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ABSTRACT 

 

          Three essays comprise this dissertation. The first essay uses panel data to show that 

labor income risk alone cannot explain limited stock market participation. However, 

transaction costs and household demographics, considered jointly, can determine both the 

discrete choice of whether to hold stock and the amount held, conditional on whether the 

household is already investing in the stock market. Transaction costs are proxied by state-

level number of brokers per capita.  

          The second essay builds on the first essay. I measure two different covariance 

terms. One is between self-evaluated house value and uninsurable labor income risk. The 

other is between housing investment return and stock return. The results show that 

homeownership has a diversification effect on stock holdings. This effect occurs because 

adding a house to the household portfolio can significantly decrease the overall risk of the 

portfolio. 

          The last essay empirically shows that unemployment is significant in determining 

both consumer bankruptcy filings and delinquency even after controlling for household 

demographics. Furthermore, I show that unemployment and the debt/wealth ratio also 

affect the choice of whether to file for bankruptcy under chapter 7 or chapter 13, after 

controlling for demographics. The paper then points out some of the implications the 

empirical results have for policy-makers and banking regulators.
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CHAPTER 1 

 

1.1 Introduction 

In recent years, the problem of household portfolio choice has received increasing 

attention in financial economics, spurred mostly by the mystery of why so few American 

families held stocks even though the equity premium was very attractive.  The data show 

that the average risk premium over the post-war period is over nine percent. During the 

more recent period of 1980 to 1994, which is the sample period in my paper, the risk 

premium is still as high as almost eight percent (see table 1 for details). The risky asset I 

use to calculate the risk premium is the monthly value-weighted return on the Standard & 

Poor’s Composite Index, which is defined as return(t)/return(t-1)-1. The yearly value-

weighted return can be easily calculated from this monthly return, through the formula 

1+R=(1+r(1))*(1+r(2))*…(1+r(12)). In this formula, r(1),…,r(12) are the monthly returns 

from January to December. The risk-free asset return I use is 30-day bill returns, and the 

yearly return is calculated using the same method as for risky returns. 

However, in spite of the high risk premium, most American households still 

choose NOT to hold stocks. The previous literature has shown that most households hold 

remarkably simple portfolios—basically, checking and savings accounts1 and a house. 
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Bertaut & Starr-McCluer (2000) show that over half of all American households do not 

hold any type of stock investment.  

This phenomenon obviously contradicts traditional portfolio choice theory. 

Following the theories in Merton (1969, 1971) and Samuelson (1969), with complete 

markets, if investors are living off financial income generated from multiple financial 

assets, all investors should invest in risky assets. If the investment opportunities are 

constant and investors have isoelastic expected utility, the models also predict that all 

investors should invest in equities in the same proportion. Only the level of holdings will 

differ across investors due to their different amounts of wealth. However, this scenario 

breaks down whenever the market becomes incomplete. Market incompleteness comes 

from many sources, like short sale constraints, market frictions, or non-marketable 

incomes. When markets are incomplete, investors cannot price and capitalize future state-

contingent income. Among these causes of incompleteness, economists give the most 

attention to labor income risk, since it is perhaps the most obvious risky, uninsurable 

background risk. Investors (or, workers, in the labor market) and employers can only 

negotiate contracts on a period-by-period basis, due to the moral hazard and adverse 

selection problem (Viceira (2002)). As a result, investors cannot write enforceable claims 

against future labor income. When investors become uncertain about future labor income 

flows, they prefer to hold less risky and more liquid assets as a hedge against labor 

income changes, especially during economic downturns. 

A number of researchers have been exploring this issue both theoretically and 

empirically. For example, Gakidis (1998) investigated this problem by introducing 
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shocks to both labor income process itself and to its growth rate and confirmed that labor 

income risk does indeed have a major effect on asset accumulation when households 

have borrowing constraints. Gakidis also tried to reconcile this with “buffer stock” saving 

behavior. Chakraborty and Kazarosian (1999) also point out that both permanent and 

temporary earnings shocks can generate a precautionary savings motive. Angerer(2003) 

used NLSY79 data to show that income risk significantly reduce share of risky assets in 

an investor’s portfolio. 

This problem becomes more complicated when risky labor income interacts with 

risky financial asset returns. Pratt and Zeckhauser (1987) were the first to point out that 

bearing one risk may make investors less willing to take another risk, even when the two 

risks are statistically independent. Kimball (1993) developed the notion of “standard risk 

aversion” and its implication for optimal investment. He states that “standard risk 

aversion is necessary for any loss-aggravating risk to reduce the optimal level of 

investment in any other independent risk.” Viceira (2001) has also explicitly documented 

that when labor income risk is idiosyncratic, investors should hold more risky assets 

when they are employed than when they retire. If there is a negative correlation between 

income risk and stock return risk, holding stocks is a kind of hedge against income 

variations. But if the correlation is positive, stocks will not be that favorable. Vissing-

J∅rgensen (2000) investigated the nonparticipation mystery in the stock market and the 

considerable heterogeneity of different households, finding that positive mean non-

financial income affects the probability of holding stock and the risky shares conditional 

on being a stockholder. 
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However, very few papers have documented the magnitude of the effects of risky 

labor income on the probability of holding stock. Some work has shown the statistical 

significance of risky, uninsurable labor income in financial decisions. Angerer(2003) 

used random effect Tobit model to estimate the significantly negative effect of permanent 

income shocks on risky share holding relative to liquid assets and net wealth. Vissing-

J∅rgenson (2001) shows that increasing the conditional mean of real nonfinancial income 

by $10,000 (in 1982-1984 dollars) can increase the probability of holding stock by 3.4 

percent, a significant but small effect. However, it is more natural to consider the change 

in probability of holding stock when the moments of real labor income change by one 

standard deviation. Souleles (2001) is the first to challenge the effect of labor income risk 

on portfolio choice. He points out that labor income risk is not enough to capture the total 

background risk the household faces. The commonly used standard deviation of income 

change cannot fully summarize the riskiness in the household income process, including 

illness, divorce or going to college. However, Souleles did not estimate the magnitude of 

the effect of risky, uninsurable labor income on household portfolio choice. 

In this paper, I use Heckman’s sample selection model to measure the magnitude 

of the effect of risky labor income on household portfolio choice. I find that the moments 

of labor income can significantly affect household decisions about whether to hold stock 

and how much to hold. However, their effect on the probability of holding stock is not as 

large as one might expect. 

In contrast, transaction costs turn out to be important in determining stock holding 

behavior. Previous literature has identified the importance of transaction costs in portfolio 
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choice. Souleles (2001) shows that over 85% of respondents in the CEX sample do not 

make any securities transactions over the 12-month reference period. This suggests that 

transaction cost is important. He also used an ordered probit model to show that it is 

optimal for the household to incur transaction costs and purchase or sell securities only 

when the holding level falls below or above a desired level, i.e., households follow a 

state-dependent (S, s) rule. Vissing-J∅rgensen (2001) used structural state dependence in 

analyzing the Panel Study of Income Dynamics to show the existence of an entry cost, a 

fixed transaction cost, and a proportional transaction cost. He also estimated the per-

period participation cost to be around $200 per household. 

Few studies have actually estimated the impact of transaction cost on stock 

holdings, mostly due to the difficulty of capturing transaction cost in the econometric 

analysis. For the first time in the literature, I argue that the number of securities brokers 

per capita in a particular state can reflect transaction costs. Even though this does not 

quantify the actual amount of transaction costs a household faces, it is a good proxy. I 

show that households do dramatically increase their probability of holding stock and the 

amount they hold when there are more brokers per capita. 

Additionally, this paper extends the previous literature in the sense that it employs 

a longitudinal panel of randomly selected US households over a 15-year period. Previous 

work on this topic has been mostly performed using cross-sectional survey data, which 

cannot fully reveal what happens in a household over time. Longitudinal panels can 

correct this deficiency. In this paper, I use data from the Panel Study of Income 

Dynamics (PSID), including three waves of PSID wealth supplements, to investigate the 
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effects of the moments of labor income and brokers per capita on household portfolio 

choice. The PSID has yearly observations of labor income, permitting estimation of their 

labor income dynamics. Furthermore, there are observations of wealth components at 

five-year intervals. Even though there are fewer time-series observations on asset 

holdings, overall household behavior in entering and leaving the equity market can be 

clearly seen, and my assumptions about the effects of income and transaction costs can 

also be checked. 

The paper also has some important macroeconomic implications. First, stock 

investment shapes aggregate wealth investment, which is recognized as a critical issue in 

analyzing the effects of government fiscal policies. Second, individual investment 

behavior can also reflect market efficiency (Shiller (1997)). Third, understanding 

household investment preferences can help in constructing retirement funds and Social 

Security. Especially in the presence of transaction costs, economists argue that investing 

Social Security funds in equities can help low-income households participate in the stock 

market (Abel (2000)). 

Due to the limitations of the available data, this paper considers only two kinds of 

assets: risky stocks and risk-free checking and savings accounts. The rest of the paper 

will be divided into four parts. The first section describes the model for estimating 

expected labor income, income risk and the correlation between income growth rate and 

stock return. The second part describes the data set used and the construction of the 

sample. The third part is the econometric analysis of a Heckman two-stage model with 

and without including brokers per capita. The last section concludes. 
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1.2 The Model 

1.2.1 Model for expected labor income and income risk 

Household earnings innovation was first investigated in Hall and Mishkin (1982). 

They decomposed income changes into permanent and transitory movements and 

investigated the stochastic relationship of consumption to income. The new method for 

modeling income uncertainty for a typical household is demonstrated by Carroll (1992), 

where actual income is equal to permanent income multiplied by a transitory shock, 

, and the permanent income grows by a fixed factor, G, i.e. . Carroll 

used those methods to investigate household consumption and savings behavior. Carroll 

and Samwick (1997) extended this analysis by introducing variance of shocks to both 

permanent and transitory income, showing that wealth is principally held to insulate 

consumption from income uncertainties.  

ttt PY ε= 1−= tt GPP

More recently, interest in these income models has resurfaced as a result of 

interest in investigating the effect of income shocks on the stockholding puzzle. In my 

paper, to estimate the moments of labor income, I use the following method from Carroll 

and Samwick (1997)1:  

itititit
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In each period t , a household i with a set of characteristic variables receives labor 

income . In the decomposition of the logarithm of wage income,  is the permanent 

component, which is defined as the amount of log labor income the household receives in 

itw itp



the absence of any transitory income shocks. In each period, the permanent component 
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1 This model was also employed in Viceira(01) and Vissing-J∅rgensen(00).  

2 See also Vissing-J∅rgensen(00) and Angerer (03) 
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predicted values will be estimates of , the residuals will be estimates of itg 1−−+ ititit εεη , 

and the sample variance of the residuals will be estimates of .  
22

2 ii εη σσ +

However, the above methodology is applicable if and only if the household i earns 

positive labor income in all of the sample years, which contradicts reality. In each time 

period, the household may experience a “good state” when it receives a positive amount 

of labor income, but there is still a probability iπ that the household will not earn any 

wage income. A careful examination of the PSID sample shows that about 15-20 percent 

of each year’s sample receives no labor income.  

The conventional method to solve this problem is to add one dollar to the zero 

income cases, which enables their income to be logged. However, I argue that this 

method biases the estimated mean and standard deviation of the income process, since the 

underlying processes governing positive income flow and zero income flow are totally 

different. 

In the “good state,” the evolution of log labor income can be governed by the 

summation of a permanent component and a transitory component, where the permanent 

component can be predicted linearly from a vector of household demographics such as 

age, education, occupation, race, etc. This is the standard human capital model. In the 

“bad state,” the household does not receive any wage income, perhaps due to temporary 

unemployment, illness, and divorce or school attendance. Even though the probability of 

such “bad states” is relatively small, it can indeed have an important impact on behavior. 

The determinant of household behavior in light of such unexpected events will be the 

likelihood of a “bad state,” and the empirical estimation of labor income should account 

 9



for events leading to a “bad state” (Gakidis (1998)). The need for a separate process for 

dealing with zero-income cases becomes even clearer when Gakidis (1998) uses PSID 

data to plot the distribution of ( 1lnln −− itit ww ), which has fat tails on both sides, where 

both tails are associated with entry into or exit from unemployment (or any other events 

leading to zero wage rate). 

Therefore, the commonly used measure, standard deviation of income changes 

from OLS regression, cannot adequately summarize the risks the household actually faces. 

Statistically, this method can bias the results, too. For example, a household with positive 

labor income in all sample years will have an income process whose innovations have a 

smaller standard deviation but greater persistence. Another household with zero labor 

income in only one or two of the sample years will have an income process whose 

innovations have a large standard deviation but less persistence. A household might 

invest more in risky assets under the first income process than under the second (Souleles 

(2001); Storesletten, Telmer and Yaron (1997); Constantinides and Duffie (1996)). 

However, if we treat the two households equally under the same income process as in the 

above model, the model predicts that the second household holds more equities. The 

econometric reason behind this is that the sample residuals from the OLS regression will 

have a large standard deviation for the second household, and this large variance term 

enters exponentially in the estimated expected labor income, so the second household is 

expected to have a large labor income and thus hold more risky assets than the first 

household. Further, this bias may be fairly large, because around 20% of the sample has 

zero labor income in at least one year, and almost all of these households have sizeable 
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incomes in other years. This large proportion of zero income years will lead to an 

unreasonably high level of expected income and income risks. A careful examination of 

this method shows that it may estimate that about 150 households in the sample are 

millionaires when they actually earn only $30,000-$50,000 a year. Obviously this could 

significantly bias the econometric analysis. However, there is no reason to drop these 

families since one can econometrically account for any unexpected events, such as 

divorce, illness, and temporary layoff, which prevent the household from earning any 

labor income. 

To resolve the zero-income episodes, we can consider the problem as a sample 

selection issue as described in Heckman (1979).  In this selection process, a household 

with a zero income event is included if and only if the household can earn positive wage 

income. Moreover, because the regression in equation (1) actually involves the selection 

of both and , this is actually a bivariate sample selection issue. To address this 

problem, I first run a bivariate probit model to estimate the probability of earning positive 

income in both years t and t-1 for each household and then calculate their inverse mills 

ratios by using the bivariate cumulative distribution function and bivariate probability 

density function. Then I pool all households in all of the sample years and estimate the 

log difference of labor income using a random effect model, with the variables from the 

standard human capital model as independent variables, together with the two inverse 

mills ratios calculated from the bivariate probit model to adjust for sample selection.  

itw 1−itw

The bivariate probit model is also based on the following standard human capital 

model. 
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Where both εit and εit-1 are distributed as N(0, 1). However, lnwit or lnwit-1 can only be 

observed when wit or wit-1 is positive. So I create the two discrete variables Dit and Dit-1, 

which are defined as  

Dit=1 iff lnwit>0 and 0 otherwise 

Dit-1=1 iff lnwit-1>0 and 0 otherwise 

In this equation, Dit is the indicator variable for whether the household earns positive 

labor income in a particular year. So what I estimate is actually the following: 
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where Xit-1 and Xit-2 are vectors of household characteristics at time t-1 and time t-2 

respectively. Maximum likelihood method is used to estimate the bivariate probit model 

and obtain the following four probabilities: 
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Obviously, we can calculate the four inverse mills ratios by using the bivariate 

cumulative distribution function and bivariate probability density function. Then, 

depending on whether lnwit and lnwit-1 are positive or zero, each household is assigned 

different inverse mills ratios.  
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The predicted values and residuals can be easily obtained for these households 

from the above random effect estimation. Finally, I use the predicted values and sample 

variance of residuals to estimate the conditional expected income and income risks.  

 

1.2.2 Model for the covariance between labor income growth and stock return 

Viceira (2001) shows that a small, positive correlation between labor income risk 

and stock return risk significantly reduce the optimal investment in equities, because of 

their inability to hedge against unexpected labor income innovations. This is consistent 

with Kimball (1993)’s notion of “standard risk aversion,” which implies that a loss-

aggravating background risk will reduce the optimal investment in another risky asset. 

However, Vissing-J∅rgensen (2000) finds no evidence of this hedging effect when 

investigating the interaction term for the correlation coefficient and expected nonfinancial 

income. 

In this paper, I estimate the covariance of labor income growth with stock returns 

by summing the products of the difference of log labor income and stock returns across 

all sample years. For each family, I estimate cov( ),ln tit Rw∆  by ∑ •∆
t

tit Rwln , where 

 and is the value-weighted gross return with dividend 

reinvestment for the S&P500. Note that for those families with zero labor income, I add 

$1 so they have zero log labor income, since doing this will not change the results. 

1lnlnln −−=∆ ititit www tR

I also estimate the conditional covariance by using t

t

itit Rgw ⋅−∆∑ − )ln( 1 , but the 

term git has a negligible effect on the covariance. This finding is unsurprising given that 
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the demographic variables in Xit-1 are unlikely to be apparently correlated with 

subsequent returns in the stock market and vice versa.  

1.3 Data 

In this paper, I use five different data sets. The Panel Study of Income Dynamics 

(PSID) is the main data set for income dynamics, family demographics and portfolio 

choice. The S&P500 provides the representative yearly return and the covariance of 

income growth rate and stock return. Both Census data and the Bureau of Labor 

Statistics’ survey of securities brokers are used to calculate the number of brokers per 

capita. Finally, I use state-level per capita income from the Bureau of Economic Analysis 

(BEA) to check whether the effect of brokers per capita is merely a proxy for per capita 

income. The data sets are described as follows. 

 

1.3.1 PSID (Panel Study of Income Dynamics) Data 

Because the model for labor income involves looking at the dynamics of labor 

income of the same household over a number of years, the Panel Study of Income 

Dynamics (PSID) is a natural choice. The PSID is a large, longitudinal, representative 

study of US households. The survey randomly sampled about 6000 American families in 

1968 and has tracked income and other family characteristics for both the original main 

families and the split off families since that time. The PSID data files provide a wide 

variety of information about both families and individuals collected over the span of the 

study. The central focus of the data is economic and demographic, with substantial detail 

on income sources and amounts, employment, family composition changes, and 
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residential location. But its content is much broader than this: in 1984, the PSID 

introduced a supplement with questions on family wealth, such as the value of checking 

and savings accounts, stockholding, credit card debt, and total wealth. This wealth 

supplement has been administered every five years since 1984. Therefore, analyzing the 

portfolio choice decisions of those households should give a good picture of wealth 

holding among US households. 

For my sample, I use data for 1979-1996. I drop the Latino over-sample in 1990-

1992. I then use 1979 as my base year, treating all families in this year as main families, 

and subsequent split off families are dropped from the sample. A family is also dropped if 

it did not respond in any year. Finally, I drop the two cases in which total asset income of 

other family members is top-coded. This leaves a balanced panel of 4884 households. 

Since stockholding behavior is recorded at the household level, I construct the 

total labor income for each household in each year. This is calculated as labor income of 

head + labor income of spouse + taxable income of other family members – asset income 

of other family members. Since asset income of other family members is bracketed in 

1980-1982, I broke down the same variable in 1983, using the cutoff levels for 1980-

1982, and then calculated the mean value within each bracket, substituting this as the true 

value in 1980-1982. Even though the 1994-1996 income data are finalized, one cannot 

identify asset income for family members other than the head and spouse. Therefore, the 

asset income for other family members in 1993 was subtracted from total taxable income 

to get an approximation for labor income. I also tried another method, simply taking 

taxable income as labor income since very few other family members actually have asset 
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income, but the two approaches generate virtually identical results. If (taxable income – 

asset income) was negative in 1980-1982, I set the difference to zero. 

I deflate total household labor income by the annual average of the CPI-U to get 

real labor income. The vector of observable household characteristics, Xit-1, includes the 

age of household head and its square along with dummy variables indicating whether the 

head has a college degree or more, whether the head is a white-collar worker and whether 

the head is white. All of these demographic variables are widely used proxies for human 

capital, which is strongly related to labor income. I also include a dummy variable for the 

employment status of the head in the bivariate probit step, since this can be a crucial 

determinant of whether the household has zero or positive income in a particular year. 

This variable is excluded from the regression for wage income, since it is not a factor 

considered in human capital by labor economists as a determinant of the labor income of 

those who earn positive labor income. 

I then calculate the residuals for each family in each year, employing the bivariate 

probit model and three different yearly cross-sectional regressions as specified in the 

previous section, which is actually an estimate for ηit+εit-εit-1.  The sample variance of 

residuals for each family will be used for sigma. The fitted value for 1994 will be seen as 

an estimate of git. With those estimates in hand, we can calculate the expected mean and 

variance of labor income for each family.  
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1.3.2 Stock Return Data 

To construct the sample covariance of labor income growth and stock return, I 

calculate  for each family.  is the yearly gross return of the S&P500, and 

it is actually calculated from monthly value-weighted return with dividends, that is:  

tit Rw *ln∑∆ tR

))12(1())3(1())2(1())1(1(1 rrrrrR tt +⋅⋅⋅⋅⋅⋅⋅⋅+⋅+⋅+=+=  

where  are monthly value weighted simple returns with reinvested 

dividends for the S&P500. Again, as is true for the moments for labor income, this 

estimate is created in the same way for 1984, 1989 and 1994. 

)12()1( rr ⋅⋅⋅⋅⋅

 

1.3.3. Data for Brokers per Capita 

It may be a difficult task to actually quantify transaction cost. Not only do we 

have no way to know what kind of securities the households are actually holding, it is 

also a formidable task to figure out how many times an investor makes transactions in a 

certain time period, and how much he paid to the brokers or e-trade companies, or even 

how much time he spent investigating the market and figuring out his optimal strategy. 

However, one measure that seems worth trying is the number of brokers per capita in the 

state in which the household resides. The PSID has a state code for each household in 

each year, and population size is available from the Bureau of the Census for all years. 

The total number of employees in security brokerages is also available at the state level 

from the Bureau of Labor Statistics, but only for 1996-1999. I calculated the average 

growth rate of brokers per capita for each state between 1996 and 1999 and extrapolated 

backward to estimate brokers per capita for each state for 1984, 1989 and 1994. In this 
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way, each household in the PSID can be assigned a measure of “brokers per capita” in 

1984, 1989 and 1994 respectively. 

 

1.3.4 Data for per Capita Income 

Yearly state-level per capita personal income can be obtained easily from the 

Bureau of Economic Analysis. Since the econometric analysis involves 1984, 1989 and 

1994, I extract per capita income only for these three years and then assign it to each 

household using the state code in the PSID data. 

 

1.4 Econometric Analysis 

1.4.1 General Description 

I first give an overview of family asset holdings during this 15-year period. The 

frequency table shows that most families have either checking or savings accounts. The 

percentage with such accounts is quite stable, about 70% of the whole sample during all 

three waves of the wealth survey, with a high of 75% in 1989 (see table 4 for detail). The 

mean value put into checking and savings accounts increased significantly, by about 

$5000 every five years. 

Residential housing seems to be the most important investment for households. 

As shown in table 5, the ownership of housing is above 60%, and it increases to almost 

70% in 1993. The median value of housing is far greater than any other investment; it 

increases steadily from almost $55,000 to $75,000 during the 15-year period. 
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The picture for stock ownership seems quite different. First, the percentage of 

respondents holding stock is much lower—about half of those with checking/savings 

accounts, even though it is increasing rapidly over time (refer to table 6 for details). The 

median dollar value of stocks held also increased rapidly in the sample period, nearly 

doubling between 1984 and 1989 and more than doubling from 1989 to 1994 (again, see 

table 4 for details). 

A more interesting phenomenon is revealed by the survey data: the same families 

do not hold stocks in 1984, 1989 and 1994. Only 592 families hold stocks in all three 

waves of the wealth survey. Only 751 families hold stocks in both 1984 and 1989. This is 

one of the effects that cross-sectional data cannot reveal, and it gives us some evidence 

that holding stock may be related to transaction costs. 

At first glance, it seems that stockholding is strongly connected with labor income, 

since in all years the mean value of labor income in households who hold stocks is about 

twice as large as in those who do not hold stocks. However, stocks are not held only by 

high-income households; the range of labor incomes for stockholders is about twice as 

wide as for non-stockholders. This observation leads us to investigate the magnitude of 

the effect of risky labor income on portfolio choice and what else can drive the household 

in and out of the stock market. 

 

1.4.2. Results on the Effects of Labor Income 

Since the decision to hold stock may differ from the decision about how much 

stock to hold if the family already has stock, I first use the probit model to examine the 
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effects of labor income on the decision to hold stock, and then see how this effect 

changes if the moments of labor income are changed by one standard deviation. The 

Heckman sample selection method is then employed to see how labor income affects how 

much stock is held if the household chooses to hold stock at all. The same framework is 

also used to see how the results may change if transaction costs are incorporated in the 

model. 

          The probit model is of the general form: 
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where Sit
* is the amount of stock holding for household i in year t, and  

Sit=1 iff Sit*>0 and  

Sit=0 iff Sit
*=<0. 

Sit is the dummy variable indicating whether the household holds stock. The vector of 

observable characteristics that determines it is the same as that which determines Sit
*. 

Angerer (2003) used NLSY 79 cohort data to estimate the effect of uninsurable 

labor income on risky shares as a percentage of net wealth or liquid assets. The 

econometric model is a random effect Tobit model, the dependent variable is risky shares 

relative to either liquid assets or net wealth. The independent variables include income 

risks imputed from Current Population Survey (CPS) and human capital factors. She 

found significantly negative effect of permanent income shocks on risky share holding. 

The Heckman two-stage model in this paper is estimated using the maximum 

likelihood method. In the probit analysis, the moments (mean and standard deviation) of 
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household total labor income and the covariance of annual labor income growth rate and 

stock return enter as regressors. The previous literature (see Bernheim (1997)) showed 

that access to financial knowledge (in the form of high school financial curriculum 

mandates) could significantly influence adults’ financial decision-making. I use a dummy 

variable for whether the household head works in a financial company to proxy for such 

information and to control for the household’s access to financial knowledge. Additional 

regressors include dummy variables for whether the head is white and male; age of the 

household head; education dummies for whether the head has received any college or 

higher education; a dummy for whether the head is a white-collar worker; and two 

dummies for the industry in which the head works (either manufacturing or for other 

business and services). Finally I include a variable indicating how many children the 

household has. 

The probit result for the probability of holding stocks in all three waves of the 

wealth supplement is shown in table 9. Most important, expected labor income seems to 

have a very negligible effect. For example, in all three years, the estimated coefficient is 

almost indistinguishable from zero, and it is even slightly negative in 1984. However, 

labor income innovations indeed crowd out stock holdings—the coefficient of standard 

deviation of labor income is significantly negative in all three years, and the absolute 

value of this coefficient also increases steadily over the 15-year period. It seems that the 

riskier the labor income, the less likely people are to hold stock. 

Although previous empirical work was unable to detect a statistically significant 

effect in the covariance between labor income and stock return, the covariance functions 
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as expected here. If labor income prospects are positively correlated with stock market 

performance (perhaps for those who work in buy.com), households tend to avoid holding 

stock. By contrast, those whose labor income is negatively correlated with the stock 

market are more likely to hold stock since it is good means of hedging labor income risk. 

(See Viceira (2001) for the theoretical background.) Again, in my model the covariance 

variable shows a slightly upward trend of decreasing the probability of holding stock. 

Given the statistical significance of the coefficients, we are more interested in 

determining the magnitude of the effect. In other words, we would like to know what 

would be the change in probability of holding stocks if the labor income risk is changed 

by one standard deviation. This result is shown in table 10. Since we are focusing on the 

effects of risky labor income, I only report the results for the three moments of labor 

income. The change in probability is obtained by keeping all other regressors at sample 

mean, while changing only of the moments of labor income by one standard deviation 

from the sample mean. Similar to the probit result above, the effect of mean labor income 

is quite negligible; increasing labor income by one standard deviation never increases the 

probability of holding stock by more than one percent! Labor income risk seems to be 

more important; the probability decreases by 2.6 percent in 1984, 4.2 percent in 1989 and 

more than 7 percent in 1994. The hedging term can decrease the probability of holding 

stock around 2 percent if it is increased by one standard deviation from the sample mean. 

However, this percentage is obviously quite small compared to the role of income risk 

presented in the theoretical model. 
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The magnitude of income risk remains almost the same in the sample selection 

results shown in table 11. Increasing the mean labor income by one million can only 

increase stock holding around 3 cents in 1994 and 10 cents in 1989, and this effect is 

even slightly negative in 1984. The standard deviation of labor income has a much larger 

absolute value, but it is not significant either, as it is within one standard deviation from 

zero in 1994, and just above one standard deviation in 1984. 

However, these results are quite reasonable considering the underlying economic 

reasoning. First, Heaton and Lucas (1997) used a decision-theoretical model to show that 

investors are not sensitive to the labor income risk even though this risk can indeed 

discourage stock investment. They explain this is because labor income has a “bottom 

line” bad result, other than the financial investment, which can dramatically decrease the 

“effective risk aversion”. Second, the theory predicts that uninsurable background risk 

can depress stock holdings, since it can change household tolerance toward bearing 

additional stock market risk. However, the labor income risk cannot actually fully capture 

the undiversifiable background risk faced by the typical household. The background risk 

can come from a private business, owner-occupied housing, labor income, etc. Heaton 

and Lucas (1999) used the “Tax Model” to show that private business owners invest less 

in stocks. Gentry and Hubbard (1998) also showed that entrepreneurs save more than 

other people. Housing is similar to private business in the sense that it is illiquid and 

undiversified, but it can give additional consumption flow to the homeowner and thus 

provides a highly levered position which can decrease stock holding (Heaton and Lucas 

(2000); Flavin and Yamashita, (1998)). Finally, treating positive income flow and zero 
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income flow equally can also significantly bias the econometric results. The data have 

shown that zero income episodes do not only come from unemployment or layoff but can 

also be generated by events like illness, going to college, divorce, or retirement. Those 

are obviously non-income events. So, as argued above, different data-generating 

processes should govern positive income and zero income episodes. Treating them 

equally in the empirical work can inflate the effects of labor income risk. It should come 

as no surprise that the above model does not show significant labor income effects after 

adjusting for bivariate sample selection bias. 

Turning to the other control variables in the probit model, they show rather 

reasonable positive effects, as already been documented in the previous literature. The 

most obvious is the life-cycle effect. As the household head ages, the household has a 

higher probability of holding stock and it holds more stock. This contradicts the 

conventional wisdom suggesting that investors should hold more stocks when they work 

and shift toward bonds after retirement. However, recent literature (Davis and Mehra 

(2002)) points out that investors hold an optimal portfolio consists of both risky equities 

and risk-free securities. Human capital is the largest component of wealth and is a risky 

asset, since future labor income is uncertain. However, human capital decreases as the 

investor ages because his productivity energy and the skills that he can bring into the 

labor market decline near retirement. From this point of view, the investor should shift 

towards stocks near retirement in order to maintain balance between risky and risk-free 

assets. 

 24



Having a male household head also has a significantly positive effect on stock 

holding. Male-headed households have a 34 percent chance of holding stocks, and they 

held $54,000 more in stocks than their female counterparts in 1984. This figure increases 

to $70,000 in 1994. Agnew, Balduzzi and Sunden (2000) find some similar results: males 

invest 19.43% more than females in stock according to a panel data from a large 401(K) 

plan. This is also consistent with the results from Hinz, McCarthy and Turner (1997), 

Baijtelsmit and VanDerhei (1997), and Sunden and Surette (1998), who find that women 

are more conservative investors than men, controlling for other background 

demographics. 

Households with the head working in financial companies have a significantly 

higher probability of holding stock, probably due to their exposure to financial principles 

and investment skills. Bernheim and Garrett (1997) show the importance of financial 

knowledge in investment decisions. They use household survey data to show that high 

school consumer/financial curriculum mandates can equip students with practical 

investment decision-making skills in their adult lives. Bernheim and Garrett (1996) also 

show that retirement education offered by employers strongly influences household 

financial behavior. 

Households with a well-educated head (with at least a 4–year college degree) are 

also far more likely to hold stocks than other households. Hubbard, Skinner and Zeldes 

(1995) suggest that better-educated households face lower background risks. Bertaut and 

Starr-McCluer (2000) find similar supporting results. 
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For the other family demographics, the effects are quite consistent with 

expectations. Having a managerial or professional job can increase the probability of 

holding stocks by at least 32 percent. The amount held is about $47,000 to $79,000 more 

than that in households with manufacturing jobs, conditional on being a stockholder. 

Being white is another important determinant of stock ownership, its effect ranges from 

71 percent to almost 80 percent. Finally, the total number of children the head has can 

decrease the probability of holding stock, perhaps due to the financial burden of raising 

kids. In the sample selection step, I exclude the variable “number of kids the head has” 

from the probit step for the identification concern. Presumably this variable can only be 

taken as a kind of “entry cost” to the equity market in the sense that it only affects the 

decision to enter the stock market, because the head has to consider the possibility that 

more children will put greater demands on family wealth. However, this variable will not 

affect how much stock is hold as long as the household is already a stockholder. Hurst, 

Luoh and Stafford (1998) also used a probit analysis to show that having children 

decreases stock ownership. 

From the results above, it is apparent that labor income risk does indeed crowd 

out stock market participation, but the magnitude is not as large as anticipated. On the 

other hand, human capital factors like age, education, occupation, race and industry form 

a significant share of background risk and can jointly determine household investment 

behavior.  

We are also looking for other explanations of the stock market nonparticipation 

puzzle. Previous research has shown that this may be due in part to the 

 26



transaction/information cost. Vissing-J∅rgensen (1998) used a censored regression model 

with unobservable stochastic thresholds to get an estimate of per-period participation cost. 

The median for an average household is around $200. As identified by Vissing-J∅rgensen 

(1998), stock market participation costs are multi-dimensional, including an entry cost, a 

fixed transaction cost, a proportional transaction cost and a per-period participation cost. 

Most brokerage accounts and mutual funds require a minimum investment of $2,000 

($1,000 for IRAs) or $100 per month based on meeting the minimum requirement. In 

most cases, investors still need to pay a commission, fee or sales load each time they buy 

or sell a security. With Morgan Stanley Choice, for example, the fee can account for 

2.5% of the total equity for investments under $99,999. With the development of online 

trading, the costs can be lower, but investors are still subject to a minimum commission 

of $35 per trade for total investments under 1000 shares. The actual transaction cost may 

be beyond what can be measured by dollars. It takes time for an investor to equip himself 

with some general financial knowledge, to learn investment terminology, and to obtain 

the skills to track the market and manage a portfolio. The investor is also supposed to 

spend more time checking the market, making trading decisions and filling in tax forms 

over the life of the investment. During the “windfall” period, the investor may also bear 

the psychological burden of an investment failure. 

However, empirical study of transaction costs posts difficulties since it is difficult 

to derive a testable implication. In this paper, I try a different perspective—using the 

number of brokers per capita as a proxy for transaction costs to determine if it has 
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significantly negative results on stockholding. The econometric results are shown in the 

next section. 

 

1.4.3 Results on the Effects of Transaction Costs 

Guiso, Sapienza and Zingales (2002) find strong evidence that local financial 

development has an important impact on the economic success of the area and the 

individual household’s behavior. The implication for the stock market is that regional 

financial developments grant households easier access to the stock market by decreasing 

transaction costs, especially information costs. The difficulty is to present support for the 

link between financial market development and stock market participation, showing the 

mechanisms through which this link operates. In this paper, I show that local brokers per 

capita is a sound indicator of the development of financial intermediation services, and 

this variable reflect the level of transaction costs faced by individuals and thus help 

explain stock market participation. 

Econometrically, I use state-level brokers per capita in the sample selection model 

to show that increasing brokers per capita can significantly increase both the probability 

of entering stock market and the amount held conditional on being a stockholder. 

In order to easily compare this model with the results for risky labor income, I 

estimate the same probit model again with brokers per capita as an additional regressor in 

all three years (1984, 1989 and 1994). The new results are shown in table 12. If we 

compare table 9 and table 12, we can see that the parameter estimates for other regressors 

remain almost the same as before, and that results for brokers per capita are quite 

 28



significant in both 1984 and 1994. In 1984, having one more broker per 1000 in 

population increased the probability of holding stock by 3.5 percent. In 1994, this effect 

increases to 5.5 percent. The exception is 1989, when the parameter estimate shows a 

positive effect that is within one standard deviation from zero. 

I then calculate the change in the probability of holding stock if brokers per capita 

increase by one standard deviation across the 50 states. Details are shown in table 13. 

Participation in the stock market increases by 0.7 percent in 1984, 0.2 percent in 1989 

and almost 22 percent in 1994.  The availability of brokers does appear to play a more 

important role than income risk in determining whether households hold stocks. 

Finally, we are ready to repeat the sample selection regression with brokers per 

capita as an additional variable. Table 14 shows the new regression results. Similar to the 

results above, the parameter estimates for the income risk variables and other household 

demographics remain almost the same as in table 11. In 1984, increasing the number of 

brokers per capita by one per 1000 in population increases stockholding by $2,812, 

conditional on the household already having stocks in hand. The effect of one more 

broker increases to $3,933 in 1989. In 1994, the effect becomes much larger, as one more 

broker per 1000 in population leads investors to put around $13,000 more in the stock 

market. 

There are four reasons for the positive effects of state-level brokers per capita. 

First, most security dealers can provide trained professional consultation services to 

investors. Brokers can work with investors on an individual basis to develop investment 

strategies suited to their individual needs. Most brokers also have comprehensive 
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educational websites or brochures to help investors understand financial accounts, trading 

strategies and the economic situation. All of these can significantly decrease the costs of 

entering the stock market. Second, with the development of new trading methods, the 

investor can also trade online, by telephone or through the financial consultant. The 

brokers can also provide timely fundamental research information on equities; investment 

options and earnings estimate changes. They can also provide weekly market analysis 

based on unusual fundamental changes or investment developments. These can help 

investors to decrease the time they would otherwise invest in collecting this information 

and working out the investment strategy. Third, the spread of discount brokerage services 

provided by security dealers, plus the development of online trading, creates more 

competition among different brokers and can decrease the monetary costs of stock trading. 

Finally, the growth of brokers advertising and more investment opportunities give 

investors more chances and topics to discuss with each other and also with friends or 

coworkers who have not participated in the stock market yet. This can accelerate 

information exchange and decrease the costs of learning about investments. Furthermore, 

as more investors enter the stock market, the marginal cost of information acquisition for 

new investors will decrease. This can in turn attract more brokers. So the development of 

stock market investment will be self-reinforcing through the intermediation of brokers. 

However, Guiso, Sapienza and Zingales (2002) also show that more financially 

developed regions have higher per capita GDP growth. One suspicion about the effect of 

brokers per capita is that it might be a proxy for higher state-level per capita income. If 

this is the case, then more active household stock market participation is not due to the 
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number of brokers depressing transaction costs, but because the state has higher income 

on average. To check the robustness of my results, I therefore added state-level per capita 

income in both the probit and the sample selection step, to investigate whether per capita 

income affects the brokers per capita variable. The results, reported in tables 15 and 16, 

clearly show that this is not the case. We can see that per capita income does not play a 

consistent role over the 15-year period. In some years, it is not significant or even has a 

negative sign. More important, with the inclusion of per capita income, every other 

regressor, including number of brokers per capita, still remains at the same significance 

level.  

As I remarked earlier, brokers per capita is by no means a perfect measure for 

transaction cost. It cannot incorporate proportional transaction costs like the bid-ask 

spread. Nor can I track what kind of securities the household was holding and the times at 

which they made transactions. However, we do know whether the household was holding 

stock at the time of the interview, and we know the dollar amount of stock holdings once 

every five years. In order to learn more about how transaction costs may have influenced 

stockholding behavior, I split the sample into different groups according to the amount of 

stock held and then examined how the households moved among the different groups in 

each of the five-year periods.  The assumption here is if transaction costs, especially 

proportional costs, are appreciable, then the probability of staying in the same group or in 

the adjacent groups will be quite large; the probability of jumping from the bottom group 

to the top group and vice versa will be quite small. Also, if there exist unavoidable high 
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entry costs, the likelihood of leaving the market will be quite small while that of staying 

outside will remain large. 

 

1.4.4 Supplemental Results—Markov Chain Analysis 

Since transaction costs discourage trading, households will either choose not to 

enter the market or incur the costs infrequently by trading less if they are already in the 

market. Souleles (2001) uses a probit model to show that household rebalancing motives 

are generated by a (S, s)-type dynamic whenever there are sizeable transaction costs. 

Hurst, Luoh and Stafford (1998) uses PSID data to show that stock market exits exceed 

entries over the period 1984-1994, suggests that capital gains cannot recover transaction 

costs.  

A simple testable implication for my paper is to estimate a Markov chain for the 

probability of transferring across different states (state 0: outside the stock market and 

state 1: inside the market) during a certain time interval (five years in my sample). 

However, we can divide state one into more sub-states according to the amount of stocks 

held and investigate the probability of moving among these different states as well. 

For the five-year periods 1984-1989 and 1989-1994, I categorized all households 

that did not have any stock in the initial year as group zero. The remaining households 

are equally divided into four groups, with the amount of stockholding increasing from 

group 1 to 4. Entries in the cells of the transition matrix, as in table 17 and table 19, are 

the percentage of households in the sample who moved across different groups. For 

example, the number 0.6677 in the 0-0 cell in table 17 means 66.77% of the sample held 
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no stocks in either 1984 or 1989. Similarly, the number 0.0096 in the 2-3 cell means 

0.96% of the sample was in group 2 in 1984 but moved up to group 3 in 1989. The last 

rows in table 17 and table 19 show the percentage of all of the households who were in 

the different groups in 1984 and 1989 respectively. Statistically, the probability of 

moving from group a in 1984 to group b in 1989 should be estimated as the number of 

people who moved divided by the total number of people who were in group a in 1984. 

Statistically, this is also the maximum likelihood estimation. Following this, I calculated 

the probabilities of moving across different groups and show them in table 18 and table 

20. If the earlier assumption about transaction costs holds, we should be able to see the 

probability of leaving the equity market (going from any higher group to the bottom 

group) is smaller for those households positioned originally in a high group than those in 

a lower group. Further, the probability of staying away from the equity market in both 

survey years should be large if the household is reluctant to pay any transaction cost, 

especially entry costs. The first row of table 18 indeed shows this pattern. The probability 

of holding no stock in 1989 decreases significantly from 90 percent for those holding no 

stock at all in 1984 to 20 percent for those held the largest amount of stock in 1984. For 

the period 1989-1994, households with the most stock in 1989 only had a 18 percent 

chance of leaving the market by 1994, while households with no stock in 1989 had a very 

high chance (89 percent) of remaining outside of the market. In both cases, the results 

show that the probability of staying outside the market is around 0.9.  

Finally, the chance of jumping to any non-adjacent higher group should also be 

smaller than that of remaining in the same group or making a one-group move. A brief 
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examination of the probability tables shows that the results are all consistent with these 

ideas.  

Parallel to the results from Hurst, Luoh and Stafford (1998), all of the groups have 

a substantial probability of exiting the stock market entirely. Even the largest holders of 

stock have a substantial probability of leaving.  From 1984 to 1989, 338 households quit 

the equity market out of a total of 1,071 households who held stocks in 1984. This is a 

rate of 31.6 percent, which is rather high. Similarly, from 1989 to 1994, the quitting rate 

is 28.9%, slightly lower but still at a high level. Those not holding stock are highly 

unlikely to start holding stock. From 1984 to 1989, only 559 of the 3,813 non-

stockholders, or about 14.7 percent, entered the market, about half of the quitting rate. 

Similarly, only 16.3% of the 3,582 non-stockholders entered the market between 1989 

and 1994. Finally, consistent with large proportional transaction costs, small changes are 

more likely among those holding stock in both years than large changes. However, since 

the wealth surveys are about five years apart, and the data only show the balances in 

stock accounts, households could be reshuffling across different groups more than my 

results indicate.   

 

1.5 Conclusion 

In this paper, I empirically demonstrate that even though risky, uninsurable labor 

income can crowd out stockholding, the effects are not as large as expected. There are 

three reasons for this. First, as noted by Heaton and Lucas (1997), labor income has a 

“bottom line” bad result, different from the other financial investments. This can 
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effectively decrease investors’ sensitivity to labor income risk. Second, economic theory 

predicts that, with the presence of background risk, households become much less 

tolerant to bearing additional stock market risk. However, labor income risk cannot fully 

reflect the uninsurable background risk faced by households. Finally, the econometric 

reason is that treating positive labor income flows and zero labor income flows in the 

same way can translate some non-income risks into labor income risk, thus biasing the 

effects of income risk. My model shows that when sample selection bias is taken into 

account, the effects of labor income are trivial.  

This paper also shows that household investment is positively correlated with 

financial intermediation development, as indicated by brokers per capita in the state of 

residence. This mechanism operates because more brokers per capita in a state can 

significantly decrease transaction costs and make stock investing more accessible to 

households. The services of security brokers can decrease transaction costs in several 

ways. First, a trained professional financial consultant can guide investors in developing 

sound individual investment plans and accelerate the learning process, thus decreasing 

information costs. Second, most brokers can provide multi-dimensional investment tools 

and on-line research facilities; these can help investors to access accounts more easily 

and trade more strategically. Third, competition among different brokers can decrease 

monetary commission fees. Last, the growth of broker advertising and services can create 

a better investment environment and lower marginal costs for new investors. As more 

investors join the market, more brokers will be attracted and they can provide better and 
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more efficient services. So the stock market investment is self-reinforcing through the 

intermediation of brokers. 

Finally, the Markov chain model shows that, due to the presence of transaction 

costs, households reduce trading frequencies and exit the market when the capital gains 

cannot recover per-period participation costs. 
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CHAPTER 2 

 

2.1 Introduction 

After checking and savings accounts, owner-occupied housing is the largest and 

most important component in household portfolios. Bertaut and Starr-McCluer (2000) 

use household sector assets and liabilities data from the Federal Reserve Board’s Flow of 

Funds accounts to show that residential property accounted for 20-30% of total household 

assets during 1983-1998. A similar calculation using Survey of Consumer Finance 

weighted data shows that primary residence comprises 32% of the average household’s 

total assets. The random sample I constructed from Panel Study of Income Dynamics 

shows that at least 60% of American households own a house, and the mean value of the 

house increased from $65,000 to $100,000 during the 10-year period from 1984 to 1994. 

Researchers have recognized the fact that housing investment can significantly 

affect household portfolio structure due to the dual roles of housing, which is both a 

durable consumption good and an investment vehicle. Economists have begun to link the 

issue of housing investment to the well-known stock market nonparticipation problem. 

Brueckner (1997) suggests that portfolio inefficiency results from the homeowner’s 

rational balancing of the consumption benefits and portfolio distortion associated with 

housing investment. Cocco (2000) shows that investment in housing reduces equity 
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market participation for younger and poorer investors due to their limited wealth. House 

prices also crowd out stock-holding, and this effect is larger for those with less net worth. 

Flavin and Yamashita (1998) use the mean-variance frontier to show that the 

consumption demand for housing can generate a life-cycle pattern in the portfolio shares 

of stocks and bonds. 

Despite the wide recognition of the importance of housing investments, housing 

investments and their interaction with either labor income or other financial assets remain 

unexplored in the academic literature. In this paper, I show that the interaction of 

uninsurable labor income and self-reported house value can decrease equity investment. 

This is because the available financial resources after saving for down payment or 

mortgage of the house are usually limited, especially for younger and poorer households. 

Further, if a large residential investment comes together with a riskier labor income flow, 

the household will feel even more reluctant to bear additional equity risks in the stock 

market. 

A similar covariance term between housing investment return and stock return 

shows that negative covariance can boost stockholding. Goetzmann (1993) uses a mean-

variance framework to show that residential property ownership is relatively stable from 

the investment point of view since it can reduce the overall portfolio risk. Yao and Zhang 

(2002) use a dynamic programming model to show theoretically that housing investments 

can diversify stock market risks for homeowners. 
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2.2 Data 

I continue to use data from the Panel Study of Income Dynamics for household 

demographics and self-reported house value. The stock market participation information 

is collected in the wealth supplement, which is administered every five years in PSID. In 

each survey, the respondent is asked for the present value of his/her house, i.e. how much 

it would bring if the respondent sells it today. Self-reported house value no doubt is an 

imperfect measure of transaction value. Skinner(1994) finds, however, that the house 

value series derived from PSID resembles the measure from the Commerce Department, 

suggesting that respondents have reasonably accurate and unbiased estimates of the 

market values of their homes. The labor income risk is evaluated as the residuals from the 

random effect estimation of household total labor income, based on their human capital. 

The annual stock market return is measured as the S&P 500 index return with dividends 

reinvested. 

 

2.3 Model 

I use a simple measure of the covariance between labor income risk and self-

reported house values: 

∑
=

=
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Where Hit is the self-reported house value for household i in year t. e is residual term 

from the following model for labor income by Carroll and Samwick (1997)
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In each period t , a household i with a set of characteristic variables receives labor 

income . In the decomposition of the logarithm of wage income,  is the permanent 

component, which is defined as the amount of log labor income the household receives in 

the absence of any transitory income shocks. In each period, the permanent component 

grows by a factor g. 

itw itp

itη is a shock to permanent income and itε is a transitory shock to the 

logarithm of labor income. It is assumed that both permanent and transitory shocks are 

normally distributed, i.e. ),0(
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rom this equation, I calculate the conditional mean and variance of log labor income: 
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The general procedure2 in the previous literature is to regress  on 

a set of observable and exogenous households characteristics 

                                                

)ln(ln 1−− itit ww

 in each year. The 1−itX

 

1 This model was also employed in Viceira(01) and Vissing-J∅rgensen(00).  

2 See also Vissing-J∅rgensen(00) and Angerer (03) 
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predicted values will be estimates of itg , the residuals will be estimates of 1− −+ itit itεεη , 

and the sample variance of the residuals will be estimates of 
2

2 iεσσ . 

This paper adopts a slightly different approach and treats the problem  

selection issue as described in Heckman (1979).  In this selec , a
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ratios by using the bivariate cumu stribution function and 

standard human capital model as independent variables, toge

The predicted values and residuals can 
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income. Moreover, because the regression in equation (1) actually involves the selection

of both itw and 1−itw , this is actually a bivariate sample selection issue. To address this 

problem, I first run a bivariate probit model to estimate the probability of earning positive

income in both years t and t-1 for each household and then calculate their inverse mills 

density function. Then I pool all households in all of the sample years and estimate the 

log difference of labor income using a random effect model, with the variables from th

mills ratios calculated from the bivariate probit model to adjust for sample selection.  

from the above random effect estimation. The residuals ite  are used to calculate the 

nce between income risks and house prices. The empirical estimation in the pap

also controls for expected income and income risks. They are calculated as the follow
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Finally, I also control for the covariance between income risks and stock return, 

which is calculated as , where ∑ •∆
t

tit Rwln 1lnlnln −−=∆ ititit www  and is the 

value-w

 labor income  so they have zero log l nce 

doing this will not change the results. 

I use a similar measure to calculate the covariance of stock return and house 

investment returns: 

tR

eighted gross return with dividend reinvestment for the S&P500. Note that for 

those families with zero , I add $1 abor income, si
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Where is the annual return for the S&P 500 index with dividends reinvested,  is 

ortgage balance on the household i’s house and  is the self rted 

hou g 

investments and treat housing as an asset class, like stocks or bonds. However, housing is 

distinct from stocks and bonds not only because it represents the largest financial 

commitment of the household, but also because it provides a flow of consumption 

services to the household, and it is often a highly leveraged investment. In this paper, I 

use the self-reported house value and the mortgage balance to calculate the two 

covariance terms above, hypothesizing that they reflect the homeowner’s perception of 

the riskiness of stockholding. 

itR

the outstanding m

itM

-repoitH

house value. Previous researchers have used different measures of the “return” to sin
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In the above equation, itit HM /1− is the ratio of the household’s equity to the 

value of its house. Its reciprocal is therefore the leverage ratio, the factor of proportion 

betwee

icant difference in the conclusion. So 

the resu

esults 

 separate the decision to participate in the stock market from the decision on 

how much stock to buy when th tered the market, I estimate 

stock m

s 

tween 

ase 

n the rate of return on the household’s equity and the rate of appreciation of its 

house. For simplicity reasons, we are not considering the depreciation of the house, 

assuming that the home owners maintain the house on a regular basis and this is also 

incorporated into the self-reported house values. 

Earlier studies also tried to calculate the covariance term by subtracting the mean 

from each of the variables, but did not find signif

lts from that version were not shown here. 

  

2.4 Econometric R

To

e household has already en

arket participation using a Heckman two-stage model. The first step is a probit 

model for the probability of holding stock, and the second step is a sample selection 

model for how much stock the investor actually holds. Tables 25 and 26 show the result

when the covariance of labor income risk and house value is incorporated. Other 

regressors include expected labor income and the standard deviation of labor income 

estimated in the above random effect model. I also include the covariance term be

uninsurable labor income and stock returns to test the hedging demand for stock purch

against labor income risk. The other control variables include the age of the household 

head and dummy variables indicating whether the head is male, works in the financial 
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sector, has at least a college education, has a managerial or professional job, and is whit

For identification reason, I include the dummy variable for if the head has a white-colla

job in the probit model but exclude it from the sample selection step.  

The covariance of uninsurable labor income risk and house value has significantly

negative effects on the probability of holding stock and the amount hel

e. 

r 

 

d, conditional on 

being a

kier 

 

tively 

iskier 

nvestment return and stock index return is introduced into the Heckman model. 

This covariance term is significantly negative in both steps of the Heckman model, which 

 stockholder. The explanation of this result is quite intuitive: because buying a 

residence requires a large monetary investment, the financial resources remaining for 

stock accounts will be limited for most households, especially younger and poorer 

households. If a household has a positive covariance between labor income risk and 

house value, this means a larger self-reported house value comes together with a ris

labor income stream. This will obviously increase the uncertainties of investing in the

equity market. The additional risks will be even greater when the household “over-

invests” in housing, because of the consumption motivation. And, owning a house 

requires a large initial investment, causing many households to dissave during a rela

long time period, especially for young and poorer households. A household with a r

labor income flow will feel even more reluctant to invest in the equity market if they own 

a larger house and have to pay a mortgage. If the household’s portfolio already includes 

stock, the household may choose to reduce the stock investment or leave the stock market 

entirely. 

Table 27 and table 28 show the econometric results when the covariance of 

housing i
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means n 

n 

fer 

ent 

non-

r sample 

period,

 age 

plements. 

that a negative covariance between housing investment return and stock retur

encourages households to participate in the stock market and to hold more stocks. It 

should not be surprising since the negative covariance is the diversification effect of the 

housing investment. Goetzmann and Ibbotson (1990) provide compelling evidence to 

show that adding residential real estate into a household’s portfolio can significantly 

lower the overall risk of that portfolio. Goetzmann (1993) also uses a mean-variance 

framework to show that home ownership reduces overall portfolio risk, especially whe

short-term liquidity is not required, making stock investment more favorable to 

homeowners. Yao and Zhang (2002) further document that the substitution effect of 

housing investment for stocks is only obvious for renters, since they have a stronger 

incentive to save for a down-payment for buying a house, so they must hold a sa

portfolio but are trying to benefit from lower future housing service costs.  

For homeowners, housing can also be used to buffer equity risks. To supplem

this argument, I calculate the mean stock-holding amount for both homeowners and 

homeowners in my PSID sample. Table 29 shows the trend over the 10-yea

 and stock holding by homeowners is about 7-9 times of that among non-

homeowners. The results become clearer when we look at the effect of the age of the 

household head. In both the probit and sample selection steps, the coefficients for the

of the household are significantly positive in all of the three waves of wealth sup

For example, in 1994, household heads that are one year older increase their stock 

ownership by $5445, among households already invested in the stock market. As the 

head ages, he/she is also typically paying down all mortgages on the housing investment, 
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so the household is enjoying not only the consumption service from owning a house

also financial security. At this point, the house acts more like a buffer against equity 

market risks and makes stock investments more favorable than ever. 

The effects of labor income risks as estimated in the first chapter remain almost 

the same after controlling for the two new covariance terms. Expected labor income h

almost negligible effects in both steps of estimation as shown in chapt

, but 

as 

er one. The 

standar

 

ent, 

expected; Instead, transaction costs as proxied by broker per 

capita a -

more if already a stockholder. Most probably this is 

becaus

e 

eeded to invest in the stock market. 

d deviation of uninsurable labor income risks and the covariance between labor 

income and stock return show significantly negative effect in the probit model, meaning 

they could crowd out stock investment; but these crowd-out effects decrease in the

sample selection estimation. 

These results are consistent with the estimation in chapter one, reinforcing my 

conclusion that even though labor income risks can indeed crown out stock investm

the effects are not as large as 

nd the housing investment effects as shown in this section could explain the non

participation in the stock market. 

The other demographic control variables in the model have the effects 

documented in the previous literature. A male-headed household is more likely to buy 

stock and to hold around $50,000 

e male-headed households are less risk averse. 

The dummy variable indicating whether the household head works in the financ

sector still proxies for job-specific financial information, and it can decrease the time 

needed for an investor to obtain financial knowledge n

 46



Having at least a 4-year college degree may be helping investors to become 

familiar with the equity market and to obtain financial information in a more efficient 

way. Because education is also an important determinant of wage rate in the human 

capital  

 and 

ouse value to show that this covariance term can discourage stock market participation, 

because homeowners with riskier lab ewer financial resources available 

for inve  

 

model, higher investments among the better-educated households can also be

explained by the higher incomes of employees with at least a bachelor’s degree. 

 

2.5 Conclusion 

In this paper, I use simple measure of the covariance of labor income risk

h

or income have f

stment in the stock-market. However, the negative covariance between housing

investment return and stock return makes stock investments more favorable. This is due 

to the diversification effect of homeownership; because home ownership can decrease the

overall risk of household portfolios, households are more willing to hold stocks if they 

already occupy a house.  
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CHAPTER 3 

 

3.1 Introduction 

 

During the most recent economic downturn, the consumer credit market has 

experienced the highest default/bankruptcy rate in history. Gross and Souleles (2001) 

documented that personal bankruptcy filings in the United Stated rose by 75% in the late 

1990s, occurring in more than 1% of U.S households. The delinquency and charge–off 

rates on credit cards rose almost as sharply (Federal Reserve Board of Cleveland (1998)). 

There have been some leading academic explanations for these trends. One strand argues 

that excessive credit has been extended to sub-prime borrowers and that they have 

accounted for most of the rise in credit defaults. The other strand focuses on the 

decreasing cost of defaulting, including the social, informational and legal costs. Zywicki 

(2002) shows that the operations of the credit card market and consumer choices are 

consistent with rational decision-making subject to real world constraints. Bangia, 

Diebold and Schuermann (2000) look at the default issue from a different perspective and 

propose that macroeconomic activity should be a central determinant of credit portfolio 

quality. Carey (2002) shows that average credit portfolio losses during the early 1990s 
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recession is only equal to the 0.5% tail during the expansion. However, these researchers 

were not able to empirically test their propositions. 

The paper extends the current literature in the following ways: First, it tests the 

theoretical model by Wang and White (2000) where a risk-averse, utility-maximizing 

consumer will have maximum probability of filing for bankruptcy when labor income 

drops to zero due to unfavorable macroeconomic conditions. This paper suggests that 

macroeconomic and employment conditions could significantly affect consumer 

bankruptcy filings even after controlling for household demographics. The bivariate 

probit model shows that if the state unemployment rate increases by 1%, the probability 

of a household filing for bankruptcy will increase by 46%, holding other things constant. 

This is opposed to the literature, which argues that job market conditions driven by 

macroeconomic conditions will diminish after controlling for demographics using 

consumer data. The economic theory also predicts that consumers will default on loans 

when there are unexpected idiosyncratic income shocks, in order to smooth consumption. 

The paper also tests the effect of unemployment on consumer default, which is consistent 

with the consumer life cycle theory. If the state-level unemployment rate increases by 1%, 

the probability of losing a job will increase by 54%, thus increasing the probability of 

consumer default by almost 34%.  

In addition, the paper uses a Heckit-type sample selection model to show that 

unemployment could also affect consumer’s choice of whether to file for bankruptcy 

under Chapter 7 or Chapter 13, after controlling for the debt/wealth ratio and 

demographics. This shows that consumers could make a rational, informed choice 
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between Chapter 7 and Chapter 13 filing, once they have decided to file for bankruptcy. 

This is consistent with the theoretical set up by Wang and White (2000), but opposed to 

Whitford (1989), who argues that debtors are unable to make an informed choice between 

the two chapters.  

Last, the paper points out that the results will be useful for both policy-makers 

and banking regulators. Previous empirical tests have concentrated on Chapter 7 filings. 

There have been debates in the literature on reform of the bankruptcy codes, especially 

on whether the current codes should be tightened to reduce bankruptcy and whether 

Chapter 13 should be made as favorable as Chapter 7. Moreover, the incidence of 

bankruptcy/defaults could change the general riskiness of consumer loans and 

consequently could change the risk premium and capital allocation as required by the 

banking regulators. The results have shown that consumer risk profiles are sensitive to 

macroeconomics variables such as the aggregate unemployment rate, but consumer credit 

risk modeling has assumed a constant macro economic environment. This time-

homogeneity assumption could be damaging to the efficient operation of financial 

institutions. Gross and Souleles (2001) use panel data on credit card accounts to show 

that credit risk models miss some systematic and time-varying factors. More 

sophisticated measures of credit risk will create a competitive advantage through better 

risk pricing and capital allocation.  

This paper is organized as follows: The first section presents the theoretical model 

of Wang and White (2000) on consumer bankruptcy and the life cycle model by 

Lawrance (1995), which explains consumer default behavior. The second section uses 
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PSID data to show that employment conditions are one of the important determinants of 

consumer bankruptcy filings and delinquencies in paying bills, remaining significant 

even after controlling for demographics. A sample selection model is also applied in this 

section to examine the choice between Chapter 7 and Chapter 13 once the consumer has 

already decided to file for bankruptcy. Previous empirical studies have concentrated on 

either combined filings or Chapter 7 filings only. This study shows that households filing 

for Chapter 7 have a significantly higher debt/wealth ratio and a higher chance of being 

unemployed, which makes the debt consolidation plan as required by Chapter 13 

unfavorable. The third section concludes, pointing out that the empirical results have 

implications for policymakers in reforming bankruptcy law. The previous discussion 

attributes the increase in bankruptcy in part to the passage of the current bankruptcy code 

in 1978, and especially the debt exemptions that it provided in Chapter 7.  

I also point out that consumer risk profiles will shift after loan origination if 

aggregate employment conditions deteriorate. Ignoring this time-varying factor when 

credit risk is modeled could distort proper decision-making and introduce unexpected 

credit loss. This will also affect compliance with Basel II capital regulations, as banks 

will experience abrupt and unexpected loan losses if unfavorable aggregate conditions 

increase consumer defaults or bankruptcy. 
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3.2 Theoretical Models 

3.2.1 The Model on Consumer Bankruptcy Filings 

Skyrocketing consumer bankruptcy filings and commercial bank loan defaults 

have been observed in recent years, and a large academic literature has attempted to 

explain the phenomenon. Most of the papers have concentrated on explaining the nature 

of the credit market or the rational usage of credit by consumers. Zywicki (2002) 

demonstrated that both the operations of the credit card market and consumer choices are 

consistent with rational decision-making subject to real-world constraints. In this paper, I 

use a bivariate probit regression model and PSID household survey data to show that 

being employed could significantly decrease consumer bankruptcy filings and default 

behavior, even after controlling for household demographic variables. This is an 

empirical test of the model presented by White and Wang (2000). In this paper, I present 

a theoretical model following Wang and White (2000), where the likelihood of consumer 

filing for bankruptcy increases with decreasing labor income and is maximized when the 

labor income drops to zero. 

This is a two-period model where a risk-averse representative consumer 

maximizes utility. In the first period, the consumer works for N1 hours with hourly rate w, 

her total earnings are Y1=w*N1, and her wealth is W1. W1, Y1, N1 and w are known for 

certain. In this period, the consumer also borrows amount B, with an interest rate r. She 

does not know her wealth W2 in the second period at this time; it is uncertain with a 

distribution function f(w2). At the beginning of the second period, W2 is realized; N2 is 

determined endogenously. The loan is also due in the second period, and the consumer 
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needs to make a debt repayment decision. If she files for bankruptcy, there is a fixed cost 

of cW2, where c is a constant with 0<c<1. According to bankruptcy law, there is also a 

wealth exemption of E, which is a fixed dollar amount defined by the state where the 

consumer files for bankruptcy.  The consumer must give up all non-exempt wealth above 

this threshold. The representive consumer could keep her wealth if W2<= E. This implies 

that if the consumer files for bankruptcy, her total wealth in the second period will be 

W2(1-c)-max[W2-E, 0]. If she chooses not to file for bankruptcy, her total wealth will be 

W2 – B(1+r). Her lifetime expected utility could be represented as: 
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In this function, e is the post-bankruptcy earnings exemption, which is a 

proportion of period 2 earnings Y2. Under Chapter 7 bankruptcy procedures, all post-

bankruptcy earnings can be exempted from debt paying, so we have e=1. Under Chapter 

13 procedures, debtors are obligated to repay their debt using a portion of their earnings, 

so e<1. The borrowers second period earnings will be eY2 if she chooses to file for 

bankruptcy, while e<=1. Her earnings will be Y2 if she chooses not to file for bankruptcy.  

The first term is the utility in the first period. The second term is her expected 

utility if filing for bankruptcy in the second period, and her wealth is fully exempted from 

repaying. The third term is the expected utility if the consumer’s wealth is greater than 
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the exemption and is used for repaying part of the debt after filing for bankruptcy. The 

last term is the expected utility if the consumer chooses not to file for bankruptcy. 

In the utility maximization context, the consumer will choose to file for 

bankruptcy in the second period if: 

~

22 WW <=  

where W is a threshold that depends on the level of income. 
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There are important implications of this solution function. First, the threshold is 

decreasing when earnings in the second period increase. The probability of filing for 

bankruptcy is the highest if Y2=0. In this theoretical setup, having zero income will 

maximize the probability of filing for bankruptcy. However, due to the limitations of the 

data in the empirical tests, we will be unable to rank order the probability of filings, given 

different levels of income, as we could do in a simulation. A practical solution is to test 

whether unemployment significantly increases bankruptcy filings given a certain set of 

household characteristics. 

 

3.2.2 The Theory on Which Chapter to File for Bankruptcy 

The model in Wang and White (2000) as above does not discuss directly the 

choice between Chapter 13 and Chapter 7 filings once the consumer has already decided 

to file for bankruptcy. However, this issue has been a critical question given the totally 

different nature of the choices under the current bankruptcy codes. According to the 
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current bankruptcy law, Chapter 7 filing can eliminate all or most unsecured debt, which 

includes debts on credit cards, medical bills and most personal loans. The debtor cannot 

keep any significant equity in property, however; she must turn over all of her assets 

above a fixed exemption level to the Bankruptcy Court in return for the discharged debts.  

In this sense, the debtor gets a “fresh start” by filing for Chapter 7 bankruptcy. A 

bankruptcy trustee then sells all the debtor’s non-exempt assets and uses the proceeds to 

repay her debts on a pro rata basis. Under Chapter 13 procedures, the consumer 

consolidates all debts through an interest-free debt repayment plan over the next 3-5 

years. Under Chapter 13 filings, borrowers must repay unsecured debts at least in an 

amount at least equal to that the creditors would have received under a Chapter 7 filing. 

To file under Chapter 13, the debtor must be working or have a consistent income source 

in order for the court to approve the repayment plan, but she does not have to give up her 

current assets. This suggests that the consumer is much more likely to file for Chapter 7 

bankruptcy if she is unemployed and has relatively low wealth.  

There has been some academic discussion of this issue in the economic literature. 

Domowitz and Sartain (1999) show that higher levels of equity relative to debt push 

borrowers into Chapter 13 filing with a probability double that estimated for low-equity 

households. They also show that other household demographics like higher income and a 

higher employment rate could encourage Chapter 13 filing over the discharge under 

Chapter 7. This is because under Chapter 7 filing, the borrower must give up all 

nonexempt assets in return for being able to keep future income and must maintain 

minimum consumption level; homeownership is not protected.  
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Li and Sarte (2004) show that for utility-maximizing consumers, the value 

function of a Chapter 7 bankruptcy filer is invariant to the level of wealth above the 

exemption level E, as all assets above this level are surrendered. However, when 

household wealth is high, Chapter 13 filing could dominate Chapter 7 filing. They also 

show that the value function of households filing under Chapter 13 decreases as debt 

holdings increase, as higher debts imply a higher debt burden and reduce the available 

resources for consumption. 

Evaluating consumers’ choices between Chapter 13 and Chapter 7 filings have 

important implications for policy-makers. Many proposals for reform focus on 

bankruptcy choices, in particular asking whether Chapter 13 filings should be encouraged. 

The Gekas Bill has proposed forcing all bankrupt consumers with income above the 

median level to repay debt using their post-bankruptcy earnings above a predetermined 

threshold. This potential change in bankruptcy code would affect the likelihood that 

consumers will file for bankruptcy, which in turn could affect credit demand and supply 

and the overall economy. 

 

3.2.3 The Model and Theories of Consumer Defaults 

Over the past twenty-five years, the U.S economy experienced a historical 

increase in personal bankruptcy and a rise in rate of consumer defaults over the past 25 

years. In 1996, bank credit card delinquencies exceeded 3.5 percent – the highest 

delinquency rate since 1973, when statistics were first collected. By 2001, the default rate 

on credit card loans was about 5 percent.  

 56



The academic literature has attributed the record high in consumer defaults to the 

cyclical state of the economy and unexpected job loss. Lawrence (1997) shows that credit 

card defaults and personal bankruptcy filings have exhibited strong countercyclical 

components, moving upward in recessions and downward in economic booms. Hayashi 

(1987) observes that defaultable debt provides a mechanism for insuring future income. 

The borrower will choose to default in the low-income state in return for an actuarially 

higher payment in the high-income state.  

Lawrence (1995) use a life cycle model to explain why a consumer chooses to 

default in the presence of unexpected income loss. In her model, consumers maximize 

expected life-time utility, and the momentary utility function is of the constant relative 

risk aversion (CRRA) form with the properties that U’ >0 and U’’ <0. To simplify the 

analysis, assume the consumer lives for two periods. Income in the second period is 

uncertain with an exogenous probability q that income will be zero. The borrower could 

increase her first period consumption by x1 through taking a loan, which is due in the 

second period for x2, where X2 = X1(1+R), R being the interest rate.  

In this model, the no-default restriction in the usual life cycle model must be 

relaxed, the reason is that if banks could legally and easily have claims to all the 

resources held by the borrower. In this case no consumers would borrow, as there is 

always a positive probability of earning zero income in the second period, leading to zero 

consumption. 

Within this setup, the consumer maximizes expected lifetime utility, and a zero 

saving – zero borrowing solution is never optimal. Instead, the risk-averse borrower 
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chooses to borrow a positive amount in the first period. In the second period, if the 

consumer experiences an unexpected loss of income, he will choose to default on the loan 

in order to sustain a higher consumption level. The intuition is that consumers with high a 

idiosyncratic income have lower marginal utility on additional consumption, so they 

choose to pay back the loan, while consumers with a low idiosyncratic income have to 

default in order to maintain their minimum consumption level. 

The model’s result is consistent with some previous observations in the U.S. 

consumer loan markets. Borrowers with low income do have a higher rate of 

delinquencies (U.S. National Commission on Consumer Finance (1972)). Sexton (1977) 

used a segmentation approach to show that low-income families with similar social and 

demographic characteristics have significantly higher credit card default rates. Rampini 

(2004) use a one-period model to show that default could allow consumers with 

unexpected idiosyncratic income shocks to repay less, and thus default acts like insurance. 

Default penalties thereafter insure that only those consumers will default. He also shows 

that default rates vary counter-cyclically with macroeconomic aggregations.  

It is important to examine consumer defaults from an empirical perspective for 

two reasons: First, changes in the number of personal bankruptcy filings in the United 

States follow exceedingly closely with changes in the rate of credit card delinquencies. 

Lawrence (1997) pointed out that a change in the rate of delinquency leads a similar 

change in the rate of bankruptcy by about three months. He used aggregate data to show 

that the 1990s have seen an astonishingly tight relationship between credit card 

delinquencies and bankruptcy filings. Second, in the face of the current record levels of 
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consumer defaults and bankruptcy, representatives of the retail credit industry have called 

for changes in the bankruptcy law to limit the dischargeability of credit card debts in 

bankruptcy filings. Studying the reasons for consumer defaults could help policymakers 

to evaluate the potential effects of such proposals. 

 

3.3 Empirical Tests 

The Panel Study of Income Dynamics (PSID), conducted by Michigan University 

since 1968, is a longitudinal survey of randomly sampled American individuals and the 

households in which they reside. The survey concentrates on dynamic aspects of 

household economic and demographic behavior. The 1996 wave of PSID family study 

has questions on household bankruptcy filing, including “Have you ever filed for 

bankruptcy?” and “What was the reason for filing bankruptcy?” By looking at the 

bankruptcy data together with household demographics and state-level unemployment 

rate, we can use bivariate probit regression to see how job market conditions affect 

bankruptcy filing while holding demographics constant. The same wave of the PSID core 

family survey also includes questions on credit delinquency. I use a similar bivariate 

probit model to estimate how unemployment affects consumer default while holding 

household demographics constant. Examining consumer default has further empirical 

implications. First, personal bankruptcy is always preceded by delinquency, so looking at 

the trend of bill payment delinquency should help us to understand bankruptcy better. In 

addition, both bankruptcy and delinquency have been of interest to academics, 

policymakers and banking regulators.           
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In this section, I use PSID data to empirically test the propositions in the previous 

section, and I show that unemployment conditions can significantly increase both the 

probability that a consumer will file for bankruptcy and the probability of bill 

delinquency. There have been some disputes in the literature about macroeconomic 

effects on consumer delinquency and bankruptcy filing. Gross and Souleles (2002) argue 

that the state unemployment rate should be insignificant after controlling for household 

demographics. To investigate these issues, I estimate a bivariate probit model using PSID 

bankruptcy data. In the first equation, both household demographics and state-level 

unemployment rate affect the probability of the household head being unemployed. In the 

second equation, household demographics, together with the binary variable of whether 

the head is unemployed, jointly determine the probability of the household filing for 

bankruptcy (or becoming delinquent). Instead of using state-level unemployment rate in 

the second equation directly, this variable serves as an instrumental. The model is as 

follows: 

Y1i = α + β1X1i + β2 X2i +εI 

Y2i = α + β1X1i + β2 Y1i +εI 

Where Y1i is the (0, 1) binary variable of whether the i-th consumer was unemployed, X1i 

is a vector of household demographics, X2i is the state-level unemployment rate in 1996, 

and Y2i is a binary variable that indicates whether the household head filed for 

bankruptcy (or whether the household was delinquent in paying bills).  

In the 1996 PSID core family survey, a total of 8327 households were interviewed. 

Eliminating the 20 households who did not respond to the bankruptcy/delinquency 

 60



questions, we have 8307 households left in the sample. Of these, 526 households (6.33% 

of the sample) filed for personal bankruptcy. Of the ever-bankrupt household heads, 32% 

state that job loss was the most important reason they filed for bankruptcy. 

Using Full Information Maximum Likelihood (FIML) estimation of the bivariate 

probit model, we examine how the employment conditions have affected household 

bankruptcy filings; results are shown in table 32. As family income and state bankruptcy 

wealth exemptions could also significantly affect consumer bankruptcy filings per 

previous discussion in the economic literature, the bankruptcy function controls for total 

family income, state exemption level and demographics. As expected, higher family 

income could discourage bankruptcy filing, while higher exemption levels can encourage 

bankruptcy as the households can have more post-bankruptcy wealth. In this table, we 

also see that the age, sex, marital status, number of children and being Caucasian are the 

most important demographic variables in determining the probability of being 

unemployed. I find that the age of the household head is negatively correlated with 

probability of bankruptcy filings. This is consistent with the results of Fay, Hurst and 

White (1998). This is because older household heads have accumulated more wealth 

relative to their debt level and demand less credit. The race variable is also included, as 

previous studies have found that African-American households are more likely to be 

turned down for a loan and have less access to credit. There are also unobservable effects, 

especially those coming from macroeconomic conditions. Using the state-level 

unemployment rate as the instrumental variable can capture this. In the second equation, 

we see that only the age of the household head and his/her employment situation 

 61



significantly affect bankruptcy filing. For the purpose of identification, the state-level 

unemployment rate only enters the first equation, but not the second. The correlation 

coefficient of the disturbance terms is about 78%. 

We also estimated consumer default using the same PSID sample. Of the 8,307 

households from 1996 core family survey, 2,086 have been delinquent on bills. A similar 

bivariate probit model shows that unemployment is an important determinant of 

delinquency. 

Given the heated discussion on the financial benefits of Chapter 7 filing vs. 

Chapter 13 filing, we are interested in testing what motivates consumers to file for 

Chapter 13 bankruptcy instead of Chapter 7, which could eliminate all unsecured debts. 

The model is based on Heckit-type sample selection. The first step is the bivariate probit 

model described above, which gives an estimated probability of filing for bankruptcy for 

each of the households in the sample. The inverse mills ratio is calculated as one over the 

probability of filing for bankruptcy. The second step is a probit analysis of those 

households who actually filed for bankruptcy. The inverse mills ratio is added in the 

second step as an additional regressor to eliminate sample selection bias.  

Shown in table 37, the results indicates that the only significant household 

demographic variable is the age of the household head. The other determinants that could 

drive Chapter 13 filing are the debt/wealth ratio and employment status. In this paper, as 

data on household total equities in year 1996 are not available, I use the value of the 

house plus total family income as a proxy for wealth. Having a lower debt relative to 

wealth could significantly increase the probability of Chapter 13 filings. This is because 
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Chapter 13 requires the debtor to consolidate all debts, which would not be financially 

beneficial if the debt level is very high and the household does not have much equity. The 

household would be better off eliminating all unsecured debt through Chapter 7 filing. 

However, if the household has relatively low debt and substantial wealth (a valuable 

house), it is better to keep the house by filing for Chapter 13 bankruptcy and to repay the 

low unsecured debts through the interest-free repayment plan. Further, Chapter 13 also 

requires the household to have consistent income for the next 3-5 years, in order to pay 

back the consolidated debts. This will pose a problem for consumers whose income is 

low and volatile. This type of household would be much better off giving up all assets at 

the time of filing for Chapter 7 bankruptcy, especially if household wealth is at or below 

the wealth exemption level E.  

 

3.4 Conclusion 

This paper examines a theoretical bankruptcy model by Wang and White (2000), 

in which the probability of filing for personal bankruptcy is a decreasing function of 

income, and this probability is maximized when the income level drops to zero due to 

unemployment or any other unexpected job loss. The solution to the model also implies 

that a risk-averse consumers with high unsecured debts, low property and low expected 

income will prefer filing for Chapter 7 bankruptcy over Chapter 13 bankruptcy. The 

assumption is that Chapter 7 filing will eliminate most of the unsecured debts, given that 

the consumer relinquishes all her wealth above a certain exemption level. This is to give a 

“fresh start” to the debtor. Under Chapter 13 filing, the consumer can keep his/her 
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properties, but s/he must consolidate all debts in an interest-free debt repayment plan, to 

be paid off out of earnings over the next 3-5 years. The model shows that this will 

decrease the marginal utility of purchasing power in the future periods. Given that the 

consumer can always choose between Chapter 7 and Chapter 13, the model implies that 

the consumer will prefer filing for Chapter 7 bankruptcy when her debt is much higher 

relative to the wealth level, or when she is facing a possible post-bankruptcy 

unemployment situation.           

The paper uses bankruptcy and delinquency data from Panel Study of Income 

Dynamics to empirically test these propositions. Using a bivariate probit model, I show 

that unemployment could significantly affect the probability of bankruptcy filing, even 

after controlling for demographics. Using a Heckit-type sample selection model, I also 

focus the analysis on households who have already filed for bankruptcy. For the choice 

between Chapter 7 and Chapter 13 filing, the debt/wealth ratio and unemployment 

dummy variables are the most important determinants of filing for Chapter 7, as predicted 

by the theory. Household demographics do not significantly affect this choice. 

As consumer bankruptcy is usually preceded by delinquency in paying bills, the 

paper also empirically tests the effect of unemployment on delinquency using PSID data 

and the bivariate probit model. The consumer life cycle theory (Lawrance (1995)) 

predicts that consumers choose to default when there is unexpected income shock, in 

order to smooth consumption. The unemployment rate enters the equation significantly 

with a positive sign, showing that probability of default is reduced by about 30% if the 

head of the household has consistent earnings. 
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The results have important implications for policy-makers. There has been long 

discussion on bankruptcy code reform. Part of the discussion has centered on whether the 

1978 Bankruptcy Code caused the increase in the number of filings observed in recent 

years. Previous studies have concentrated on Chapter 7 filings, due to the financial 

benefit of this part of the code. This paper has been able to study both the bankruptcy 

decision and the decision on which chapter to file once the household has decided to 

declare bankruptcy. Controlling for household demographics and assuming consumers 

are rational decision makers, the results show that the number of filings will increase 

significantly if the unemployment rate is higher than usual, as was the case during the 

most recent economic downturn.  

There have also been debates on whether to change Chapter 13 codes, as Whitford 

(1989) argues that debtors are unable to make an informed, self-interested choice 

between Chapter 7 and Chapter 13. However, the empirical tests in this study show 

consumers do choose in which chapter to file according to their debt/wealth ratio and 

employment conditions. Even though Chapter 13 does not give a “fresh start” as Chapter 

7 does, it does indeed help debtors to retain assets, which is more favorable if the 

consumer has relatively less debt in his/her portfolio and also has a consistent income 

source to accommodate the interest-free debt repayment plan. 

The results may also be useful to banking regulators. Currently, most consumer 

credit risk policies have assumed time-homogeneity and work very well under benign 

economic conditions. As I have shown in the previous section, consumer risk profiles and 

default behavior are significantly impacted by macroeconomic conditions. This personal 
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default and bankruptcy issue affects credit markets and becomes more important given 

that current credit risk methodologies are not sensitive enough to provide a cushion to 

unexpected credit loss during an economic downturn. This is mainly reflected in the risk 

based pricing and credit capital allocation area. 

Currently, credit-scoring techniques based on logistic regressions have been 

widely adopted in credit origination and risk based pricing, but decision-making is 

dependent only on borrower risk profiles at the time of origination. However, the actual 

propensity to become delinquent or bankrupt after origination is affected by changes in 

social and economic factors. Unexpected job loss, a change in interest rate and a change 

in house price can all make default and delinquencies more or less likely. Even though 

these factors affect default probabilities through different channels, they are similar in 

how they are all correlated with business cycles. This challenges the traditional logit 

model, in which the default probabilities are modeled as a function of risk profiles at the 

point of origination. The model is thus static and does not reflect how changing macro 

economic conditions affect risk profiles and default probabilities. 

The empirical results in this paper also have implications for bank regulators as 

they are trying to prepare their standards for new Basel II regulations of capital. In the 

proposed capital accord, lower-rated assets will require more capital in both the 

standardized and, especially, the internal-rating-based (IRB) approach as they have 

higher probability of default. Given the nature of credit scoring models, the assumption 

seems to be that the proportion of lower-rated assets is a direct estimate of the probability 

of default. However, the key challenge is a mechanism to align estimated, rank-ordered 
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probabilities from the logistic regression output to the actual probability of default. This 

challenge still comes from the underlying assumption behind the logistic regression 

approach: the scoring model is not truly “forecasting” in nature as the model usually 

cannot incorporate the changing economic environment over the forecast period, nor can 

it reflect the changing risk profiles of customers. 

Second, even though the increased risk sensitivity brought in by the Basel II 

model has important benefits for capital allocation within and across banks, it also raises 

significant problems when considered across different economic regimes. Capital 

volatility over time is increased materially under the new accord. Ervin and Wilde (2004) 

noted that the impact of the capital ratio under the new regulation is approximately six 

times the impact under the previous guidelines, a major increase in capital volatility. 

They also observed that similar effects occurred in all rating grades and different years 

where adverse credit conditions were present. This could have important effects on the 

overall economy if banks in aggregate are forced to change their lending behavior to 

maintain their capital ratios at times of economic stress. If banks respond by restricting 

new lending, the supply of available credit will be reduced during the adverse part of the 

credit cycle. This could amplify, not reduce, credit cycles and potentially exacerbate 

economic swings. Ervin and Wilde (2004) proposed to flatten the IRB curve, which 

essentially reduces risk sensitivity, the guiding philosophy of the new accord. The choice 

of how to address the volatility of capital in response to credit risk is ultimately is a 

question of how to achieve a balance between these issues and is an important topic for 

further research. 
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In summary, developments in consumer credit are influencing, and are being 

influenced by, the efforts to comply with the New Capital Accord. This paper uses 

household survey data to show that consumer delinquency and bankruptcy filings are 

significantly affected by employment conditions, and the results remain significant even 

after controlling for household demographics. The results are useful to both policymakers 

and credit risk regulators. The results demonstrate that ignoring changing macroeconomic 

factors and the related changes in consumer risk profiles in credit risk modeling can 

affect proper risk pricing of consumer loans and mis-specify the capital allocations 

required by Basel II regulations.  
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APPENDIX A 

 

Year 1+r(d) 1+rf Risk Premium 

1946 0.906658208 1.003520667 -0.096862459 

1947 1.049099673 1.004611532 0.044488141 

1948 1.05264885 1.009790525 0.042858324 

1949 1.182481032 1.011060663 0.171420369 

1950 1.327613229 1.012133911 0.315479318 

1951 1.234046981 1.014833804 0.219213177 

1952 1.19004508 1.016420038 0.173625042 

1953 0.982484084 1.017799989 -0.035315905 

1954 1.526027088 1.008626765 0.517400323 

1955 1.313576 1.015550823 0.298025177 

1956 1.064444524 1.024214066 0.040230458 

1957 0.888119003 1.031286709 -0.143167706 

1958 1.438021932 1.014150822 0.423871111 

1959 1.129369198 1.028153045 0.101216154 

1960 1.001820345 1.0258238 -0.024003455 

1961 1.276447199 1.021590553 0.254856646 

1962 0.912089833 1.027240959 -0.115151126 

1963 1.226379669 1.031513844 0.194865825 

1964 1.1666507 1.035182655 0.131468045 

1965 1.125001028 1.03972945 0.085271578 

1966 0.897540618 1.047050798 -0.14951018 

1967 1.241123366 1.041474461 0.199648905 

1968 1.10998578 1.052942362 0.057043418 

1969 0.91670554 1.065912057 -0.149206517 

1970 1.041018664 1.0638294 -0.022810736 

1971 1.141730778 1.043172012 0.098558766 

 

Continued 

Table 1. Risk Premium 1946-1999 
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Continued 

 

Year 1+r(d) 1+rf Risk Premium 

1972 1.191400002 1.038911708 0.152488295 

1973 0.852494969 1.070585837 -0.218090868 

1974 0.736007706 1.080780976 -0.34477327 

1975 1.372639552 1.058210171 0.314429381 

1976 1.239763146 1.051556818 0.188206329 

1977 0.927358136 1.051521258 -0.124163122 

1978 1.064952012 1.073080935 -0.008128924 

1979 1.187787225 1.106898517 0.080888707 

1980 1.325972291 1.115247491 0.2107248 

1981 0.949636063 1.148557601 -0.198921538 

1982 1.220488071 1.1066428 0.113845271 

1983 1.223854449 1.088470949 0.1353835 

1984 1.067456748 1.099557084 -0.032100335 

1985 1.319986648 1.076767266 0.243219382 

1986 1.183924377 1.060570636 0.123353741 

1987 1.053354028 1.053845159 -0.000491131 

1988 1.168676267 1.06322796 0.105448306 

1989 1.313366729 1.08220572 0.231161009 

1990 0.968091559 1.076798851 -0.108707292 

1991 1.306724801 1.055064749 0.251660051 

1992 1.077210882 1.034015233 0.043195649 

1993 1.098706303 1.028994155 0.069712148 

1994 1.013513096 1.038799737 -0.025286642 

1995 1.376601951 1.055318041 0.32128391 

1996 1.232089217 1.051449479 0.180639738 

1997 1.33614442 1.054239237 0.281905182 

1998 1.293194924 1.047811079 0.245383845 

1999 1.215212214 1.045608211 0.169604002 

average 1946-1999 0.09324783  

 1980-1994 0.077479795  
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Reason for deletion from sample N 

Latino over-sample 9175 

Split-off families since 1979 5509 

Non-response family 4886 

Asset income be top-coded 4884 

Table 2. Sample Selection Criterion 

 

 

 1984 1989 1994 

Family labor income 26266 35480 41983 

Age of head 43 48 53 

Age2 of head 2049 2485 2910 

If the head has at least college edu 0.33 0.38 0.36 

If the head has a white-collared job 0.31 0.32 0.31 

If the head is white 0.64 0.66 0.65 

How many children in the family 1.24 1.09 1.15 

If the head is male 0.73 0.72 0.73 

If the head works in the financial 
company 

0.06 0.07 0.07 

If the head works in other services 0.28 0.26 0.25 

Number of kids the head has 2.84 - - 

Brokers per capita 0.0007 0.0009 0.001 

Per capita income 13476 13842 21560 

Expected labor income 44593 44593 44593 

Stdev. Of labor income 301508 301508 301508 

Cov(income , stock) -1.39 -1.39 -1.39 

Table 3. Variables Used and Their Mean Values 

 

 

 71



 1984 1989 1994 

Number holding checking or 
savings accounts 

3545 3690 3386 

Percentage of checking/savings 
account ownership in the sample 

72.5% 75.5% 69.3% 

Mean value of checking and savings 
accounts among those who hold 

such accounts 

$12273 $19539 $26328 

Median value of checking and 
savings accounts among those who 

hold such accounts 

$2983 $4700 $6500 

Table 4. Trend of Household Checking/Savings Account Ownership from PSID 

1984-1994 

(Total Number of Households: 4884) 

 

 

 1984 1989 1993 

Number holding checking or 
savings accounts 

3042 3303 3393 

Percentage of house ownership in 
the sample 

62.3% 67.6% 69.5% 

Mean value of house among those 
who hold such accounts 

$63439 $93145 $102339 

Median value of house among those 
who hold such accounts 

$54545 $65000 $75000 

Table 5. Trend of Household House Ownership from PSID 1984-1993 

(Total Number of Households: 4884) 
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 1984 1989 1994 

Number holding stock 1071 1292 1501 

Percentage of stock holding 21.9% 26.5% 30.7% 

Mean value of stock holding among 
stockholders 

$23813 $40951 $86094 

Median value of stock holding 
among stockholders 

$5500 $10000 $27000 

Table 6. Trend of Household Stock Holding from PSID 1984-1994 

(Total Number of Households: 4884) 

 

 

 1995 1994 

intercept 0.1599 

(0.3413) 

-0.5302 

(0.3285) 

age 0.0302 

(0.0125) 

0.0457 

(0.0120) 

Age2 -0.0006 

(0.0001) 

-0.0007 

(0.0001) 

Education of the head 0.0505 

(0.9653) 

0.0535 

(0.0658) 

If the head has a white-
collared job 

0.3162 

(0.0784) 

0.3664 

(0.0803) 

If the head is white 0.1017 

(0.1698) 

0.0598 

(0.1641) 

If the head is employed 1.4632 

(0.0643) 

1.6551 

(0.0654) 

Rho=0.8108 

Table 7. Bivariate Probit Model for Positive Labor Income in Both Years 

(Using 1994 and 1995 as an Example) 
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Variable Parameter estimate 

(standard deviation) 

Head age -0.0118 

(0.0009) 

Head Age square 0.00003 

(0.000009) 

College education or above (head) 0.0240 

(0.0098) 

Managerial occupation (head) -0.0092 

(0.0117) 

If the head is white -0.0327 

(0.0085) 

Inverse mills ratio 1 0.0785 

(0.0038) 

Inverse mills ration 2 -3.4463*10-28 

(0.0000) 

Table 8. Random Effect Model of Difference of Log Labor Income on Household 

Demographics, Adjusted by Bivariate Sample Selection Criterion 
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Variable 1984 1989 1994 

intercept -2.4933 

(0.1115) 

-2.4973 

(0.1192) 

-1.8827 

(0.1112) 

E(labor income) -4.1380*10-14 

(5.090*10-13) 

2.0996*10-14 

(4.07*10-13) 

5.2118*10-13 

(3.420*10-13) 

Std(labor income) -0.0780 

(0.0216) 

-0.1109  

(0.0205) 

-0.1651  

(0.0189) 

Cov(∆lnwit, Rt) -0.0171 

(0.0058) 

-0.0184 

(0.0057) 

-0.0183 

(0.0052) 

If the head is male 0.3452 

(0.0597) 

0.3337 

(0.0564) 

0.4261 

(0.0592) 

If the head is in financial firms 0.1542 

(0.0846) 

0.3340 

(0.0784) 

0.2197 

(0.0789) 

If the head is in other services 0.2206 

(0.0508) 

0.1979 

(0.0516) 

0.1865 

(0.0519) 

Age of head 0.0118 

(0.0019) 

0.0131 

(0.0019) 

0.0146 

(0.0017) 

If the head has a college or above 
degree 

0.5224 

(0.0505) 

0.6865 

(0.0483) 

0.4724 

(0.0444) 

If the head has a management or 
professional job 

0.4510 

(0.0514) 

0.3270 

(0.0504) 

0.5406 

(0.0462) 

If the head is white 0.7373 

(0.0575) 

0.7878 

(0.0562) 

0.7133 

(0.0560) 

Total number of children of the 
head 

-0.0001 

(0.0026) 

-0.0080 

(0.0030) 

-0.0067 

(0.0027) 

Table 9. Probit Analysis of Stock-holding Probability 

(With Standard Deviation in Brackets) 

 

 

 1984 1989 1994 

E(labor) 0.0011 0.0007 0.0192 

Std(labor) -0.0260 -0.0416 -0.0717 

Cov(labor, Return) -0.0205 -0.0253 -0.0296 

Table 10. Change in Probability if Any of the Following Regressors Is Changed by 

One Standard Deviation while the Other Characteristics Remain at the Sample 

Mean 
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Variable 1984 1989 1994 

intercept -451237 

(197856) 

-548555 

(252727) 

-519412 

(383713) 

E(labor income) -2.9344*10-8 

(1.0*10-7) 

1.0*10-6 

(3.0*10-7) 

3.0345*10-8 

(7.0*10-8) 

Std(labor income) -5198 

(4718) 

-17233 

(8984) 

-21823 

(23019) 

Cov(∆lnwit, Rt) -1520 

(1054) 

-3057 

(1730) 

-6092 

(3352) 

If the head is male 54027 

(20017) 

55402 

(26232) 

70062 

(27314) 

If the head is in 
financial firms 

24644 

(10027) 

50572 

(24759) 

28354 

(23689) 

If the head is in other 
services 

25528 

(12027) 

45234 

(16600) 

21627 

(10017) 

Age of head 2318 

(651) 

3832 

(935) 

5389 

(1906) 

If the head has college 
or above degree 

72381 

(28441) 

104575 

(48497) 

47169 

(58556) 

If the head has a 
management or 
professional job 

52630 

(24535) 

47251 

(23721) 

79651 

(36480) 

If the head is white 87301 

(42664) 

107891 

(60128) 

86842 

(43069) 

Inverse mill’s ratio 151143 

(75237) 

160997 

(97606) 

150867 

(180753) 

Table 11. Heckman Two-Stage Analysis of the Amount of Stock-Holding 
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Variables 1984 1989 1994 

intercept -2.5420 

(0.1129) 

-2.5086 

(0.1199) 

-1.9468 

(0.1129) 

E(labor) -4.0320*10-14 

(5.13*10-13) 

1.8540*10-14 

(4.12*10-13) 

5.3202*10-13 

(3.51*10-13) 

Std(labor) -0.0772 

(0.0217) 

-0.1098 

(0.0205) 

-0.1665 

(0.0190) 

Cov(∆lnwit, Rt) -0.0178 

(0.0059) 

-0.0185 

(0.0057) 

-0.0190 

(0.0053) 

If the head is male 0.3323 

(0.0600) 

0.3356 

(0.0565) 

0.4265 

(0.0592) 

If the head is in financial firm 0.1589 

(0.0848) 

0.3384 

(0.0786) 

0.2203 

(0.0788) 

If the head is in other services 0.2345 

(0.0511) 

0.2008 

(0.0518) 

0.1872 

(0.0522) 

Age of head 0.0120 

(0.0019) 

0.0131 

(0.0019) 

0.0144 

(0.0017) 

If the head has college or above 
degree 

0.5240 

(0.0508) 

0.6823 

(0.0485) 

0.4718 

(0.0446) 

If the head has a managerial/ 
professional job 

0.4576 

(0.0517) 

0.3296 

(0.0506) 

0.5432 

(0.0463) 

# of children the head has in 1984 -0.0003 

(0.0026) 

-0.0080 

(0.0030) 

-0.0068 

(0.0027) 

Race of the head 0.7421 

(0.0583) 

0.7905 

(0.0566) 

0.7146 

(0.0562) 

Brokers per capita 0.0351 

(0.0199) 

0.0090 

(0.0171) 

0.0547 

(0.0143) 

Table 12. Probit Analysis with Transaction Costs 

 

 

 1984 1989 1994 

Brokers per capita 0.0007 0.0002 0.0215 

Table 13. Change in Probability If Brokers per capita Is Changed by 1 Standard 

Deviation while the Other Characteristics Remain at the Sample Mean 
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 1984 1989 1994 

intercept -413919 

(194474) 

-561489 

(250913) 

-606999 

(395782) 

E(labor) 3.2219*10-8 

(0.012*10-5) 

0.0015*10-3 

(0.031*10-5) 

4.1761*10-8 

(0.007*10-5) 

Std(labor) -4107 

(4575) 

-17545 

(8854) 

-25848 

(23417) 

Cov(∆lnwit, Rt) 

 

-1351 

(1064) 

-3106 

(1716) 

-6946 

(3439) 

If the head is male 48705 

(18804) 

55606 

(26131) 

70163 

(27218) 

If the head is in financial firms 23316 

(10018) 

51828 

(24807) 

29712 

(23617) 

If the head is in other services 24267 

(12307) 

46266 

(16616) 

21740 

(10015) 

Age of head 2198 

(640) 

3855 

(927) 

5374 

(1911) 

If head has college or above 
degree 

66672 

(27653) 

106059 

(47747) 

57960 

(59154) 

If head has management or 
professional job 

47936 

(24122) 

47999 

(23705) 

79931 

(36476) 

Race of the head 80504 

(42245) 

110265 

(59605) 

88145 

(43045) 

 

Brokers per capita 

(1 out of 1000 population) 

2812 

(2263) 

3933 

(3535) 

12637 

(8000) 

Inverse mill’s ratio 134919 

(73054) 

164830 

(96693) 

186971 

(183171) 

Table 14. Heckman Two-Stage Analysis with Brokers per capita 
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Variables 1984 1989 1994 

intercept -2.8180 

(0.1826) 

-2.4918 

(0.1695) 

-1.9580 

(0.2074) 

E(labor) -5.32*10-14 

(5.5*10-13) 

1.9078*10-14 

(4.11*10-13) 

5.32*10-13 

(3.51*10-13) 

Std(labor) -0.0776 

(0.0217) 

-0.1097 

(0.0205) 

-0.1665 

(0.0190) 

Cov(∆lnwit, Rt) -0.0180 

(0.0059) 

-0.0185 

(0.0057) 

-0.0190 

(0.0053) 

If the head is male 0.3327 

(0.0600) 

0.3358 

(0.0565) 

0.4266 

(0.0592) 

If the head is in financial firm 0.1595 

(0.0848) 

0.3381 

(0.0787) 

0.2201 

(0.0788) 

If the head is in other services 0.2371 

(0.0512) 

0.2005 

(0.0518) 

0.1873 

(0.0522) 

Age of head 0.0119 

(0.0019) 

0.0131 

(0.0019) 

0.0144 

(0.0017) 

If the head has college or above degree 0.5243 

(0.0508) 

0.6822 

(0.0485) 

0.4719 

(0.0446) 

If the head has a management or 
professional job 

0.4564 

(0.0517) 

0.3298 

(0.0506) 

0.5434 

(0.0465) 

Number of children of the head in 1984 -0.0002 

(0.0027) 

-0.0080 

(0.0030) 

-0.0068 

(0.0027) 

Race of the head 0.7437 

(0.0584) 

0.7909 

(0.0567) 

0.7149 

(0.0563) 

Brokers per capita 0.0348 

(0.0199) 

0.0088 

(0.0169) 

0.0547 

(0.0143) 

Per capita income 0.00002 

(0.00001) 

-1.2543*10-6 

(8.976*10-6) 

5.1793*10-7 

(8.015*10-6) 

Table 15. Testing the Effect of Brokers per capita by Adding Per Capita Income 

(Probit Step) 
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 1984 1989 1994 

intercept -465724 

(209032) 

-594533 

(251735) 

-587245 

(399953) 

E(labor) -2.668*10-8 

(0.012*10-5) 

0.0014*10-3 

(0.032*10-4) 

4.31*10-8 

(0.007*10-5) 

Std(labor) -4883 

(4609) 

-17577 

(8854) 

-26403 

(23449) 

Cov(∆lnwit, Rt) 

 

-1524 

(1073) 

-3183 

(1717) 

-7031 

(3444) 

If the head is male 51505 

(18857) 

56313 

(26155) 

70561 

(27234) 

If the head is in financial firms 24557 

(10044) 

52713 

(24812) 

29834 

(23614) 

If the head is in other services 26213 

(12416) 

47109 

(16622) 

22516 

(10020) 

Age of head 2293 

(637) 

3836 

(929) 

5327 

(1913) 

If head has college or above 
degree 

71083 

(27720) 

107902 

(47792) 

59177 

(59166) 

If head has management or 
professional job 

51748 

(24120) 

48090 

(23720) 

80021 

(36481) 

If the head is white 87337 

(42392) 

110916 

(59652) 

88639 

(43048) 

Brokers per capita 

(1 out of 1000 population) 

3068 

(2265) 

4334 

(3550) 

12615 

(8004) 

Per capita income 1.5227 

(1.3157) 

1.9950 

(1.7903) 

-1.3046 

(3.0288) 

Inverse mill’s ratio 146916 

(73255) 

167865 

(96779) 

190870 

(183375) 

Table 16. Testing the Effect of Brokers per capita by Adding Per Capita Income 

(Sample Selection Step) 
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       1984 

 

1989 

0 1 2 3 4 

0 0.6677 0.0399 0.0326 0.0276 0.0133 

1 0.0248 0.0147 0.0102 0.0029 0.0018 

2 0.0209 0.0086 0.0080 0.0100 0.0066 

3 0.0164 0.0035 0.0096 0.0127 0.0141 

4 0.0084 0.0023 0.0035 0.0078 0.0321 

total 0.7381 0.069 0.0639 0.0610 0.0680 

Table 17. Transition Matrix of 1984-1989  

Note: State 0: no stock 
Then the remaining sample is equally divided into 4 subgroups, with the amount of stock 

holding increasing in each group. 
 

 

 

       1984 

 

1989 

0 1 2 3 4 

0 0.9046 0.5783 0.5102 0.4525 0.1956 

1 0.0336 0.2130 0.1596 0.0475 0.0265 

2 0.0283 0.1246 0.1252 0.1639 0.0970 

3 0.0222 0.0507 0.1502 0.2082 0.2074 

4 0.0114 0.0333 0.0548 0.1279 0.4721 

Table 18. Probability Matrix 1984-1989 
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       1989 

 

1994 

0 1 2 3 4 

0 0.6183 0.0415 0.0355 0.0287 0.0142 

1 0.0314 0.0150 0.0099 0.009 0.0039 

2 0.0193 0.0115 0.0111 0.0133 0.0088 

3 0.0133 0.0047 0.0140 0.0150 0.0133 

4 0.0131 0.0021 0.0068 0.0103 0.0359 

total 0.6955 0.0747 0.0772 0.0764 0.0762 

Table 19. Transition Matrix 1989-1994 

 

 

 

       1989 

 

1994 

0 1 2 3 4 

0 0.8890 0.5556 0.4598 0.3757 0.1864 

1 0.0451 0.2008 0.1282 0.1178 0.0512 

2 0.0277 0.1539 0.1438 0.1741 0.1155 

3 0.0191 0.0629 0.1813 0.1963 0.1745 

4 0.0188 0.0281 0.0881 0.1348 0.4711 

Table 20. Probability Matrix 1989-1994 

 

 

 

       1984 

 

1994 

0 1 2 3 4 

0 0.6253 0.0480 0.0437 0.0392 0.0246 

1 0.0263 0.0107 0.0099 0.0051 0.0027 

2 0.0179 0.0066 0.0074 0.0121 0.0103 

3 0.0140 0.0066 0.0094 0.0140 0.0125 

4 0.0121 0.0029 0.0068 0.0060 0.0261 

total 0.6955 0.0747 0.0772 0.0764 0.0762 

Table 21. Transition Matrix 1984-1994 
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       1984 

 

1994 

0 1 2 3 4 

0 0.8991 0.6426 0.5661 0.5131 0.3228 

1 0.0378 0.1432 0.1282 0.0668 0.0354 

2 0.0257 0.0884 0.0959 0.1584 0.1352 

3 0.0201 0.0884 0.1218 0.1832 0.1640 

4 0.0174 0.0388 0.0881 0.0785 0.3425 

Table 22. Probability Matrix 1984-1994 

 

 

 

       1989 

 

1984 

In the market  Out of the market Total 

In the market 733 338 1071 

Out of the market 559 3254 3813 

Total 1292 3592 4884 

Table 23. Entering/Quiting Equity Market 1984-1989 

 

 

 

       1989 

 

1994 

In the market  Out of the market Total 

In the market 916 372 1288 

Out of the market 585 2997 3582 

Total 1501 3369 4870 

Table 24. Entering/Quiting Equity Market 1989-1994 (14 non-response) 
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 1984 1989 1994 

intercept -2.4292 

(0.1129) 

-2.4088 

(0.1205) 

-1.8055 

(0.1128) 

E(labor income) -3.202*10-14 

(4.37*10-13) 

1.8230*10-14 

(3.82*10-13) 

5.6173*10-13 

(4.18*10-13) 

Std(labor income) -0.0851 

(0.0217) 

-0.1209 

(0.0205) 

-0.1775 

(0.0191) 

Cov(∆lnwit, Rit)  -0.0110 

(0.0059) 

-0.0091 

(0.0029) 

-0.0075 

(0.0025) 

CovWH -2.1958*10-7 

(0.7219*10-7) 

-3.4968*10-7 

(0.7391*10-7) 

-4.6359*10-7 

(0.7225*10-7) 

If the head is male 0.3297 

(0.0598) 

0.3199 

(0.0565) 

0.3965 

(0.0498) 

If the head is in financial 
firm 

0.1601 

(0.0846) 

0.3446 

(0.0783) 

0.1887 

(0.0773) 

If the head is in other 
service 

0.2135 

(0.0509) 

0.1971 

(0.0517) 

0.1843 

(0.0519) 

Age of head 0.0110 

(0.0019) 

0.0114 

(0.0019) 

0.0129 

(0.0017) 

If the head has college 
or above degree 

0.5092 

(0.0506) 

0.6732 

(0.0484) 

0.4642 

(0.0445) 

If the head has 
managerial or 

professional job 

0.4541 

(0.0514) 

0.3337 

(0.0504) 

0.5034 

(0.0462) 

If the head is white 0.7141 

(0.0576) 

0.7772 

(0.0564) 

0.6580 

(0.0508) 

Broker per Capita 0.0349 

(0.0187) 

0.0088 

(0.0170) 

0.0540 

(0.0135) 

Table 25. Probit Model with the Covariance of Labor Income and House Value 
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 1984 1989 1994 

intercept -397671 

(187562) 

-544483 

(253043) 

-636947 

(389726) 

E(labor income) -2.1658*10-8 

(1.2*10-7) 

1.488*10-6 

(3.1*10-7) 

4.4316*10-8 

(7.0*10-8) 

Std(labor income) -5260 

(4887) 

-18636 

(9251) 

-32242 

(25177) 

Cov(∆lnwit, Rit)  -1218 

(979) 

-2935 

(1767) 

-5041 

(3413) 

CovWH -0.0119 

(0.0056) 

-0.0173 

(0.0082) 

-0.0482 

(0.0229) 

If the head is male 47734 

(18745) 

53535 

(26085) 

68529 

(27146) 

If the head is in financial 
firm 

22990 

(9792) 

49597 

(24741) 

30084 

(30761) 

If the head is in other 
service 

22048 

(11324) 

44059 

(16530) 

21568 

(10025) 

Age of head 2292 

(667) 

4032 

(976) 

5465 

(1921) 

If the head has college 
or above degree 

63686 

(26628) 

10204 

(48254) 

59844 

(57100) 

If the head is white 74746 

(40091) 

105030 

(59905) 

82301 

(41003) 

Broker per Capita 2639 

(2054) 

3849 

(3391) 

12584 

(7663) 

Inverse mills ratio 129468 

(71026) 

179015 

(97381) 

198463 

(179764) 

Table 26. Sample Selection Model with the Covariance of Labor Income and House 

Value 
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 1984 1989 1994 

intercept -2.4314 

(0.1130) 

-2.4193 

(0.1207) 

-1.8174 

(0.1123) 

E(labor income) -3.112*10-14 

(4.03*10-13) 

-1.275*10-14 

(1.08*10-13) 

4.4106*10-13 

(2.59*10-13) 

Std(labor income) -0.0848 

(0.0217) 

-0.1208 

(0.0207) 

-0.1766 

(0.0190) 

Cov(∆lnwit, Rit)  -0.0112 

(0.0041) 

-0.0121 

(0.0059) 

-0.0137 

(0.0055) 

CovWH -2.3798*10-7 

(0.7219*10-7) 

-3.4972*10-7 

(0.7398*10-7) 

-4.7804*10-7 

(0.7227*10-7) 

CovSH -0.0035 

(0.0006) 

-0.0117 

(0.0046) 

-0.0121 

(0.0045) 

If the head is male 0.3312 

(0.0599) 

0.3241 

(0.0566) 

0.4138 

(0.0598) 

If the head is in financial 
firm 

0.1595 

(0.0746) 

0.3442 

(0.0783) 

0.1883 

(0.0773) 

If the head is in other 
service 

0.2139 

(0.0509) 

0.1985 

(0.0517) 

0.1868 

(0.0520) 

Age of head 0.0111 

(0.0019) 

0.0117 

(0.0019) 

0.0132 

(0.0018) 

If the head has college 
or above degree 

0.5091 

(0.0506) 

0.6727 

(0.0485) 

0.4518 

(0.0445) 

If the head has 
managerial or 

professional job 

0.4538 

(0.0514) 

0.3345 

(0.0504) 

0.5036 

(0.0463) 

If the head is white 0.7130 

(0.0576) 

0.7740 

(0.0565) 

0.7115 

(0.0509) 

Broker per Capita 0.0347 

(0.0186) 

0.0076 

(0.0164) 

0.0562 

(0.0137) 

Table 27. Probit Model with the Covariance of Stock Return and House Return 
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 1989 1994 

intercept 9273 

(20546) 

-82504 

(56812) 

-506164 

(153504) 

E(labor income) -2.2443*10-8 

(1.1521*10-7) 

1.31*10-8 

(3.133*10-7) 

3.3598*10-8 

(5.0*10-8) 

Std(labor income) 5053 

(4811) 

-15454 

(9219) 

-31628 

(21129) 

Cov(∆lnwit, Rit)  -1230 

(979) 

-2729 

(1769) 

-5057 

(3426) 

CovWH -0.0135 

(0.0057) 

-0.0171 

(0.0082) 

-0.0476 

(0.0219) 

CovSH -0.0527 

(0.0139) 

-0.0631 

(0.0104) 

-0.0738 

(0.0165) 

If the head is male 47730 

(18710) 

53839 

(25800) 

68502 

(27162) 

If the head is in financial 
firm 

22112 

(9883) 

49491 

(24479) 

31362 

(30742) 

If the head is in other 
service 

23979 

(11398) 

44543 

(16372) 

22190 

(10074) 

Age of head 2302 

(669) 

4121 

(1001) 

5445 

(1886) 

If the head has college 
or above degree 

64060 

(26710) 

14048 

(44896) 

59916 

(54230) 

If the head is white 74437 

(40036) 

105409 

(53772) 

82931 

(39513) 

Broker per Capita 2624 

(2038) 

3914 

(3400) 

12679 

(7673) 

Inverse mills ratio 133263 

(20639) 

152476 

(58041) 

169495 

(75639) 

1984 

Table 28. Sample Selection Model with the Covariance of Stock Return and House 

Value 

 

 

 1984 1989 1994 

Home owners 7857 15123 35836 

Non home owners 870 1869 5352 

Table 29. The Mean Value of Stock Holding for Homeowners and Non Homeowners 
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 Count Percentage 

Ever BK 526 6.33% 

Never BK 7781 93.67% 

Total 8307 100% 

Table 30. Ever Bankruptcy Distribution in 1996 PSID Core Family Survey 

 

 

 Count Percentage 

Ever delinquent 2086 25.11% 

Never delinquent 6221 74.89% 

Total 8307 100% 

Table 31. Ever Default Distribution in 1996 PSID Core Family Survey 

 

 

 Mean 

Age of household head 44 

If household head is male 0.69 

If household head is married 0.52 

If household head is college-educated 0.21 

If household head is Caucasian 0.56 

Number of kids 0.91 

If household head is unemployed 0.33 

Table 32. Mean Values of Independent Variables in the Regression 
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 Estimate Standard Error 

State unemployment rate 0.1260 0.0086 

If head is college-educated -0.3909 0.0403 

Age of head 0.0221 0.0009 

If head is male -0.3245 0.0407 

If head is married -0.4526 0.0417 

If head is white -0.2893 0.0318 

Number of kids -0.0610 0.0131 

Table 33. Bivariate Probit Regression: Unemployment Equation 

 

 

 Estimate Standard Error 

If head was unemployed 1.4207 0.1156 

Family income ($00,000) -0.1550 0.0467 

State property exemption ($0,000) 0.1802 0.0284 

If head is college-educated -0.4677 0.0532 

Age of head -0.1541 0.0023 

If head is male -0.3354 0.0537 

If head is married -0.0693 0.0606 

If head is white -0.1838 0.0389 

Number of kids 0.0401 0.0152 

Disturbance Correlation: Rho(1, 2)=0.7238 

Table 34. Bivariate Probit Model: Bankruptcy Filing Equation  

 

 

 Estimate Standard Error 

If head was unemployed 0.7127 0.1151 

Family income ($0,000) -0.1928 0.0031 

If head is college-educated -0.0046 0.0411 

Age of head -0.2595 0.0014 

If head is male -0.1373 0.0403 

If head is married -0.1616 0.0434 

If head is white -0.1021 0.0309 

Number of kids 0.0986 0.0136 

Disturbance Correlation: Rho(1, 2)=0.1683 

Table 35. Bivariate Probit Model: Bill Delinquency Equation 
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 Count Percentage 

Chapter 7 264 50.29% 

Chapter 13 261 49.71% 

Total 525 100% 

Table 36. Chapter of Bankruptcy Filing 

 

 

 Estimate Standard Error 

Age of household head 0.0088 0.0050 

Debt/wealth ratio -0.0010 0.0003 

If head was unemployed -0.4204 0.1721 

Inverse Mills ratio -0.6802 0.3097 

* wealth is approximated by house value plus family income. 

Table 37. Probit Analysis of Filing for Chapter 13 Bankruptcy  
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APPENDIX B 

The Panel Study of Income Dynamics (PSID) is a longitudinal survey data 

conducted by the University of Michigan since 1968. Over its life, it has been funded by 

several government agencies, foundations and organizations. Their current major funding 

sources are the National Science Foundation and the National Institute on Aging.  

The PSID data is a panel study of representative U.S. individuals (men, women 

and children) and the household they reside in. Its emphasis is the dynamic aspects of 

economic and demographic behavior. But the actual coverage is much broader than these. 

In the recent years, special topics include extensive questionnaire on wealth and credit 

background, which has been very useful for the purpose of this dissertation.  

The survey project has been very successful in re-interviewing families previously 

in the study and following new families as young adults “split off” from their parents. 

The sample households included in the study is about 7000 now.  Previous research has 

shown that PSID is a good source of information on the distribution of basic economic 

variables such as income, wealth, homeownership and employment in the larger 

population. One of the important features of PSID data is its comparability of data quality 

and structure over time. The general design and content of certain important income and 

demographic variables have remained unchanged, which makes it easy to construct a 

clean and consistent time series of income dynamics for each individual or household. 
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This paper is a study on the preference of general household investment, it is 

important to have a data set representative of American households. PSID is the only 

longitudinal representation of families and individuals of all ages. National Longitudinal 

Survey (NLS) and Health and Retirement Study (HRS) also provide data of panel 

features. However, the samples are tilted toward either young cohort or older cohort, who 

have represented different investment behavior as pointed out in the literature.  

As one of the most important measures in this paper is labor income risk over the 

15 year period, PSID provides the best estimation. Income measures in PSID include 

taxable income, transfer income, social security, asset income, and business income. And 

the measures are mostly available for head, “wife” and other family members. Each 

wave’s report also has the 3-digit Census code on the head’s and wife’s occupation and 

industry. 

Gouskova and Schoeni (2002) compared the annual income observations from 

PSID with March Current Population Survey, which is a cross-sectional national survey, 

and is the basis for the government’s official estimates of income and poverty. They 

compared income estimates for the PSID history 1968-1999. The results show that the 

distributions match closely in the range between the 5th and 95th percentile through the 

entire 30-year history of PSID. And the differences slowly disappeared during the 1980s 

and early 1990s. As this dissertation uses data PSID data from 1980s to early 1990s, we 

should thus be able to infer that the income risk measures in this paper are representative 

of U.S. household. 
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The active savings file and the wealth supplements provide rich sources on flow 

of money in and out of different assets. Curtin, Juster and Morgan (1988) examined the 

quality of PSID wealth data and found it representative of total wealth and the 

distribution of wealth in the great bulk of the U.S. population. They also found the overall 

potential of examining wealth using PSID data is comparable to using Survey of 

Consumer Finance data on a cross-sectional basis. However, we did not use SCF data due 

to the fact that it does not provide the unique panel feature essential for measuring 

income risk.  The general descriptive statistics from PSID are also closer to the actual 

population than that provided by SIPP. The PSID data also has a much lower non-

response rate than SIPP, and is much less necessary to impute certain values, which 

reduces potential estimation error.  

The 1996 wave of core family data in PSID also provides questions on bill 

payment delinquency and bankruptcy filings, which enabled the study of the third essay 

in this dissertation. This feature will be otherwise unavailable in the other panel data sets. 

For the sample used in the first and second essays in this dissertation, I use data 

from 1979-1996. I drop the Latino over-sample in 1990-1992. I then use 1979 as my base 

year, treating all families in this year as main families, and subsequent split off families 

are dropped from the sample. A family is also dropped if it did not respond in any year. 

Finally, I drop the two cases in which total asset income of other family members is top-

coded. This leaves a balanced panel of 4884 households.  

Table 2 shows the sample selection criteria for the first two essays. Table 3 shows 

the variables used in the regressions and their mean values. The mean family labor 
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income in 1994 from my sample is about $42,000. And the mean family total income 

from PSID 1994 total sample is about $47,000. We can see that the level of labor income 

after my sample selection remains comparable and representative as in the original PSID 

sample.  

Table 6 shows that the percentage of stock ownership ranges from 20% to 30% in 

the sample periods, which is also comparable to the literature during the same time span.  

Overall, the important input variables for this dissertation include family 

demographics, labor income dynamics, the self-reported house value, the amount of stock 

ownership and the value of checking and savings account. Careful examination of each of 

the component shows that they are comparable to other major household survey data on a 

cross-sectional basis, representative of the general households and could provide panel 

features as well, which won’t be available other wise. In no ways, this data set could be 

perfect. However, we are trying to use the best information possible and the available 

resources from PSID are rich enough for us to examine income risk profiles and 

household stock participation preferences on a panel basis.  
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