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Abstract 

 

This paper estimates with the Bayesian methods a CES production function for Singapore for 

1960-2009. It is found that the elasticity of substitution is 0.6, technical progress is labour 

augmenting and the steady state growth rate of Singapore is about 1.8%.  
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1. Introduction 

 

Singapore, China and India have been growing rapidly at 5%, 7% and 10% per annum 

respectively during 2000-2009. Are these growth rates permanent? If they are transitory, what 

are their long run growth rates? This paper tries to answer these questions with data from 

Singapore. Singapore is an interesting example. Its average rate of 8% during 1970-2000 has 

slowed down to 5% since 2000. India and China are also likely to grow eventually at a much 

slower rate like Singapore.  

Long run growth rate means the steady state growth rate (SSGR). The existence of a 

SSGR depends on the nature of the production function. We assume constant returns to avoid 

the adding up problem. If the production function is Cobb-Douglas (CD) SSGR always 

exists. However, if it is the constant elasticity of substitution (CES) type, SSGR exists only if 

the elasticity of substitution is less than unity and technical progress is labour augmenting. 

Therefore, answers to our questions lie in the parameters of a CES function.  

There are alternatives to estimate a CES, but we shall use the Bayesian approach from  

Luoma and Luoto (2010).The advantage is that it can be estimated with data on factor shares 

instead of the more difficult to obtain data on factor returns. Furthermore, the finite sample 

properties of the Bayesian estimators are well-articulated by Poirier (1995) and the exact 

finite sample properties for nonlinear functions like CES can be computed. Section 2 briefly 

discusses specification and estimation and empirical results are in Section 3. Section 4 

concludes. 

 

2. Specification and Estimation 

 

Our specification and the underlying technology is similar to Luoma and Luoto (2010): 

 

(1) 

1 1 1

( , ) ( , )
(1 )K Lg t t g t tt t t t

Y K H L
e e

Y K H L


  
 

  
                 

 

 

where Y , K , H L and t are sample geometric averages of output, capital, labour embodying 

human capital and time respectively. These baseline averages are used to normalise the CES. 



The parameter is the average capital income share,   is the elasticity of substitution 

between capital and labour  and  accounts for deviation of CES production function from a 

log-linear function; see Klump, McAdam and Willman 2007. This deviation primarily arises 

because for a non-linear function the sample geometric averages of the variables defined 

above may not coincide with the true fixed point. ( , )
K

g t t  is the rate of capital augmenting 

technical progress and similarly ( , )
L

g t t  is the rate of labour augmenting technical progress. 

They are defined as: 
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where 
j

 and 
j

 measures the shape and the speed of adjustment of factor augmenting 

technological progress. When the shape parameter takes the values 1, 0, or less than 0, the 

technological progress function ( , )
j

g t t  is linear, log-linear and hyperbolic respectively. 

Thus estimates of these parameters can be used to understand the nature of the production 

technology. 

 

Taking logarithm on both sides of (1), it can be written as 
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where  is a iid random error variable and  
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Equation (1a) can be estimated using maximum likelihood, but as the likelihood 

function for CES technology is multi-modal, the parameter may not converge to the global 

optimum. Therefore, we estimate (1a) with the Bayesian methodology and priors guided by 

economic theory. The likelihood function for a sample of T  output observations 

 1,..., TY YY can be written in terms of inputs  1,..., TK KK ,  1 1,..., T TH L H L  H×L
 

and the parameters of technology as follows: 
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where  , , , , , , ,K k H L H L       θ  and h (the inverse of variance) is commonly referred to 

as the precision parameter in the Bayesian literature. We use the following priors for θ and h: 

(4) ( , ) ( ) ( )p h p h p hθ θ  

We elicit a prior for θ conditional on h of the form
1
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where (.)I is an indicator function taking the value 1 if the argument is true and 0 otherwise, 

and R is the region in the parameter space where 0 , 0 1      , 0    and the 

remaining parameters may take any value on the real line. In (5) θ  and V are prior mean and 

covariance matrix respectively for the parameter θ and in (6) 2
s
 and   are the prior shape 

and scale parameter respectively for h . 

The posterior is proportional to the product of likelihood function given by (3) and the 

joint prior given by (4). In order to sample from posterior density, it is helpful to use a Gibbs 

sampler. In Gibbs sampling algorithm, (see Gelfand and Smith, 1990) draws from joint 

posterior density are generated by sampling from a series of conditional posteriors. However, 

to impose constraints on the parameters requires a method for drawing observations from a 

truncated multivariate distribution. In Bayesian literature accept-reject (A-R) and Metropolis-

Hastings (M-H) algorithms are the most commonly used to draw observations from a target 

distribution. A disadvantage of A-R algorithm (see Gelfand and Lee, 1993) is that for some 

complex conditional posterior densities one would need to generate a very large number of 

candidate draws before finding one that is acceptable. Therefore in our simulation we prefer 

                                                
1 ( )Nf α β,C indicates that α  is a multivariate normal vector with meanβ and covariance matrixC  

and ( )Gf a b c, indicates that a  has a gamma distribution with shape parameter b and scale 

parameter c . 

 



to use a more efficient random-walk Metropolis-Hastings (M-H) algorithm (see Chib and 

Greenberg, 1995). 

The Gibbs sampler necessitates drawing sequentially from the following conditional 

posteriors: 

(7) 

  

    
2

1

1

1

( , ) exp ln ln , ,
2

1
exp ' ( )

2

T

t t t t

t

h
p h Y G Y H L

I R


 





     

   

 
 
 

θ Y,K,H× L θ

θ θ V θ θ θ
 

 

and 
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Draws from these conditional posteriors will converge to draws from the posterior 

( , )p hθ Y,K,H×L . Simulating from the gamma density (8) is straightforward using random 

number generators available in most softwares. However, simulating from (7) is slightly 

complicated because it is a truncated probability density function (pdf). To simulate from (7) 

we used a random walk Metropolis-Hastings algorithm with a multivariate normal proposal 

density; see Koop (2003, p.92). During the transition, or burn-in phase of the algorithm, the 

covariance matrix of the proposal density was set to a scalar multiplied by an identity matrix. 

The scalar was set by trial and error to yield an acceptance rate in the range 0.3-0.5.
2
 After 

                                                
2
 There is no rule for the best acceptance rate. Roberts et al. (1997) show that if the target and proposal densities 

are normal pdfs, the optimal acceptance rate is between 0.45 in one-dimensional problems and approximately 

0.23 as the number of dimensions becomes infinitely large. 



the burn-in, to improve the efficiency of the algorithm, we used the covariance matrix of the 

burn-in observations as the covariance matrix in the proposal density. 

 

3. Empirical Results: 

 

We choose  1,0.33,1, 1,0.02,1,0.01 θ , 
70.25IV , 12  , and 2 10s

  .
3
 Given the likely 

magnitudes of the marginal products of effective labour and capital and the way we have 

normalized the data, these choices are sensible, but relatively non-informative. We simulated  

400,000 observations from the conditional posteriors (7) and (8), and discarded the first 

200,000 draws as burn-in.
4
 Figures A1 and A2 in the appendix present convergence plots for 

each of the elements ofθ . They clearly indicate that the Markov chain Monte Carlo (MCMC 

henceforth) sequence for all the parameters is stationary. We formally checked convergence 

for each of the parameters using Gelman and Rubin’s (1990) diagnostic R. 

Estimates of the unknown parameters for the periods 1960-2009 and 1960-2004  are 

presented in the first and second columns of Table 1. We added data for five years to our 

original sample of 1960-2004 to see how sensitive our estimates to the sample size are. It can 

be seen that parameter estimates in both samples are close. The point estimates are the means 

of the MCMC samples and are optimal Bayesian point estimates under quadratic loss. The 

inequality restrictions in the prior (5) ensure that all the estimates in Table 1 are theoretically 

plausible.  

 

 

 

 

 

 

 

 

 

 

                                                
3 We used MATLAB for simulating the posterior conditional densities.  

4 The prior variance-covariance matrix is a diagonal matrix since it is not easy to guess what they might be. 



Table 1 Estimated results for Singapore 
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Parameter 

  

     

1960-2009  

 

 

1960-2004 

  
 

0.8976  

[0.8266, 0.9801]    

0.9124 

[0.8364,1.0087] 

  
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The confidence intervals in the square brackets are for the MCMC samples and 

suggest that all the parameter estimates are reliable. A more complete picture of the level of 

uncertainty surrounding the unknown parameters is presented in Figures A2. These figures 

present estimated marginal posterior pdfs for each of the parameters for Singapore. A feature 

of these pdfs is that the estimated pdfs for and are asymmetric. This is a due to the 

inequality restrictions incorporated in the prior. 



 

Figure 1 

Technological progress for Singapore in log 

levels

 

Notes: Labour-augmenting ( )
H L

g   , capital-augmenting ( . . )
K

g    , and ln ( )TFP  . Total 

factor productivity is calculated by applying  Kmenta (1967) approximation around the fixed points 

where:  
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 Estimates of the two crucial parameters viz., share of capital (  ) and elasticity of 

substitution ( ) are close in both samples. The share of capital at 0.27 is virtually the same 

in both samples and not significantly different from its stylised value of one third. On the 

other hand the elasticity parameter at about 0.63 in the larger sample is significantly less than 

unity. This implies that estimates of TFP with the CD production function are somewhat 

overestimated as can be seen from the equation for lnTFP in the notes for Table 1. The 

nature of TFP i.e., whether it is labour or capital augmenting is plotted in Figure 1. It can be 



seen that up to the mid 1970s, capital augmenting TFP has dominated and since then labour 

augmented TFP has dominated. This is to be expected because it is relatively quicker to 

invest in technically superior capital equipment in the initial stages of a country’s 

development. However, considerable time is needed to train and educate the labour force. 

Towards the end of our sample period in 2009, labour augmented TFP is about 4.5 times 

higher than capital augmented TFP. Therefore, it is reasonable to conclude that TFP in 

Singapore since the mid 1970s is labour augmenting and our estimate for the TFP growth of 

1.8% is a reasonable estimate of Singapore’s SSGR.  

 

4. Conclusions 

 

We estimated a CES production function for Singapore with the Bayesian methods and found 

that the elasticity of factor substitution is well below unity. Since Singapore’s TFP is mainly 

labour augmenting, especially since the mid 1970s, it is reasonable to conclude that the long 

run growth rate for Singapore, as we found, is 1.8%.  



 

Appendix 

 

Figure A1: Convergence plots for Singapore  



 

   Figure A2: Estimated Posterior Pdfs for Singapore 
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