
×S

′∈P(N)∆
NE
S

′ ⇒ ∆NE
S with ΛNE

S (p) = ∆NE
S (p). Let p = (pS)S∈P(N) and

define ΛNE(p) := ×S∈P(N)Λ
NE
S (p−S). Using the arguments above, it is

clear that this correspondence verifies all the properties of Kakutani’s fixed
point theorem. This completes the proof of existence (2). �

Appendix B
Proof of proposition 2. Let the payoffs satisfy the payoff conditions of
Proposition 2. For the sake of exposition, let N = {1, 2, 3} . We will analyze
the belief of player i in the P(N, i)-correlated PBEs of Γ (G), for i = 1, 2, 3.

Let p∗{j,k}(θ{j,k} |G) be the probability that players j and k coordinate on

the productive activities, θ{j,k}, and 1 − p∗{j,k}(θ{j,k} |G) the probability

that they coordinate on the appropriative activities, θ{j,k}. Assume, with-
out loss of generality, that Gσ

1 ≥ Gσ
2 ≥ Gσ

3 .
We first start by considering the canonical P(N, 1)-correlated equilibrium
of the first-stage of the game. In this partitioned correlated equilibrium
we compute the equilibrium belief of player 1 when player 2 and 3 corre-
late their activities in a correlated equilibrium of their intra-coalition game.
When Gσ

1 ≥ Gσ
2 ≥ Gσ

3 , the indifference condition for player 1 yields the

distribution p∗2,3 ∈ ∆(
{

θ{2,3}, θ{2,3}

}
) for 1 such that, if Gσ

1 − Gσ
3 ≥ s

3 ,

p∗2,3(θ2,3 | G) =

{
1 if G is such that U1((θ1, θ2,3),G) − U1((θ1, θ2,3),G) ≥ 1;
1
2 + 1

s
(Gσ

1 − Gσ
2 ) otherwise.
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and, when Gσ
1 − Gσ

3 < s
3 ,

p∗2,3(θ2,3 | G) =

{
1 if G is such that U1((θ1, θ2,3),G) − U1((θ1, θ2,3),G) ≥ 1;
1
3 + 1

2s
(2Gσ

1 − Gσ
2 − Gσ

3 ) otherwise.

Hence, at a canonical P(N, 1)-correlated PBE, these conditions are equiv-
alent to have player 1’s beliefs in the second-stage of the gun-butter game
such that,

µ∗1
P(N,1)(θ2,3 | θ1,G) =

{
min

{
1
2 + 1

s
(Gσ

1 − Gσ
2 ), 1

}
if Gσ

1 − Gσ
3 ≥ s

3 ;
1
3 + 1

2s
(2Gσ

1 − Gσ
2 − Gσ

3 ) otherwise.

Let us repeat the same computations for the case of a canonical P(N, 2)-
correlated PBE. In this case, we have look at the P(N, 2)-correlated equi-
librium of Γ (G). Here, player 2’s beliefs are given by,

µ∗2
P(N,2)(θ1,3 | θ2,G) =

{
1
2 + 1

2 (Gσ
2 − Gσ

1 ) if G s.t U2((θ2, θ1,3),G) − U2((θ2, θ1,3),G) ≥ 0;
0 otherwise.

Otherwise, when Gσ
1 − Gσ

3 < s
3 ,

µ∗2
P(N,2)(θ1,3 | θ2,G) =

1

3
+

1

2s
(2Gσ

2 − Gσ
1 − Gσ

3 ).

Finally, we compute player 3’s beliefs in a canonical P(N, 3)-correlated
PBE. In this case, we have look at the P(N, 3)-correlated equilibrium of
Γ (G). When Gσ

1−Gσ
3 ≥ s

3 , player 3’s beliefs are such that µ∗3
P(N,3)(θ1,2 | θ3,G) =

0 since U3((θ3, θ1,2),G) − U3((θ3, θ1,2),G) = 0, and

µ∗3
P(N,3)(θ1,2 | θ3,G) =

1

3
+

1

2s
(2Gσ

3 − Gσ
1 − Gσ

2 ) otherwise .

The rest of the proof is similar to proposition 1. �
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